summaryrefslogtreecommitdiff
path: root/src/android/camera_ops.cpp
blob: 9dfc2e655e833dde134f01648798647c1c839a9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2019, Google Inc.
 *
 * camera_ops.h - Android Camera HAL Operations
 */

#include "camera_ops.h"

#include <system/camera_metadata.h>

#include "camera_device.h"

using namespace libcamera;

/*
 * Translatation layer between the Android Camera HAL device operations and the
 * CameraDevice.
 */

static int hal_dev_initialize(const struct camera3_device *dev,
			      const camera3_callback_ops_t *callback_ops)
{
	if (!dev)
		return -EINVAL;

	CameraDevice *camera = reinterpret_cast<CameraDevice *>(dev->priv);
	camera->setCallbacks(callback_ops);

	return 0;
}

static int hal_dev_configure_streams(const struct camera3_device *dev,
				     camera3_stream_configuration_t *stream_list)
{
	if (!dev)
		return -EINVAL;

	CameraDevice *camera = reinterpret_cast<CameraDevice *>(dev->priv);
	return camera->configureStreams(stream_list);
}

static const camera_metadata_t *
hal_dev_construct_default_request_settings(const struct camera3_device *dev,
					   int type)
{
	if (!dev)
		return nullptr;

	CameraDevice *camera = reinterpret_cast<CameraDevice *>(dev->priv);
	return camera->constructDefaultRequestSettings(type);
}

static int hal_dev_process_capture_request(const struct camera3_device *dev,
					   camera3_capture_request_t *request)
{
	if (!dev)
		return -EINVAL;

	CameraDevice *camera = reinterpret_cast<CameraDevice *>(dev->priv);
	return camera->processCaptureRequest(request);
}

static void hal_dev_dump(const struct camera3_device *dev, int fd)
{
}

static int hal_dev_flush(const struct camera3_device *dev)
{
	return 0;
}

int hal_dev_close(hw_device_t *hw_device)
{
	if (!hw_device)
		return -EINVAL;

	camera3_device_t *dev = reinterpret_cast<camera3_device_t *>(hw_device);
	CameraDevice *camera = reinterpret_cast<CameraDevice *>(dev->priv);

	camera->close();

	return 0;
}

camera3_device_ops hal_dev_ops = {
	.initialize = hal_dev_initialize,
	.configure_streams = hal_dev_configure_streams,
	.register_stream_buffers = nullptr,
	.construct_default_request_settings = hal_dev_construct_default_request_settings,
	.process_capture_request = hal_dev_process_capture_request,
	.get_metadata_vendor_tag_ops = nullptr,
	.dump = hal_dev_dump,
	.flush = hal_dev_flush,
	.reserved = { nullptr },
};
> 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
/* SPDX-License-Identifier: BSD-2-Clause */
/*
 * Copyright (C) 2019-2021, Raspberry Pi Ltd
 *
 * rpi.cpp - Raspberry Pi Image Processing Algorithms
 */

#include <algorithm>
#include <array>
#include <cstring>
#include <fcntl.h>
#include <math.h>
#include <stdint.h>
#include <string.h>
#include <sys/mman.h>

#include <linux/bcm2835-isp.h>

#include <libcamera/base/log.h>
#include <libcamera/base/shared_fd.h>
#include <libcamera/base/span.h>

#include <libcamera/control_ids.h>
#include <libcamera/controls.h>
#include <libcamera/framebuffer.h>
#include <libcamera/ipa/ipa_interface.h>
#include <libcamera/ipa/ipa_module_info.h>
#include <libcamera/ipa/raspberrypi_ipa_interface.h>
#include <libcamera/request.h>

#include "libcamera/internal/mapped_framebuffer.h"

#include "agc_algorithm.h"
#include "agc_status.h"
#include "alsc_status.h"
#include "awb_algorithm.h"
#include "awb_status.h"
#include "black_level_status.h"
#include "cam_helper.h"
#include "ccm_algorithm.h"
#include "ccm_status.h"
#include "contrast_algorithm.h"
#include "contrast_status.h"
#include "controller.h"
#include "denoise_algorithm.h"
#include "denoise_status.h"
#include "dpc_status.h"
#include "focus_status.h"
#include "geq_status.h"
#include "lux_status.h"
#include "metadata.h"
#include "sharpen_algorithm.h"
#include "sharpen_status.h"

namespace libcamera {

using namespace std::literals::chrono_literals;
using utils::Duration;

/* Number of metadata objects available in the context list. */
constexpr unsigned int numMetadataContexts = 16;

/* Configure the sensor with these values initially. */
constexpr double defaultAnalogueGain = 1.0;
constexpr Duration defaultExposureTime = 20.0ms;
constexpr Duration defaultMinFrameDuration = 1.0s / 30.0;
constexpr Duration defaultMaxFrameDuration = 250.0s;

/*
 * Determine the minimum allowable inter-frame duration to run the controller
 * algorithms. If the pipeline handler provider frames at a rate higher than this,
 * we rate-limit the controller Prepare() and Process() calls to lower than or
 * equal to this rate.
 */
constexpr Duration controllerMinFrameDuration = 1.0s / 30.0;

/* List of controls handled by the Raspberry Pi IPA */
static const ControlInfoMap::Map ipaControls{
	{ &controls::AeEnable, ControlInfo(false, true) },
	{ &controls::ExposureTime, ControlInfo(0, 66666) },
	{ &controls::AnalogueGain, ControlInfo(1.0f, 16.0f) },
	{ &controls::AeMeteringMode, ControlInfo(controls::AeMeteringModeValues) },
	{ &controls::AeConstraintMode, ControlInfo(controls::AeConstraintModeValues) },
	{ &controls::AeExposureMode, ControlInfo(controls::AeExposureModeValues) },
	{ &controls::ExposureValue, ControlInfo(-8.0f, 8.0f, 0.0f) },
	{ &controls::AwbEnable, ControlInfo(false, true) },
	{ &controls::ColourGains, ControlInfo(0.0f, 32.0f) },
	{ &controls::AwbMode, ControlInfo(controls::AwbModeValues) },
	{ &controls::Brightness, ControlInfo(-1.0f, 1.0f, 0.0f) },
	{ &controls::Contrast, ControlInfo(0.0f, 32.0f, 1.0f) },
	{ &controls::Saturation, ControlInfo(0.0f, 32.0f, 1.0f) },
	{ &controls::Sharpness, ControlInfo(0.0f, 16.0f, 1.0f) },
	{ &controls::ColourCorrectionMatrix, ControlInfo(-16.0f, 16.0f) },
	{ &controls::ScalerCrop, ControlInfo(Rectangle{}, Rectangle(65535, 65535, 65535, 65535), Rectangle{}) },
	{ &controls::FrameDurationLimits, ControlInfo(INT64_C(33333), INT64_C(120000)) },
	{ &controls::draft::NoiseReductionMode, ControlInfo(controls::draft::NoiseReductionModeValues) }
};

LOG_DEFINE_CATEGORY(IPARPI)

namespace ipa::RPi {

class IPARPi : public IPARPiInterface
{
public:
	IPARPi()
		: controller_(), frameCount_(0), checkCount_(0), mistrustCount_(0),
		  lastRunTimestamp_(0), lsTable_(nullptr), firstStart_(true)
	{
	}

	~IPARPi()
	{
		if (lsTable_)
			munmap(lsTable_, MaxLsGridSize);
	}

	int init(const IPASettings &settings, IPAInitResult *result) override;
	void start(const ControlList &controls, StartConfig *startConfig) override;
	void stop() override {}

	int configure(const IPACameraSensorInfo &sensorInfo,
		      const std::map<unsigned int, IPAStream> &streamConfig,
		      const std::map<unsigned int, ControlInfoMap> &entityControls,
		      const IPAConfig &data,
		      ControlList *controls, IPAConfigResult *result) override;
	void mapBuffers(const std::vector<IPABuffer> &buffers) override;
	void unmapBuffers(const std::vector<unsigned int> &ids) override;
	void signalStatReady(const uint32_t bufferId, uint32_t ipaContext) override;
	void signalQueueRequest(const ControlList &controls) override;
	void signalIspPrepare(const ISPConfig &data) override;

private:
	void setMode(const IPACameraSensorInfo &sensorInfo);
	bool validateSensorControls();
	bool validateIspControls();
	void queueRequest(const ControlList &controls);
	void returnEmbeddedBuffer(unsigned int bufferId);
	void prepareISP(const ISPConfig &data);
	void reportMetadata(unsigned int ipaContext);
	void fillDeviceStatus(const ControlList &sensorControls, unsigned int ipaContext);
	void processStats(unsigned int bufferId, unsigned int ipaContext);
	void applyFrameDurations(Duration minFrameDuration, Duration maxFrameDuration);
	void applyAGC(const struct AgcStatus *agcStatus, ControlList &ctrls);
	void applyAWB(const struct AwbStatus *awbStatus, ControlList &ctrls);
	void applyDG(const struct AgcStatus *dgStatus, ControlList &ctrls);
	void applyCCM(const struct CcmStatus *ccmStatus, ControlList &ctrls);
	void applyBlackLevel(const struct BlackLevelStatus *blackLevelStatus, ControlList &ctrls);
	void applyGamma(const struct ContrastStatus *contrastStatus, ControlList &ctrls);
	void applyGEQ(const struct GeqStatus *geqStatus, ControlList &ctrls);
	void applyDenoise(const struct DenoiseStatus *denoiseStatus, ControlList &ctrls);
	void applySharpen(const struct SharpenStatus *sharpenStatus, ControlList &ctrls);
	void applyDPC(const struct DpcStatus *dpcStatus, ControlList &ctrls);
	void applyLS(const struct AlscStatus *lsStatus, ControlList &ctrls);
	void resampleTable(uint16_t dest[], double const src[12][16], int destW, int destH);

	std::map<unsigned int, MappedFrameBuffer> buffers_;

	ControlInfoMap sensorCtrls_;
	ControlInfoMap ispCtrls_;
	ControlList libcameraMetadata_;

	/* Camera sensor params. */
	CameraMode mode_;

	/* Raspberry Pi controller specific defines. */
	std::unique_ptr<RPiController::CamHelper> helper_;
	RPiController::Controller controller_;
	std::array<RPiController::Metadata, numMetadataContexts> rpiMetadata_;

	/*
	 * We count frames to decide if the frame must be hidden (e.g. from
	 * display) or mistrusted (i.e. not given to the control algos).
	 */
	uint64_t frameCount_;

	/* For checking the sequencing of Prepare/Process calls. */
	uint64_t checkCount_;

	/* How many frames we should avoid running control algos on. */
	unsigned int mistrustCount_;

	/* Number of frames that need to be dropped on startup. */
	unsigned int dropFrameCount_;

	/* Frame timestamp for the last run of the controller. */
	uint64_t lastRunTimestamp_;

	/* Do we run a Controller::process() for this frame? */
	bool processPending_;

	/* LS table allocation passed in from the pipeline handler. */
	SharedFD lsTableHandle_;
	void *lsTable_;

	/* Distinguish the first camera start from others. */
	bool firstStart_;

	/* Frame duration (1/fps) limits. */
	Duration minFrameDuration_;
	Duration maxFrameDuration_;

	/* Maximum gain code for the sensor. */
	uint32_t maxSensorGainCode_;
};

int IPARPi::init(const IPASettings &settings, IPAInitResult *result)
{
	/*
	 * Load the "helper" for this sensor. This tells us all the device specific stuff
	 * that the kernel driver doesn't. We only do this the first time; we don't need
	 * to re-parse the metadata after a simple mode-switch for no reason.
	 */
	helper_ = std::unique_ptr<RPiController::CamHelper>(RPiController::CamHelper::create(settings.sensorModel));
	if (!helper_) {
		LOG(IPARPI, Error) << "Could not create camera helper for "
				   << settings.sensorModel;
		return -EINVAL;
	}

	/*
	 * Pass out the sensor config to the pipeline handler in order
	 * to setup the staggered writer class.
	 */
	int gainDelay, exposureDelay, vblankDelay, hblankDelay, sensorMetadata;
	helper_->getDelays(exposureDelay, gainDelay, vblankDelay, hblankDelay);
	sensorMetadata = helper_->sensorEmbeddedDataPresent();

	result->sensorConfig.gainDelay = gainDelay;
	result->sensorConfig.exposureDelay = exposureDelay;
	result->sensorConfig.vblankDelay = vblankDelay;
	result->sensorConfig.hblankDelay = hblankDelay;
	result->sensorConfig.sensorMetadata = sensorMetadata;

	/* Load the tuning file for this sensor. */
	int ret = controller_.read(settings.configurationFile.c_str());
	if (ret) {
		LOG(IPARPI, Error)
			<< "Failed to load tuning data file "
			<< settings.configurationFile;
		return ret;
	}

	controller_.initialise();

	/* Return the controls handled by the IPA */
	ControlInfoMap::Map ctrlMap = ipaControls;
	result->controlInfo = ControlInfoMap(std::move(ctrlMap), controls::controls);

	return 0;
}

void IPARPi::start(const ControlList &controls, StartConfig *startConfig)
{
	RPiController::Metadata metadata;

	ASSERT(startConfig);
	if (!controls.empty()) {
		/* We have been given some controls to action before start. */
		queueRequest(controls);
	}

	controller_.switchMode(mode_, &metadata);

	/* SwitchMode may supply updated exposure/gain values to use. */
	AgcStatus agcStatus;
	agcStatus.shutterTime = 0.0s;
	agcStatus.analogueGain = 0.0;

	metadata.get("agc.status", agcStatus);
	if (agcStatus.shutterTime && agcStatus.analogueGain) {
		ControlList ctrls(sensorCtrls_);
		applyAGC(&agcStatus, ctrls);
		startConfig->controls = std::move(ctrls);
	}

	/*
	 * Initialise frame counts, and decide how many frames must be hidden or
	 * "mistrusted", which depends on whether this is a startup from cold,
	 * or merely a mode switch in a running system.
	 */
	frameCount_ = 0;
	checkCount_ = 0;
	if (firstStart_) {
		dropFrameCount_ = helper_->hideFramesStartup();
		mistrustCount_ = helper_->mistrustFramesStartup();

		/*
		 * Query the AGC/AWB for how many frames they may take to
		 * converge sufficiently. Where these numbers are non-zero
		 * we must allow for the frames with bad statistics
		 * (mistrustCount_) that they won't see. But if zero (i.e.
		 * no convergence necessary), no frames need to be dropped.
		 */
		unsigned int agcConvergenceFrames = 0;
		RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
			controller_.getAlgorithm("agc"));
		if (agc) {
			agcConvergenceFrames = agc->getConvergenceFrames();
			if (agcConvergenceFrames)
				agcConvergenceFrames += mistrustCount_;
		}

		unsigned int awbConvergenceFrames = 0;
		RPiController::AwbAlgorithm *awb = dynamic_cast<RPiController::AwbAlgorithm *>(
			controller_.getAlgorithm("awb"));
		if (awb) {
			awbConvergenceFrames = awb->getConvergenceFrames();
			if (awbConvergenceFrames)
				awbConvergenceFrames += mistrustCount_;
		}

		dropFrameCount_ = std::max({ dropFrameCount_, agcConvergenceFrames, awbConvergenceFrames });
		LOG(IPARPI, Debug) << "Drop " << dropFrameCount_ << " frames on startup";
	} else {
		dropFrameCount_ = helper_->hideFramesModeSwitch();
		mistrustCount_ = helper_->mistrustFramesModeSwitch();
	}

	startConfig->dropFrameCount = dropFrameCount_;
	const Duration maxSensorFrameDuration = mode_.maxFrameLength * mode_.maxLineLength;
	startConfig->maxSensorFrameLengthMs = maxSensorFrameDuration.get<std::milli>();

	firstStart_ = false;
	lastRunTimestamp_ = 0;
}

void IPARPi::setMode(const IPACameraSensorInfo &sensorInfo)
{
	mode_.bitdepth = sensorInfo.bitsPerPixel;
	mode_.width = sensorInfo.outputSize.width;
	mode_.height = sensorInfo.outputSize.height;
	mode_.sensorWidth = sensorInfo.activeAreaSize.width;
	mode_.sensorHeight = sensorInfo.activeAreaSize.height;
	mode_.cropX = sensorInfo.analogCrop.x;
	mode_.cropY = sensorInfo.analogCrop.y;
	mode_.pixelRate = sensorInfo.pixelRate;

	/*
	 * Calculate scaling parameters. The scale_[xy] factors are determined
	 * by the ratio between the crop rectangle size and the output size.
	 */
	mode_.scaleX = sensorInfo.analogCrop.width / sensorInfo.outputSize.width;
	mode_.scaleY = sensorInfo.analogCrop.height / sensorInfo.outputSize.height;

	/*
	 * We're not told by the pipeline handler how scaling is split between
	 * binning and digital scaling. For now, as a heuristic, assume that
	 * downscaling up to 2 is achieved through binning, and that any
	 * additional scaling is achieved through digital scaling.
	 *
	 * \todo Get the pipeline handle to provide the full data
	 */
	mode_.binX = std::min(2, static_cast<int>(mode_.scaleX));
	mode_.binY = std::min(2, static_cast<int>(mode_.scaleY));

	/* The noise factor is the square root of the total binning factor. */
	mode_.noiseFactor = sqrt(mode_.binX * mode_.binY);

	/*
	 * Calculate the line length as the ratio between the line length in
	 * pixels and the pixel rate.
	 */
	mode_.minLineLength = sensorInfo.minLineLength * (1.0s / sensorInfo.pixelRate);
	mode_.maxLineLength = sensorInfo.maxLineLength * (1.0s / sensorInfo.pixelRate);

	/*
	 * Set the frame length limits for the mode to ensure exposure and
	 * framerate calculations are clipped appropriately.
	 */
	mode_.minFrameLength = sensorInfo.minFrameLength;
	mode_.maxFrameLength = sensorInfo.maxFrameLength;

	/*
	 * Some sensors may have different sensitivities in different modes;
	 * the CamHelper will know the correct value.
	 */
	mode_.sensitivity = helper_->getModeSensitivity(mode_);
}

int IPARPi::configure(const IPACameraSensorInfo &sensorInfo,
		      [[maybe_unused]] const std::map<unsigned int, IPAStream> &streamConfig,
		      const std::map<unsigned int, ControlInfoMap> &entityControls,
		      const IPAConfig &ipaConfig,
		      ControlList *controls, IPAConfigResult *result)
{
	if (entityControls.size() != 2) {
		LOG(IPARPI, Error) << "No ISP or sensor controls found.";
		return -1;
	}

	sensorCtrls_ = entityControls.at(0);
	ispCtrls_ = entityControls.at(1);

	if (!validateSensorControls()) {
		LOG(IPARPI, Error) << "Sensor control validation failed.";
		return -1;
	}

	if (!validateIspControls()) {
		LOG(IPARPI, Error) << "ISP control validation failed.";
		return -1;
	}

	maxSensorGainCode_ = sensorCtrls_.at(V4L2_CID_ANALOGUE_GAIN).max().get<int32_t>();

	/* Setup a metadata ControlList to output metadata. */
	libcameraMetadata_ = ControlList(controls::controls);

	/* Re-assemble camera mode using the sensor info. */
	setMode(sensorInfo);

	mode_.transform = static_cast<libcamera::Transform>(ipaConfig.transform);

	/* Store the lens shading table pointer and handle if available. */
	if (ipaConfig.lsTableHandle.isValid()) {
		/* Remove any previous table, if there was one. */
		if (lsTable_) {
			munmap(lsTable_, MaxLsGridSize);
			lsTable_ = nullptr;
		}

		/* Map the LS table buffer into user space. */
		lsTableHandle_ = std::move(ipaConfig.lsTableHandle);
		if (lsTableHandle_.isValid()) {
			lsTable_ = mmap(nullptr, MaxLsGridSize, PROT_READ | PROT_WRITE,
					MAP_SHARED, lsTableHandle_.get(), 0);

			if (lsTable_ == MAP_FAILED) {
				LOG(IPARPI, Error) << "dmaHeap mmap failure for LS table.";
				lsTable_ = nullptr;
			}
		}
	}

	/* Pass the camera mode to the CamHelper to setup algorithms. */
	helper_->setCameraMode(mode_);

	/*
	 * Initialise this ControlList correctly, even if empty, in case the IPA is
	 * running is isolation mode (passing the ControlList through the IPC layer).
	 */
	ControlList ctrls(sensorCtrls_);

	/* The pipeline handler passes out the mode's sensitivity. */
	result->modeSensitivity = mode_.sensitivity;

	if (firstStart_) {
		/* Supply initial values for frame durations. */
		applyFrameDurations(defaultMinFrameDuration, defaultMaxFrameDuration);

		/* Supply initial values for gain and exposure. */
		AgcStatus agcStatus;
		agcStatus.shutterTime = defaultExposureTime;
		agcStatus.analogueGain = defaultAnalogueGain;
		applyAGC(&agcStatus, ctrls);
	}

	ASSERT(controls);
	*controls = std::move(ctrls);

	/*
	 * Apply the correct limits to the exposure, gain and frame duration controls
	 * based on the current sensor mode.
	 */
	ControlInfoMap::Map ctrlMap = ipaControls;
	const Duration minSensorFrameDuration = mode_.minFrameLength * mode_.minLineLength;
	const Duration maxSensorFrameDuration = mode_.maxFrameLength * mode_.maxLineLength;
	ctrlMap[&controls::FrameDurationLimits] =
		ControlInfo(static_cast<int64_t>(minSensorFrameDuration.get<std::micro>()),
			    static_cast<int64_t>(maxSensorFrameDuration.get<std::micro>()));

	ctrlMap[&controls::AnalogueGain] =
		ControlInfo(1.0f, static_cast<float>(helper_->gain(maxSensorGainCode_)));

	/*
	 * Calculate the max exposure limit from the frame duration limit as V4L2
	 * will limit the maximum control value based on the current VBLANK value.
	 */
	Duration maxShutter = Duration::max();
	helper_->getBlanking(maxShutter, minSensorFrameDuration, maxSensorFrameDuration);
	const uint32_t exposureMin = sensorCtrls_.at(V4L2_CID_EXPOSURE).min().get<int32_t>();

	ctrlMap[&controls::ExposureTime] =
		ControlInfo(static_cast<int32_t>(helper_->exposure(exposureMin, mode_.minLineLength).get<std::micro>()),
			    static_cast<int32_t>(maxShutter.get<std::micro>()));

	result->controlInfo = ControlInfoMap(std::move(ctrlMap), controls::controls);
	return 0;
}

void IPARPi::mapBuffers(const std::vector<IPABuffer> &buffers)
{
	for (const IPABuffer &buffer : buffers) {
		const FrameBuffer fb(buffer.planes);
		buffers_.emplace(buffer.id,
				 MappedFrameBuffer(&fb, MappedFrameBuffer::MapFlag::ReadWrite));
	}
}

void IPARPi::unmapBuffers(const std::vector<unsigned int> &ids)
{
	for (unsigned int id : ids) {
		auto it = buffers_.find(id);
		if (it == buffers_.end())
			continue;

		buffers_.erase(id);
	}
}

void IPARPi::signalStatReady(uint32_t bufferId, uint32_t ipaContext)
{
	unsigned int context = ipaContext % rpiMetadata_.size();

	if (++checkCount_ != frameCount_) /* assert here? */
		LOG(IPARPI, Error) << "WARNING: Prepare/Process mismatch!!!";
	if (processPending_ && frameCount_ > mistrustCount_)
		processStats(bufferId, context);

	reportMetadata(context);

	statsMetadataComplete.emit(bufferId, libcameraMetadata_);
}

void IPARPi::signalQueueRequest(const ControlList &controls)
{
	queueRequest(controls);
}

void IPARPi::signalIspPrepare(const ISPConfig &data)
{
	/*
	 * At start-up, or after a mode-switch, we may want to
	 * avoid running the control algos for a few frames in case
	 * they are "unreliable".
	 */
	prepareISP(data);
	frameCount_++;

	/* Ready to push the input buffer into the ISP. */
	runIsp.emit(data.bayerBufferId);
}

void IPARPi::reportMetadata(unsigned int ipaContext)
{
	RPiController::Metadata &rpiMetadata = rpiMetadata_[ipaContext];
	std::unique_lock<RPiController::Metadata> lock(rpiMetadata);

	/*
	 * Certain information about the current frame and how it will be
	 * processed can be extracted and placed into the libcamera metadata
	 * buffer, where an application could query it.
	 */
	DeviceStatus *deviceStatus = rpiMetadata.getLocked<DeviceStatus>("device.status");
	if (deviceStatus) {
		libcameraMetadata_.set(controls::ExposureTime,
				       deviceStatus->shutterSpeed.get<std::micro>());
		libcameraMetadata_.set(controls::AnalogueGain, deviceStatus->analogueGain);
		libcameraMetadata_.set(controls::FrameDuration,
				       helper_->exposure(deviceStatus->frameLength, deviceStatus->lineLength).get<std::micro>());
		if (deviceStatus->sensorTemperature)
			libcameraMetadata_.set(controls::SensorTemperature, *deviceStatus->sensorTemperature);
	}

	AgcStatus *agcStatus = rpiMetadata.getLocked<AgcStatus>("agc.status");
	if (agcStatus) {
		libcameraMetadata_.set(controls::AeLocked, agcStatus->locked);
		libcameraMetadata_.set(controls::DigitalGain, agcStatus->digitalGain);
	}

	LuxStatus *luxStatus = rpiMetadata.getLocked<LuxStatus>("lux.status");
	if (luxStatus)
		libcameraMetadata_.set(controls::Lux, luxStatus->lux);

	AwbStatus *awbStatus = rpiMetadata.getLocked<AwbStatus>("awb.status");
	if (awbStatus) {
		libcameraMetadata_.set(controls::ColourGains, { static_cast<float>(awbStatus->gainR),
								static_cast<float>(awbStatus->gainB) });
		libcameraMetadata_.set(controls::ColourTemperature, awbStatus->temperatureK);
	}

	BlackLevelStatus *blackLevelStatus = rpiMetadata.getLocked<BlackLevelStatus>("black_level.status");
	if (blackLevelStatus)
		libcameraMetadata_.set(controls::SensorBlackLevels,
				       { static_cast<int32_t>(blackLevelStatus->blackLevelR),
					 static_cast<int32_t>(blackLevelStatus->blackLevelG),
					 static_cast<int32_t>(blackLevelStatus->blackLevelG),
					 static_cast<int32_t>(blackLevelStatus->blackLevelB) });

	FocusStatus *focusStatus = rpiMetadata.getLocked<FocusStatus>("focus.status");
	if (focusStatus && focusStatus->num == 12) {
		/*
		 * We get a 4x3 grid of regions by default. Calculate the average
		 * FoM over the central two positions to give an overall scene FoM.
		 * This can change later if it is not deemed suitable.
		 */
		int32_t focusFoM = (focusStatus->focusMeasures[5] + focusStatus->focusMeasures[6]) / 2;
		libcameraMetadata_.set(controls::FocusFoM, focusFoM);
	}

	CcmStatus *ccmStatus = rpiMetadata.getLocked<CcmStatus>("ccm.status");
	if (ccmStatus) {
		float m[9];
		for (unsigned int i = 0; i < 9; i++)
			m[i] = ccmStatus->matrix[i];
		libcameraMetadata_.set(controls::ColourCorrectionMatrix, m);
	}
}

bool IPARPi::validateSensorControls()
{
	static const uint32_t ctrls[] = {
		V4L2_CID_ANALOGUE_GAIN,
		V4L2_CID_EXPOSURE,
		V4L2_CID_VBLANK,
		V4L2_CID_HBLANK,
	};

	for (auto c : ctrls) {
		if (sensorCtrls_.find(c) == sensorCtrls_.end()) {
			LOG(IPARPI, Error) << "Unable to find sensor control "
					   << utils::hex(c);
			return false;
		}
	}

	return true;
}

bool IPARPi::validateIspControls()
{
	static const uint32_t ctrls[] = {
		V4L2_CID_RED_BALANCE,
		V4L2_CID_BLUE_BALANCE,
		V4L2_CID_DIGITAL_GAIN,
		V4L2_CID_USER_BCM2835_ISP_CC_MATRIX,
		V4L2_CID_USER_BCM2835_ISP_GAMMA,
		V4L2_CID_USER_BCM2835_ISP_BLACK_LEVEL,
		V4L2_CID_USER_BCM2835_ISP_GEQ,
		V4L2_CID_USER_BCM2835_ISP_DENOISE,
		V4L2_CID_USER_BCM2835_ISP_SHARPEN,
		V4L2_CID_USER_BCM2835_ISP_DPC,
		V4L2_CID_USER_BCM2835_ISP_LENS_SHADING,
		V4L2_CID_USER_BCM2835_ISP_CDN,
	};

	for (auto c : ctrls) {
		if (ispCtrls_.find(c) == ispCtrls_.end()) {
			LOG(IPARPI, Error) << "Unable to find ISP control "
					   << utils::hex(c);
			return false;
		}
	}

	return true;
}

/*
 * Converting between enums (used in the libcamera API) and the names that
 * we use to identify different modes. Unfortunately, the conversion tables
 * must be kept up-to-date by hand.
 */
static const std::map<int32_t, std::string> MeteringModeTable = {
	{ controls::MeteringCentreWeighted, "centre-weighted" },
	{ controls::MeteringSpot, "spot" },
	{ controls::MeteringMatrix, "matrix" },
	{ controls::MeteringCustom, "custom" },
};

static const std::map<int32_t, std::string> ConstraintModeTable = {
	{ controls::ConstraintNormal, "normal" },
	{ controls::ConstraintHighlight, "highlight" },
	{ controls::ConstraintCustom, "custom" },
};

static const std::map<int32_t, std::string> ExposureModeTable = {
	{ controls::ExposureNormal, "normal" },
	{ controls::ExposureShort, "short" },
	{ controls::ExposureLong, "long" },
	{ controls::ExposureCustom, "custom" },
};

static const std::map<int32_t, std::string> AwbModeTable = {
	{ controls::AwbAuto, "auto" },
	{ controls::AwbIncandescent, "incandescent" },
	{ controls::AwbTungsten, "tungsten" },
	{ controls::AwbFluorescent, "fluorescent" },
	{ controls::AwbIndoor, "indoor" },
	{ controls::AwbDaylight, "daylight" },
	{ controls::AwbCloudy, "cloudy" },
	{ controls::AwbCustom, "custom" },
};

static const std::map<int32_t, RPiController::DenoiseMode> DenoiseModeTable = {
	{ controls::draft::NoiseReductionModeOff, RPiController::DenoiseMode::Off },
	{ controls::draft::NoiseReductionModeFast, RPiController::DenoiseMode::ColourFast },
	{ controls::draft::NoiseReductionModeHighQuality, RPiController::DenoiseMode::ColourHighQuality },
	{ controls::draft::NoiseReductionModeMinimal, RPiController::DenoiseMode::ColourOff },
	{ controls::draft::NoiseReductionModeZSL, RPiController::DenoiseMode::ColourHighQuality },
};

void IPARPi::queueRequest(const ControlList &controls)
{
	/* Clear the return metadata buffer. */
	libcameraMetadata_.clear();

	for (auto const &ctrl : controls) {
		LOG(IPARPI, Debug) << "Request ctrl: "
				   << controls::controls.at(ctrl.first)->name()
				   << " = " << ctrl.second.toString();

		switch (ctrl.first) {
		case controls::AE_ENABLE: {
			RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
				controller_.getAlgorithm("agc"));
			if (!agc) {
				LOG(IPARPI, Warning)
					<< "Could not set AE_ENABLE - no AGC algorithm";
				break;
			}

			if (ctrl.second.get<bool>() == false)
				agc->disableAuto();
			else
				agc->enableAuto();

			libcameraMetadata_.set(controls::AeEnable, ctrl.second.get<bool>());
			break;
		}

		case controls::EXPOSURE_TIME: {
			RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
				controller_.getAlgorithm("agc"));
			if (!agc) {
				LOG(IPARPI, Warning)
					<< "Could not set EXPOSURE_TIME - no AGC algorithm";
				break;
			}

			/* The control provides units of microseconds. */
			agc->setFixedShutter(ctrl.second.get<int32_t>() * 1.0us);

			libcameraMetadata_.set(controls::ExposureTime, ctrl.second.get<int32_t>());
			break;
		}

		case controls::ANALOGUE_GAIN: {
			RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
				controller_.getAlgorithm("agc"));
			if (!agc) {
				LOG(IPARPI, Warning)
					<< "Could not set ANALOGUE_GAIN - no AGC algorithm";
				break;
			}

			agc->setFixedAnalogueGain(ctrl.second.get<float>());

			libcameraMetadata_.set(controls::AnalogueGain,
					       ctrl.second.get<float>());
			break;
		}

		case controls::AE_METERING_MODE: {
			RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
				controller_.getAlgorithm("agc"));
			if (!agc) {
				LOG(IPARPI, Warning)
					<< "Could not set AE_METERING_MODE - no AGC algorithm";
				break;
			}

			int32_t idx = ctrl.second.get<int32_t>();
			if (MeteringModeTable.count(idx)) {
				agc->setMeteringMode(MeteringModeTable.at(idx));
				libcameraMetadata_.set(controls::AeMeteringMode, idx);
			} else {
				LOG(IPARPI, Error) << "Metering mode " << idx
						   << " not recognised";
			}
			break;
		}

		case controls::AE_CONSTRAINT_MODE: {
			RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
				controller_.getAlgorithm("agc"));
			if (!agc) {
				LOG(IPARPI, Warning)
					<< "Could not set AE_CONSTRAINT_MODE - no AGC algorithm";
				break;
			}

			int32_t idx = ctrl.second.get<int32_t>();
			if (ConstraintModeTable.count(idx)) {
				agc->setConstraintMode(ConstraintModeTable.at(idx));
				libcameraMetadata_.set(controls::AeConstraintMode, idx);
			} else {
				LOG(IPARPI, Error) << "Constraint mode " << idx
						   << " not recognised";
			}
			break;
		}

		case controls::AE_EXPOSURE_MODE: {
			RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
				controller_.getAlgorithm("agc"));
			if (!agc) {
				LOG(IPARPI, Warning)
					<< "Could not set AE_EXPOSURE_MODE - no AGC algorithm";
				break;
			}

			int32_t idx = ctrl.second.get<int32_t>();
			if (ExposureModeTable.count(idx)) {
				agc->setExposureMode(ExposureModeTable.at(idx));
				libcameraMetadata_.set(controls::AeExposureMode, idx);
			} else {
				LOG(IPARPI, Error) << "Exposure mode " << idx
						   << " not recognised";
			}
			break;
		}

		case controls::EXPOSURE_VALUE: {
			RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
				controller_.getAlgorithm("agc"));
			if (!agc) {
				LOG(IPARPI, Warning)
					<< "Could not set EXPOSURE_VALUE - no AGC algorithm";
				break;
			}

			/*
			 * The SetEv() function takes in a direct exposure multiplier.
			 * So convert to 2^EV
			 */
			double ev = pow(2.0, ctrl.second.get<float>());
			agc->setEv(ev);
			libcameraMetadata_.set(controls::ExposureValue,
					       ctrl.second.get<float>());
			break;
		}

		case controls::AWB_ENABLE: {
			RPiController::AwbAlgorithm *awb = dynamic_cast<RPiController::AwbAlgorithm *>(
				controller_.getAlgorithm("awb"));
			if (!awb) {
				LOG(IPARPI, Warning)
					<< "Could not set AWB_ENABLE - no AWB algorithm";
				break;
			}

			if (ctrl.second.get<bool>() == false)
				awb->disableAuto();
			else
				awb->enableAuto();

			libcameraMetadata_.set(controls::AwbEnable,
					       ctrl.second.get<bool>());
			break;
		}

		case controls::AWB_MODE: {
			RPiController::AwbAlgorithm *awb = dynamic_cast<RPiController::AwbAlgorithm *>(
				controller_.getAlgorithm("awb"));
			if (!awb) {
				LOG(IPARPI, Warning)
					<< "Could not set AWB_MODE - no AWB algorithm";
				break;
			}

			int32_t idx = ctrl.second.get<int32_t>();
			if (AwbModeTable.count(idx)) {
				awb->setMode(AwbModeTable.at(idx));
				libcameraMetadata_.set(controls::AwbMode, idx);
			} else {
				LOG(IPARPI, Error) << "AWB mode " << idx
						   << " not recognised";
			}
			break;
		}

		case controls::COLOUR_GAINS: {
			auto gains = ctrl.second.get<Span<const float>>();
			RPiController::AwbAlgorithm *awb = dynamic_cast<RPiController::AwbAlgorithm *>(
				controller_.getAlgorithm("awb"));
			if (!awb) {
				LOG(IPARPI, Warning)
					<< "Could not set COLOUR_GAINS - no AWB algorithm";
				break;
			}

			awb->setManualGains(gains[0], gains[1]);
			if (gains[0] != 0.0f && gains[1] != 0.0f)
				/* A gain of 0.0f will switch back to auto mode. */
				libcameraMetadata_.set(controls::ColourGains,
						       { gains[0], gains[1] });
			break;
		}

		case controls::BRIGHTNESS: {
			RPiController::ContrastAlgorithm *contrast = dynamic_cast<RPiController::ContrastAlgorithm *>(
				controller_.getAlgorithm("contrast"));
			if (!contrast) {
				LOG(IPARPI, Warning)
					<< "Could not set BRIGHTNESS - no contrast algorithm";
				break;
			}

			contrast->setBrightness(ctrl.second.get<float>() * 65536);
			libcameraMetadata_.set(controls::Brightness,
					       ctrl.second.get<float>());
			break;
		}

		case controls::CONTRAST: {
			RPiController::ContrastAlgorithm *contrast = dynamic_cast<RPiController::ContrastAlgorithm *>(
				controller_.getAlgorithm("contrast"));
			if (!contrast) {
				LOG(IPARPI, Warning)
					<< "Could not set CONTRAST - no contrast algorithm";
				break;
			}

			contrast->setContrast(ctrl.second.get<float>());
			libcameraMetadata_.set(controls::Contrast,
					       ctrl.second.get<float>());
			break;
		}

		case controls::SATURATION: {
			RPiController::CcmAlgorithm *ccm = dynamic_cast<RPiController::CcmAlgorithm *>(
				controller_.getAlgorithm("ccm"));
			if (!ccm) {
				LOG(IPARPI, Warning)
					<< "Could not set SATURATION - no ccm algorithm";
				break;
			}

			ccm->setSaturation(ctrl.second.get<float>());
			libcameraMetadata_.set(controls::Saturation,
					       ctrl.second.get<float>());
			break;
		}

		case controls::SHARPNESS: {
			RPiController::SharpenAlgorithm *sharpen = dynamic_cast<RPiController::SharpenAlgorithm *>(
				controller_.getAlgorithm("sharpen"));
			if (!sharpen) {
				LOG(IPARPI, Warning)
					<< "Could not set SHARPNESS - no sharpen algorithm";
				break;
			}

			sharpen->setStrength(ctrl.second.get<float>());
			libcameraMetadata_.set(controls::Sharpness,
					       ctrl.second.get<float>());
			break;
		}

		case controls::SCALER_CROP: {
			/* We do nothing with this, but should avoid the warning below. */
			break;
		}

		case controls::FRAME_DURATION_LIMITS: {
			auto frameDurations = ctrl.second.get<Span<const int64_t>>();
			applyFrameDurations(frameDurations[0] * 1.0us, frameDurations[1] * 1.0us);
			break;
		}

		case controls::NOISE_REDUCTION_MODE: {
			RPiController::DenoiseAlgorithm *sdn = dynamic_cast<RPiController::DenoiseAlgorithm *>(
				controller_.getAlgorithm("SDN"));
			if (!sdn) {
				LOG(IPARPI, Warning)
					<< "Could not set NOISE_REDUCTION_MODE - no SDN algorithm";
				break;
			}

			int32_t idx = ctrl.second.get<int32_t>();
			auto mode = DenoiseModeTable.find(idx);
			if (mode != DenoiseModeTable.end()) {
				sdn->setMode(mode->second);

				/*
				 * \todo If the colour denoise is not going to run due to an
				 * analysis image resolution or format mismatch, we should
				 * report the status correctly in the metadata.
				 */
				libcameraMetadata_.set(controls::draft::NoiseReductionMode, idx);
			} else {
				LOG(IPARPI, Error) << "Noise reduction mode " << idx
						   << " not recognised";
			}
			break;
		}

		default:
			LOG(IPARPI, Warning)
				<< "Ctrl " << controls::controls.at(ctrl.first)->name()
				<< " is not handled.";
			break;
		}
	}
}

void IPARPi::returnEmbeddedBuffer(unsigned int bufferId)
{
	embeddedComplete.emit(bufferId);
}

void IPARPi::prepareISP(const ISPConfig &data)
{
	int64_t frameTimestamp = data.controls.get(controls::SensorTimestamp).value_or(0);
	unsigned int ipaContext = data.ipaContext % rpiMetadata_.size();
	RPiController::Metadata &rpiMetadata = rpiMetadata_[ipaContext];
	Span<uint8_t> embeddedBuffer;

	rpiMetadata.clear();
	fillDeviceStatus(data.controls, ipaContext);

	if (data.embeddedBufferPresent) {
		/*
		 * Pipeline handler has supplied us with an embedded data buffer,
		 * we must pass it to the CamHelper for parsing.
		 */
		auto it = buffers_.find(data.embeddedBufferId);
		ASSERT(it != buffers_.end());
		embeddedBuffer = it->second.planes()[0];
	}

	/*
	 * AGC wants to know the algorithm status from the time it actioned the
	 * sensor exposure/gain changes. So fetch it from the metadata list
	 * indexed by the IPA cookie returned, and put it in the current frame
	 * metadata.
	 */
	AgcStatus agcStatus;
	RPiController::Metadata &delayedMetadata = rpiMetadata_[data.delayContext];
	if (!delayedMetadata.get<AgcStatus>("agc.status", agcStatus))
		rpiMetadata.set("agc.delayed_status", agcStatus);

	/*
	 * This may overwrite the DeviceStatus using values from the sensor
	 * metadata, and may also do additional custom processing.
	 */
	helper_->prepare(embeddedBuffer, rpiMetadata);

	/* Done with embedded data now, return to pipeline handler asap. */
	if (data.embeddedBufferPresent)
		returnEmbeddedBuffer(data.embeddedBufferId);

	/* Allow a 10% margin on the comparison below. */
	Duration delta = (frameTimestamp - lastRunTimestamp_) * 1.0ns;
	if (lastRunTimestamp_ && frameCount_ > dropFrameCount_ &&
	    delta < controllerMinFrameDuration * 0.9) {
		/*
		 * Ensure we merge the previous frame's metadata with the current
		 * frame. This will not overwrite exposure/gain values for the
		 * current frame, or any other bits of metadata that were added
		 * in helper_->Prepare().
		 */
		RPiController::Metadata &lastMetadata =
			rpiMetadata_[(ipaContext ? ipaContext : rpiMetadata_.size()) - 1];
		rpiMetadata.mergeCopy(lastMetadata);
		processPending_ = false;
		return;
	}

	lastRunTimestamp_ = frameTimestamp;
	processPending_ = true;

	ControlList ctrls(ispCtrls_);

	controller_.prepare(&rpiMetadata);

	/* Lock the metadata buffer to avoid constant locks/unlocks. */
	std::unique_lock<RPiController::Metadata> lock(rpiMetadata);

	AwbStatus *awbStatus = rpiMetadata.getLocked<AwbStatus>("awb.status");
	if (awbStatus)
		applyAWB(awbStatus, ctrls);

	CcmStatus *ccmStatus = rpiMetadata.getLocked<CcmStatus>("ccm.status");
	if (ccmStatus)
		applyCCM(ccmStatus, ctrls);

	AgcStatus *dgStatus = rpiMetadata.getLocked<AgcStatus>("agc.status");
	if (dgStatus)
		applyDG(dgStatus, ctrls);

	AlscStatus *lsStatus = rpiMetadata.getLocked<AlscStatus>("alsc.status");
	if (lsStatus)
		applyLS(lsStatus, ctrls);

	ContrastStatus *contrastStatus = rpiMetadata.getLocked<ContrastStatus>("contrast.status");
	if (contrastStatus)
		applyGamma(contrastStatus, ctrls);

	BlackLevelStatus *blackLevelStatus = rpiMetadata.getLocked<BlackLevelStatus>("black_level.status");
	if (blackLevelStatus)
		applyBlackLevel(blackLevelStatus, ctrls);

	GeqStatus *geqStatus = rpiMetadata.getLocked<GeqStatus>("geq.status");
	if (geqStatus)
		applyGEQ(geqStatus, ctrls);

	DenoiseStatus *denoiseStatus = rpiMetadata.getLocked<DenoiseStatus>("denoise.status");
	if (denoiseStatus)
		applyDenoise(denoiseStatus, ctrls);

	SharpenStatus *sharpenStatus = rpiMetadata.getLocked<SharpenStatus>("sharpen.status");
	if (sharpenStatus)
		applySharpen(sharpenStatus, ctrls);

	DpcStatus *dpcStatus = rpiMetadata.getLocked<DpcStatus>("dpc.status");
	if (dpcStatus)
		applyDPC(dpcStatus, ctrls);

	if (!ctrls.empty())
		setIspControls.emit(ctrls);
}

void IPARPi::fillDeviceStatus(const ControlList &sensorControls, unsigned int ipaContext)
{
	DeviceStatus deviceStatus = {};

	int32_t exposureLines = sensorControls.get(V4L2_CID_EXPOSURE).get<int32_t>();
	int32_t gainCode = sensorControls.get(V4L2_CID_ANALOGUE_GAIN).get<int32_t>();
	int32_t vblank = sensorControls.get(V4L2_CID_VBLANK).get<int32_t>();
	int32_t hblank = sensorControls.get(V4L2_CID_HBLANK).get<int32_t>();

	deviceStatus.lineLength = helper_->hblankToLineLength(hblank);
	deviceStatus.shutterSpeed = helper_->exposure(exposureLines, deviceStatus.lineLength);
	deviceStatus.analogueGain = helper_->gain(gainCode);
	deviceStatus.frameLength = mode_.height + vblank;

	LOG(IPARPI, Debug) << "Metadata - " << deviceStatus;

	rpiMetadata_[ipaContext].set("device.status", deviceStatus);
}

void IPARPi::processStats(unsigned int bufferId, unsigned int ipaContext)
{
	RPiController::Metadata &rpiMetadata = rpiMetadata_[ipaContext];

	auto it = buffers_.find(bufferId);
	if (it == buffers_.end()) {
		LOG(IPARPI, Error) << "Could not find stats buffer!";
		return;
	}

	Span<uint8_t> mem = it->second.planes()[0];
	bcm2835_isp_stats *stats = reinterpret_cast<bcm2835_isp_stats *>(mem.data());
	RPiController::StatisticsPtr statistics = std::make_shared<bcm2835_isp_stats>(*stats);
	helper_->process(statistics, rpiMetadata);
	controller_.process(statistics, &rpiMetadata);

	struct AgcStatus agcStatus;
	if (rpiMetadata.get("agc.status", agcStatus) == 0) {
		ControlList ctrls(sensorCtrls_);
		applyAGC(&agcStatus, ctrls);

		setDelayedControls.emit(ctrls, ipaContext);
	}
}

void IPARPi::applyAWB(const struct AwbStatus *awbStatus, ControlList &ctrls)
{
	LOG(IPARPI, Debug) << "Applying WB R: " << awbStatus->gainR << " B: "
			   << awbStatus->gainB;

	ctrls.set(V4L2_CID_RED_BALANCE,
		  static_cast<int32_t>(awbStatus->gainR * 1000));
	ctrls.set(V4L2_CID_BLUE_BALANCE,
		  static_cast<int32_t>(awbStatus->gainB * 1000));
}

void IPARPi::applyFrameDurations(Duration minFrameDuration, Duration maxFrameDuration)
{
	const Duration minSensorFrameDuration = mode_.minFrameLength * mode_.minLineLength;
	const Duration maxSensorFrameDuration = mode_.maxFrameLength * mode_.maxLineLength;

	/*
	 * This will only be applied once AGC recalculations occur.
	 * The values may be clamped based on the sensor mode capabilities as well.
	 */
	minFrameDuration_ = minFrameDuration ? minFrameDuration : defaultMaxFrameDuration;
	maxFrameDuration_ = maxFrameDuration ? maxFrameDuration : defaultMinFrameDuration;
	minFrameDuration_ = std::clamp(minFrameDuration_,
				       minSensorFrameDuration, maxSensorFrameDuration);
	maxFrameDuration_ = std::clamp(maxFrameDuration_,
				       minSensorFrameDuration, maxSensorFrameDuration);
	maxFrameDuration_ = std::max(maxFrameDuration_, minFrameDuration_);

	/* Return the validated limits via metadata. */
	libcameraMetadata_.set(controls::FrameDurationLimits,
			       { static_cast<int64_t>(minFrameDuration_.get<std::micro>()),
				 static_cast<int64_t>(maxFrameDuration_.get<std::micro>()) });

	/*
	 * Calculate the maximum exposure time possible for the AGC to use.
	 * getBlanking() will update maxShutter with the largest exposure
	 * value possible.
	 */
	Duration maxShutter = Duration::max();
	helper_->getBlanking(maxShutter, minFrameDuration_, maxFrameDuration_);

	RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
		controller_.getAlgorithm("agc"));
	agc->setMaxShutter(maxShutter);
}