# SPDX-License-Identifier: CC0-1.0 project('libcamera', 'c', 'cpp', meson_version : '>= 0.55', version : '0.0.0', default_options : [ 'werror=true', 'warning_level=2', 'cpp_std=c++17', ], license : 'LGPL 2.1+') # Generate version information. The libcamera_git_version variable contains the # full version with git patch count and SHA1 (e.g. 1.2.3+211-c94a24f4), while # the libcamera_version variable contains the major.minor.patch (e.g. 1.2.3) # only. If the source tree isn't under git control, or if it matches the last # git version tag, the build metadata (e.g. +211-c94a24f4) is omitted from # libcamera_git_version. libcamera_git_version = run_command('utils/gen-version.sh', meson.build_root(), meson.source_root()).stdout().strip() if libcamera_git_version == '' libcamera_git_version = meson.project_version() endif libcamera_version = libcamera_git_version.split('+')[0] # This script gererates the .tarball-version file on a 'meson dist' command. meson.add_dist_script('utils/run-dist.sh') # Configure the build environment. cc = meson.get_compiler('c') cxx = meson.get_compiler('cpp') config_h = configuration_data() if cc.has_header_symbol('unistd.h', 'issetugid') config_h.set('HAVE_ISSETUGID', 1) endif if cc.has_header_symbol('stdlib.h', 'secure_getenv', prefix : '#define _GNU_SOURCE') config_h.set('HAVE_SECURE_GETENV', 1) endif common_arguments = [ '-Wshadow', '-include', 'config.h', ] c_arguments = [] cpp_arguments = [] if cc.get_id() == 'clang' if cc.version().version_compare('<9') error('clang version is too old, libcamera requires 9.0 or newer') endif # Turn _FORTIFY_SOURCE by default on optimised builds (as it requires -O1 # or higher). This is needed on clang only as gcc enables it by default. if get_option('optimization') != '0' common_arguments += [ '-D_FORTIFY_SOURCE=2', ] endif # Use libc++ by default if available instead of libstdc++ when compiling # with clang. if cc.find_library('libc++', required: false).found() cpp_arguments += [ '-stdlib=libc++', ] endif cpp_arguments += [ '-Wextra-semi', ] endif if cc.get_id() == 'gcc' if cc.version().version_compare('<7') error('gcc version is too old, libcamera requires 7.0 or newer') endif # On gcc 7 and 8, the file system library is provided in a separate static # library. if cc.version().version_compare('<9') cpp_arguments += [ '-lstdc++fs', ] endif # gcc 7.1 introduced processor-specific ABI breakages related to parameter # passing on ARM platforms. This generates a large number of messages # during compilation with gcc >=7.1. Silence them. if (host_machine.cpu_family() == 'arm' and cc.version().version_compare('>=7.1')) cpp_arguments += [ '-Wno-psabi', ] endif endif # We use C99 designated initializers for arrays as C++ has no equivalent # feature. Both gcc and clang support this extension, but recent # versions of clang generate a warning that needs to be disabled. if cc.has_argument('-Wno-c99-designator') common_arguments += [ '-Wno-c99-designator', ] endif c_arguments += common_arguments cpp_arguments += common_arguments add_project_arguments(c_arguments, language : 'c') add_project_arguments(cpp_arguments, language : 'cpp') add_project_link_arguments(cpp_arguments, language : 'cpp') libcamera_includes = include_directories('include') # Sub-directories fill py_modules with their dependencies. py_modules = [] # Libraries used by multiple components liblttng = cc.find_library('lttng-ust', required : get_option('tracing')) # Pipeline handlers # # Tests require the vimc pipeline handler, include it automatically when tests # are enabled. pipelines = get_option('pipelines') if get_option('test') and 'vimc' not in pipelines message('Enabling vimc pipeline handler to support tests') pipelines += ['vimc'] endif # Utilities are parsed first to provide support for other components. subdir('utils') subdir('include') subdir('src') # The documentation and test components are optional and can be disabled # through configuration values. They are enabled by default. subdir('Documentation') subdir('test') if not meson.is_cross_build() kernel_version_req = '>= 5.0.0' kernel_version = run_command('uname', '-r').stdout().strip() if not kernel_version.version_compare(kernel_version_req) warning('The current running kernel version @0@ is too old to run libcamera.' .format(kernel_version)) warning('If you intend to use libcamera on this machine, please upgrade to a kernel @0@.' .format(kernel_version_req)) endif endif # Create a symlink from the build root to the source root. This is used when # running libcamera from the build directory to locate resources in the source # directory (such as IPA configuration files). run_command('ln', '-fsT', meson.source_root(), meson.build_root() / 'source') configure_file(output : 'config.h', configuration : config_h) # Check for python installation and modules. py_mod = import('python') py_mod.find_installation('python3', modules: py_modules) ## Summarise Configurations summary({ 'Enabled pipelines': pipelines, 'Enabled IPA modules': ipa_modules, 'Android support': android_enabled, 'GStreamer support': gst_enabled, 'V4L2 emulation support': v4l2_enabled, 'cam application': cam_enabled, 'qcam application': qcam_enabled, 'lc-compliance application': lc_compliance_enabled, 'Unit tests': test_enabled, }, section : 'Configuration', bool_yn : true) ='n90' href='#n90'>90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2019, Google Inc.
 *
 * camera_device.cpp - libcamera Android Camera Device
 */

#include "camera_device.h"

#include <system/camera_metadata.h>

#include "log.h"

#include "thread_rpc.h"

using namespace libcamera;

LOG_DECLARE_CATEGORY(HAL);

/*
 * \struct Camera3RequestDescriptor
 *
 * A utility structure that groups information about a capture request to be
 * later re-used at request complete time to notify the framework.
 */

CameraDevice::Camera3RequestDescriptor::Camera3RequestDescriptor(
		unsigned int frameNumber, unsigned int numBuffers)
	: frameNumber(frameNumber), numBuffers(numBuffers)
{
	buffers = new camera3_stream_buffer_t[numBuffers];
}

CameraDevice::Camera3RequestDescriptor::~Camera3RequestDescriptor()
{
	delete[] buffers;
}

/*
 * \class CameraDevice
 *
 * The CameraDevice class wraps a libcamera::Camera instance, and implements
 * the camera_device_t interface by handling RPC requests received from its
 * associated CameraProxy.
 *
 * It translate parameters and operations from Camera HALv3 API to the libcamera
 * ones to provide static information for a Camera, create request templates
 * for it, process capture requests and then deliver capture results back
 * to the framework using the designated callbacks.
 */

CameraDevice::CameraDevice(unsigned int id, const std::shared_ptr<Camera> &camera)
	: running_(false), camera_(camera), staticMetadata_(nullptr),
	  requestTemplate_(nullptr)
{
	camera_->requestCompleted.connect(this, &CameraDevice::requestComplete);
}

CameraDevice::~CameraDevice()
{
	if (staticMetadata_)
		free_camera_metadata(staticMetadata_);
	staticMetadata_ = nullptr;

	if (requestTemplate_)
		free_camera_metadata(requestTemplate_);
	requestTemplate_ = nullptr;
}

/*
 * Handle RPC request received from the associated proxy.
 */
void CameraDevice::call(ThreadRpc *rpc)
{
	switch (rpc->tag) {
	case ThreadRpc::ProcessCaptureRequest:
		processCaptureRequest(rpc->request);
		break;
	case ThreadRpc::Close:
		close();
		break;
	default:
		LOG(HAL, Error) << "Unknown RPC operation: " << rpc->tag;
	}

	rpc->notifyReception();
}

int CameraDevice::open()
{
	int ret = camera_->acquire();
	if (ret) {
		LOG(HAL, Error) << "Failed to acquire the camera";
		return ret;
	}

	return 0;
}

void CameraDevice::close()
{
	camera_->stop();

	camera_->freeBuffers();
	camera_->release();

	running_ = false;
}

void CameraDevice::setCallbacks(const camera3_callback_ops_t *callbacks)
{
	callbacks_ = callbacks;
}

/*
 * Return static information for the camera.
 */
camera_metadata_t *CameraDevice::getStaticMetadata()
{
	int ret;

	if (staticMetadata_)
		return staticMetadata_;

	/*
	 * The here reported metadata are enough to implement a basic capture
	 * example application, but a real camera implementation will require
	 * more.
	 */

	/*
	 * \todo Keep this in sync with the actual number of entries.
	 * Currently: 46 entries, 390 bytes
	 */
	staticMetadata_ = allocate_camera_metadata(50, 500);

	/* Color correction static metadata. */
	std::vector<uint8_t> aberrationModes = {
		ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
			aberrationModes.data(), aberrationModes.size());
	METADATA_ASSERT(ret);

	/* Control static metadata. */
	std::vector<uint8_t> aeAvailableAntiBandingModes = {
		ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF,
		ANDROID_CONTROL_AE_ANTIBANDING_MODE_50HZ,
		ANDROID_CONTROL_AE_ANTIBANDING_MODE_60HZ,
		ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
			aeAvailableAntiBandingModes.data(),
			aeAvailableAntiBandingModes.size());
	METADATA_ASSERT(ret);

	std::vector<uint8_t> aeAvailableModes = {
		ANDROID_CONTROL_AE_MODE_ON,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_CONTROL_AE_AVAILABLE_MODES,
			aeAvailableModes.data(), aeAvailableModes.size());
	METADATA_ASSERT(ret);

	std::vector<int32_t> availableAeFpsTarget = {
		15, 30,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
			availableAeFpsTarget.data(),
			availableAeFpsTarget.size());
	METADATA_ASSERT(ret);

	std::vector<int32_t> aeCompensationRange = {
		0, 0,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_CONTROL_AE_COMPENSATION_RANGE,
			aeCompensationRange.data(),
			aeCompensationRange.size());
	METADATA_ASSERT(ret);

	const camera_metadata_rational_t aeCompensationStep[] = {
		{ 0, 1 }
	};
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_CONTROL_AE_COMPENSATION_STEP,
			aeCompensationStep, 1);
	METADATA_ASSERT(ret);

	std::vector<uint8_t> availableAfModes = {
		ANDROID_CONTROL_AF_MODE_OFF,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_CONTROL_AF_AVAILABLE_MODES,
			availableAfModes.data(), availableAfModes.size());
	METADATA_ASSERT(ret);

	std::vector<uint8_t> availableEffects = {
		ANDROID_CONTROL_EFFECT_MODE_OFF,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_CONTROL_AVAILABLE_EFFECTS,
			availableEffects.data(), availableEffects.size());
	METADATA_ASSERT(ret);

	std::vector<uint8_t> availableSceneModes = {
		ANDROID_CONTROL_SCENE_MODE_DISABLED,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
			availableSceneModes.data(), availableSceneModes.size());
	METADATA_ASSERT(ret);

	std::vector<uint8_t> availableStabilizationModes = {
		ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
			availableStabilizationModes.data(),
			availableStabilizationModes.size());
	METADATA_ASSERT(ret);

	std::vector<uint8_t> availableAwbModes = {
		ANDROID_CONTROL_AWB_MODE_OFF,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_CONTROL_AWB_AVAILABLE_MODES,
			availableAwbModes.data(), availableAwbModes.size());
	METADATA_ASSERT(ret);

	std::vector<int32_t> availableMaxRegions = {
		0, 0, 0,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_CONTROL_MAX_REGIONS,
			availableMaxRegions.data(), availableMaxRegions.size());
	METADATA_ASSERT(ret);

	std::vector<uint8_t> sceneModesOverride = {
		ANDROID_CONTROL_AE_MODE_ON,
		ANDROID_CONTROL_AWB_MODE_AUTO,
		ANDROID_CONTROL_AF_MODE_AUTO,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
			sceneModesOverride.data(), sceneModesOverride.size());
	METADATA_ASSERT(ret);

	uint8_t aeLockAvailable = ANDROID_CONTROL_AE_LOCK_AVAILABLE_FALSE;
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_CONTROL_AE_LOCK_AVAILABLE,
			&aeLockAvailable, 1);
	METADATA_ASSERT(ret);

	uint8_t awbLockAvailable = ANDROID_CONTROL_AWB_LOCK_AVAILABLE_FALSE;
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
			&awbLockAvailable, 1);
	METADATA_ASSERT(ret);

	char availableControlModes = ANDROID_CONTROL_MODE_AUTO;
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_CONTROL_AVAILABLE_MODES,
			&availableControlModes, 1);
	METADATA_ASSERT(ret);

	/* JPEG static metadata. */
	std::vector<int32_t> availableThumbnailSizes = {
		0, 0,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
			availableThumbnailSizes.data(),
			availableThumbnailSizes.size());
	METADATA_ASSERT(ret);

	/* Sensor static metadata. */
	int32_t pixelArraySize[] = {
		2592, 1944,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
				ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
				&pixelArraySize, 2);
	METADATA_ASSERT(ret);

	int32_t sensorSizes[] = {
		0, 0, 2560, 1920,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
				ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
				&sensorSizes, 4);
	METADATA_ASSERT(ret);

	int32_t sensitivityRange[] = {
		32, 2400,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
				ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
				&sensitivityRange, 2);
	METADATA_ASSERT(ret);

	uint16_t filterArr = ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_GRBG;
	ret = add_camera_metadata_entry(staticMetadata_,
				ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
				&filterArr, 1);
	METADATA_ASSERT(ret);

	int64_t exposureTimeRange[] = {
		100000, 200000000,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
				ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
				&exposureTimeRange, 2);
	METADATA_ASSERT(ret);

	int32_t orientation = 0;
	ret = add_camera_metadata_entry(staticMetadata_,
				ANDROID_SENSOR_ORIENTATION,
				&orientation, 1);
	METADATA_ASSERT(ret);

	std::vector<int32_t> testPatterModes = {
		ANDROID_SENSOR_TEST_PATTERN_MODE_OFF,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
				ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
				testPatterModes.data(), testPatterModes.size());
	METADATA_ASSERT(ret);

	std::vector<float> physicalSize = {
		2592, 1944,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
				ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
				physicalSize.data(), physicalSize.size());
	METADATA_ASSERT(ret);

	uint8_t timestampSource = ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_UNKNOWN;
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
			&timestampSource, 1);
	METADATA_ASSERT(ret);

	/* Statistics static metadata. */
	uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
			&faceDetectMode, 1);
	METADATA_ASSERT(ret);

	int32_t maxFaceCount = 0;
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
			&maxFaceCount, 1);
	METADATA_ASSERT(ret);

	/* Sync static metadata. */
	int32_t maxLatency = ANDROID_SYNC_MAX_LATENCY_UNKNOWN;
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_SYNC_MAX_LATENCY, &maxLatency, 1);
	METADATA_ASSERT(ret);

	/* Flash static metadata. */
	char flashAvailable = ANDROID_FLASH_INFO_AVAILABLE_FALSE;
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_FLASH_INFO_AVAILABLE,
			&flashAvailable, 1);
	METADATA_ASSERT(ret);

	/* Lens static metadata. */
	std::vector<float> lensApertures = {
		2.53 / 100,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
				ANDROID_LENS_INFO_AVAILABLE_APERTURES,
				lensApertures.data(), lensApertures.size());
	METADATA_ASSERT(ret);

	uint8_t lensFacing = ANDROID_LENS_FACING_FRONT;
	ret = add_camera_metadata_entry(staticMetadata_,
				ANDROID_LENS_FACING, &lensFacing, 1);
	METADATA_ASSERT(ret);

	std::vector<float> lensFocalLenghts = {
		1,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
				ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
				lensFocalLenghts.data(),
				lensFocalLenghts.size());
	METADATA_ASSERT(ret);

	std::vector<uint8_t> opticalStabilizations = {
		ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
				ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
				opticalStabilizations.data(),
				opticalStabilizations.size());
	METADATA_ASSERT(ret);

	float hypeFocalDistance = 0;
	ret = add_camera_metadata_entry(staticMetadata_,
				ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
				&hypeFocalDistance, 1);
	METADATA_ASSERT(ret);

	float minFocusDistance = 0;
	ret = add_camera_metadata_entry(staticMetadata_,
				ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
				&minFocusDistance, 1);
	METADATA_ASSERT(ret);

	/* Noise reduction modes. */
	uint8_t noiseReductionModes = ANDROID_NOISE_REDUCTION_MODE_OFF;
	ret = add_camera_metadata_entry(staticMetadata_,
				ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
				&noiseReductionModes, 1);
	METADATA_ASSERT(ret);

	/* Scaler static metadata. */
	float maxDigitalZoom = 1;
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
			&maxDigitalZoom, 1);
	METADATA_ASSERT(ret);

	std::vector<uint32_t> availableStreamFormats = {
		ANDROID_SCALER_AVAILABLE_FORMATS_BLOB,
		ANDROID_SCALER_AVAILABLE_FORMATS_YCbCr_420_888,
		ANDROID_SCALER_AVAILABLE_FORMATS_IMPLEMENTATION_DEFINED,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_SCALER_AVAILABLE_FORMATS,
			availableStreamFormats.data(),
			availableStreamFormats.size());
	METADATA_ASSERT(ret);

	std::vector<uint32_t> availableStreamConfigurations = {
		ANDROID_SCALER_AVAILABLE_FORMATS_BLOB, 2560, 1920,
		ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
		ANDROID_SCALER_AVAILABLE_FORMATS_YCbCr_420_888, 2560, 1920,
		ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
		ANDROID_SCALER_AVAILABLE_FORMATS_IMPLEMENTATION_DEFINED, 2560, 1920,
		ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
			availableStreamConfigurations.data(),
			availableStreamConfigurations.size());
	METADATA_ASSERT(ret);

	std::vector<int64_t> availableStallDurations = {
		ANDROID_SCALER_AVAILABLE_FORMATS_BLOB, 2560, 1920, 33333333,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
			availableStallDurations.data(),
			availableStallDurations.size());
	METADATA_ASSERT(ret);

	std::vector<int64_t> minFrameDurations = {
		ANDROID_SCALER_AVAILABLE_FORMATS_BLOB, 2560, 1920, 33333333,
		ANDROID_SCALER_AVAILABLE_FORMATS_IMPLEMENTATION_DEFINED, 2560, 1920, 33333333,
		ANDROID_SCALER_AVAILABLE_FORMATS_YCbCr_420_888, 2560, 1920, 33333333,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
			minFrameDurations.data(), minFrameDurations.size());
	METADATA_ASSERT(ret);

	uint8_t croppingType = ANDROID_SCALER_CROPPING_TYPE_CENTER_ONLY;
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_SCALER_CROPPING_TYPE, &croppingType, 1);
	METADATA_ASSERT(ret);

	/* Info static metadata. */
	uint8_t supportedHWLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
			&supportedHWLevel, 1);

	/* Request static metadata. */
	int32_t partialResultCount = 1;
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
			&partialResultCount, 1);
	METADATA_ASSERT(ret);

	uint8_t maxPipelineDepth = 2;
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
			&maxPipelineDepth, 1);
	METADATA_ASSERT(ret);

	std::vector<uint8_t> availableCapabilities = {
		ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE,
	};
	ret = add_camera_metadata_entry(staticMetadata_,
			ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
			availableCapabilities.data(),
			availableCapabilities.size());
	METADATA_ASSERT(ret);

	return staticMetadata_;
}

/*
 * Produce a metadata pack to be used as template for a capture request.
 */
const camera_metadata_t *CameraDevice::constructDefaultRequestSettings(int type)
{
	int ret;

	/*
	 * \todo Inspect type and pick the right metadata pack.
	 * As of now just use a single one for all templates.
	 */
	uint8_t captureIntent;
	switch (type) {
	case CAMERA3_TEMPLATE_PREVIEW:
		captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
		break;
	case CAMERA3_TEMPLATE_STILL_CAPTURE:
		captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE;
		break;
	case CAMERA3_TEMPLATE_VIDEO_RECORD:
		captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD;
		break;
	case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
		captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT;
		break;
	case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
		captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_ZERO_SHUTTER_LAG;
		break;
	case CAMERA3_TEMPLATE_MANUAL:
		captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_MANUAL;
		break;
	default:
		LOG(HAL, Error) << "Invalid template request type: " << type;
		return nullptr;
	}

	if (requestTemplate_)
		return requestTemplate_;

	/* \todo Use correct sizes */
	#define REQUEST_TEMPLATE_ENTRIES	  30
	#define REQUEST_TEMPLATE_DATA		2048
	requestTemplate_ = allocate_camera_metadata(REQUEST_TEMPLATE_ENTRIES,
						    REQUEST_TEMPLATE_DATA);
	if (!requestTemplate_) {
		LOG(HAL, Error) << "Failed to allocate template metadata";
		return nullptr;
	}

	/* Set to 0 the number of 'processed and stalling' streams (ie JPEG). */
	int32_t maxOutStream[] = { 0, 2, 0 };
	ret = add_camera_metadata_entry(requestTemplate_,
			ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS,
			maxOutStream, 3);
	METADATA_ASSERT(ret);

	uint8_t maxPipelineDepth = 5;
	ret = add_camera_metadata_entry(requestTemplate_,
			ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
			&maxPipelineDepth, 1);
	METADATA_ASSERT(ret);

	int32_t inputStreams = 0;
	ret = add_camera_metadata_entry(requestTemplate_,
			ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
			&inputStreams, 1);
	METADATA_ASSERT(ret);

	int32_t partialResultCount = 1;
	ret = add_camera_metadata_entry(requestTemplate_,
			ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
			&partialResultCount, 1);
	METADATA_ASSERT(ret);

	uint8_t availableCapabilities[] = {
		ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE,
	};
	ret = add_camera_metadata_entry(requestTemplate_,
			ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
			availableCapabilities, 1);
	METADATA_ASSERT(ret);

	uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON;
	ret = add_camera_metadata_entry(requestTemplate_,
			ANDROID_CONTROL_AE_MODE,
			&aeMode, 1);
	METADATA_ASSERT(ret);

	int32_t aeExposureCompensation = 0;
	ret = add_camera_metadata_entry(requestTemplate_,
			ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
			&aeExposureCompensation, 1);
	METADATA_ASSERT(ret);

	uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
	ret = add_camera_metadata_entry(requestTemplate_,
			ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
			&aePrecaptureTrigger, 1);
	METADATA_ASSERT(ret);

	uint8_t aeLock = ANDROID_CONTROL_AE_LOCK_OFF;
	ret = add_camera_metadata_entry(requestTemplate_,
			ANDROID_CONTROL_AE_LOCK,
			&aeLock, 1);
	METADATA_ASSERT(ret);

	uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
	ret = add_camera_metadata_entry(requestTemplate_,
			ANDROID_CONTROL_AF_TRIGGER,
			&afTrigger, 1);
	METADATA_ASSERT(ret);

	uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
	ret = add_camera_metadata_entry(requestTemplate_,
			ANDROID_CONTROL_AWB_MODE,
			&awbMode, 1);
	METADATA_ASSERT(ret);

	uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
	ret = add_camera_metadata_entry(requestTemplate_,
			ANDROID_CONTROL_AWB_LOCK,
			&awbLock, 1);
	METADATA_ASSERT(ret);

	uint8_t awbLockAvailable = ANDROID_CONTROL_AWB_LOCK_AVAILABLE_FALSE;
	ret = add_camera_metadata_entry(requestTemplate_,
			ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
			&awbLockAvailable, 1);
	METADATA_ASSERT(ret);

	uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
	ret = add_camera_metadata_entry(requestTemplate_,
			ANDROID_FLASH_MODE,
			&flashMode, 1);
	METADATA_ASSERT(ret);

	uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
	ret = add_camera_metadata_entry(requestTemplate_,
			ANDROID_STATISTICS_FACE_DETECT_MODE,
			&faceDetectMode, 1);
	METADATA_ASSERT(ret);

	ret = add_camera_metadata_entry(requestTemplate_,
			ANDROID_CONTROL_CAPTURE_INTENT,
			&captureIntent, 1);
	METADATA_ASSERT(ret);

	/*
	 * This is quite hard to list at the moment wihtout knowing what
	 * we could control.
	 *
	 * For now, just list in the available Request keys and in the available
	 * result keys the control and reporting of the AE algorithm.
	 */
	std::vector<int32_t> availableRequestKeys = {
		ANDROID_CONTROL_AE_MODE,
		ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
		ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
		ANDROID_CONTROL_AE_LOCK,
		ANDROID_CONTROL_AF_TRIGGER,
		ANDROID_CONTROL_AWB_MODE,
		ANDROID_CONTROL_AWB_LOCK,
		ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
		ANDROID_CONTROL_CAPTURE_INTENT,
		ANDROID_FLASH_MODE,
		ANDROID_STATISTICS_FACE_DETECT_MODE,
	};

	ret = add_camera_metadata_entry(requestTemplate_,
			ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS,
			availableRequestKeys.data(),
			availableRequestKeys.size());
	METADATA_ASSERT(ret);

	std::vector<int32_t> availableResultKeys = {
		ANDROID_CONTROL_AE_MODE,
		ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
		ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
		ANDROID_CONTROL_AE_LOCK,
		ANDROID_CONTROL_AF_TRIGGER,
		ANDROID_CONTROL_AWB_MODE,
		ANDROID_CONTROL_AWB_LOCK,
		ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
		ANDROID_CONTROL_CAPTURE_INTENT,
		ANDROID_FLASH_MODE,
		ANDROID_STATISTICS_FACE_DETECT_MODE,
	};
	ret = add_camera_metadata_entry(requestTemplate_,
			ANDROID_REQUEST_AVAILABLE_RESULT_KEYS,
			availableResultKeys.data(),
			availableResultKeys.size());
	METADATA_ASSERT(ret);

	/*
	 * \todo The available characteristics are be the tags reported
	 * as part of the static metadata reported at hal_get_camera_info()
	 * time. As of now, report an empty list.
	 */
	std::vector<int32_t> availableCharacteristicsKeys = {};
	ret = add_camera_metadata_entry(requestTemplate_,
			ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS,
			availableCharacteristicsKeys.data(),
			availableCharacteristicsKeys.size());
	METADATA_ASSERT(ret);

	return requestTemplate_;
}

/*
 * Inspect the stream_list to produce a list of StreamConfiguration to
 * be use to configure the Camera.
 */
int CameraDevice::configureStreams(camera3_stream_configuration_t *stream_list)
{
	for (unsigned int i = 0; i < stream_list->num_streams; ++i) {
		camera3_stream_t *stream = stream_list->streams[i];

		LOG(HAL, Info) << "Stream #" << i
			       << ", direction: " << stream->stream_type
			       << ", width: " << stream->width
			       << ", height: " << stream->height
			       << ", format: " << std::hex << stream->format;
	}

	/* Hardcode viewfinder role, collecting sizes from the stream config. */
	if (stream_list->num_streams != 1) {
		LOG(HAL, Error) << "Only one stream supported";
		return -EINVAL;
	}

	StreamRoles roles = { StreamRole::Viewfinder };
	config_ = camera_->generateConfiguration(roles);
	if (!config_ || config_->empty()) {
		LOG(HAL, Error) << "Failed to generate camera configuration";
		return -EINVAL;
	}

	/* Only one stream is supported. */
	camera3_stream_t *camera3Stream = stream_list->streams[0];
	StreamConfiguration *streamConfiguration = &config_->at(0);
	streamConfiguration->size.width = camera3Stream->width;
	streamConfiguration->size.height = camera3Stream->height;
	streamConfiguration->memoryType = ExternalMemory;

	/*
	 * \todo We'll need to translate from Android defined pixel format codes
	 * to the libcamera image format codes. For now, do not change the
	 * format returned from Camera::generateConfiguration().
	 */

	switch (config_->validate()) {
	case CameraConfiguration::Valid:
		break;
	case CameraConfiguration::Adjusted:
		LOG(HAL, Info) << "Camera configuration adjusted";
		config_.reset();
		return -EINVAL;
	case CameraConfiguration::Invalid:
		LOG(HAL, Info) << "Camera configuration invalid";
		config_.reset();
		return -EINVAL;
	}

	camera3Stream->max_buffers = streamConfiguration->bufferCount;

	/*
	 * Once the CameraConfiguration has been adjusted/validated
	 * it can be applied to the camera.
	 */
	int ret = camera_->configure(config_.get());
	if (ret) {
		LOG(HAL, Error) << "Failed to configure camera '"
				<< camera_->name() << "'";
		return ret;
	}

	return 0;
}

int CameraDevice::processCaptureRequest(camera3_capture_request_t *camera3Request)
{
	StreamConfiguration *streamConfiguration = &config_->at(0);
	Stream *stream = streamConfiguration->stream();

	if (camera3Request->num_output_buffers != 1) {
		LOG(HAL, Error) << "Invalid number of output buffers: "
				<< camera3Request->num_output_buffers;
		return -EINVAL;
	}

	/* Start the camera if that's the first request we handle. */
	if (!running_) {
		int ret = camera_->allocateBuffers();
		if (ret) {
			LOG(HAL, Error) << "Failed to allocate buffers";
			return ret;
		}

		ret = camera_->start();
		if (ret) {
			LOG(HAL, Error) << "Failed to start camera";
			camera_->freeBuffers();
			return ret;
		}

		running_ = true;
	}

	/*
	 * Queue a request for the Camera with the provided dmabuf file
	 * descriptors.
	 */
	const camera3_stream_buffer_t *camera3Buffers =
					camera3Request->output_buffers;

	/*
	 * Save the request descriptors for use at completion time.
	 * The descriptor and the associated memory reserved here are freed
	 * at request complete time.
	 */
	Camera3RequestDescriptor *descriptor =
		new Camera3RequestDescriptor(camera3Request->frame_number,
					     camera3Request->num_output_buffers);
	for (unsigned int i = 0; i < descriptor->numBuffers; ++i) {
		/*
		 * Keep track of which stream the request belongs to and store
		 * the native buffer handles.
		 *
		 * \todo Currently we only support one capture buffer. Copy
		 * all of them to be ready once we'll support more.
		 */
		descriptor->buffers[i].stream = camera3Buffers[i].stream;
		descriptor->buffers[i].buffer = camera3Buffers[i].buffer;
	}

	/*
	 * Create a libcamera buffer using the dmabuf descriptors of the first
	 * and (currently) only supported request buffer.
	 */
	const buffer_handle_t camera3Handle = *camera3Buffers[0].buffer;
	std::array<int, 3> fds = {
		camera3Handle->data[0],
		camera3Handle->data[1],
		camera3Handle->data[2],
	};

	std::unique_ptr<Buffer> buffer = stream->createBuffer(fds);
	if (!buffer) {
		LOG(HAL, Error) << "Failed to create buffer";
		delete descriptor;
		return -EINVAL;
	}

	Request *request =
		camera_->createRequest(reinterpret_cast<uint64_t>(descriptor));
	request->addBuffer(std::move(buffer));

	int ret = camera_->queueRequest(request);
	if (ret) {
		LOG(HAL, Error) << "Failed to queue request";
		goto error;
	}

	return 0;

error:
	delete request;
	delete descriptor;

	return ret;
}

void CameraDevice::requestComplete(Request *request,
				   const std::map<Stream *, Buffer *> &buffers)
{
	Buffer *libcameraBuffer = buffers.begin()->second;
	camera3_buffer_status status = CAMERA3_BUFFER_STATUS_OK;
	camera_metadata_t *resultMetadata = nullptr;

	if (request->status() != Request::RequestComplete) {
		LOG(HAL, Error) << "Request not succesfully completed: "
				<< request->status();
		status = CAMERA3_BUFFER_STATUS_ERROR;
	}

	/* Prepare to call back the Android camera stack. */
	Camera3RequestDescriptor *descriptor =
		reinterpret_cast<Camera3RequestDescriptor *>(request->cookie());

	camera3_capture_result_t captureResult = {};
	captureResult.frame_number = descriptor->frameNumber;
	captureResult.num_output_buffers = descriptor->numBuffers;
	for (unsigned int i = 0; i < descriptor->numBuffers; ++i) {
		/*
		 * \todo Currently we only support one capture buffer. Prepare
		 * all of them to be ready once we'll support more.
		 */
		descriptor->buffers[i].acquire_fence = -1;
		descriptor->buffers[i].release_fence = -1;
		descriptor->buffers[i].status = status;
	}
	captureResult.output_buffers =
		const_cast<const camera3_stream_buffer_t *>(descriptor->buffers);

	if (status == CAMERA3_BUFFER_STATUS_ERROR) {
		/* \todo Improve error handling. */
		notifyError(descriptor->frameNumber,
			    descriptor->buffers[0].stream);
	} else {
		notifyShutter(descriptor->frameNumber,
			      libcameraBuffer->timestamp());

		captureResult.partial_result = 1;
		resultMetadata = getResultMetadata(descriptor->frameNumber,
						   libcameraBuffer->timestamp());
		captureResult.result = resultMetadata;
	}

	callbacks_->process_capture_result(callbacks_, &captureResult);

	delete descriptor;
	if (resultMetadata)
		free_camera_metadata(resultMetadata);

	return;
}

void CameraDevice::notifyShutter(uint32_t frameNumber, uint64_t timestamp)
{
	camera3_notify_msg_t notify = {};

	notify.type = CAMERA3_MSG_SHUTTER;
	notify.message.shutter.frame_number = frameNumber;
	notify.message.shutter.timestamp = timestamp;

	callbacks_->notify(callbacks_, &notify);
}

void CameraDevice::notifyError(uint32_t frameNumber, camera3_stream_t *stream)
{
	camera3_notify_msg_t notify = {};

	notify.type = CAMERA3_MSG_ERROR;
	notify.message.error.error_stream = stream;
	notify.message.error.frame_number = frameNumber;
	notify.message.error.error_code = CAMERA3_MSG_ERROR_REQUEST;

	callbacks_->notify(callbacks_, &notify);
}

/*
 * Produce a set of fixed result metadata.
 */
camera_metadata_t *CameraDevice::getResultMetadata(int frame_number,
						   int64_t timestamp)
{
	int ret;

	/*
	 * \todo Keep this in sync with the actual number of entries.
	 * Currently: 13 entries, 36 bytes
	 */
	camera_metadata_t *resultMetadata = allocate_camera_metadata(15, 50);

	const uint8_t ae_state = ANDROID_CONTROL_AE_STATE_CONVERGED;
	ret = add_camera_metadata_entry(resultMetadata, ANDROID_CONTROL_AE_STATE,
					&ae_state, 1);
	METADATA_ASSERT(ret);

	const uint8_t ae_lock = ANDROID_CONTROL_AE_LOCK_OFF;
	ret = add_camera_metadata_entry(resultMetadata, ANDROID_CONTROL_AE_LOCK,
					&ae_lock, 1);
	METADATA_ASSERT(ret);

	uint8_t af_state = ANDROID_CONTROL_AF_STATE_INACTIVE;
	ret = add_camera_metadata_entry(resultMetadata, ANDROID_CONTROL_AF_STATE,
					&af_state, 1);
	METADATA_ASSERT(ret);

	const uint8_t awb_state = ANDROID_CONTROL_AWB_STATE_CONVERGED;
	ret = add_camera_metadata_entry(resultMetadata,
					ANDROID_CONTROL_AWB_STATE,
					&awb_state, 1);
	METADATA_ASSERT(ret);

	const uint8_t awb_lock = ANDROID_CONTROL_AWB_LOCK_OFF;
	ret = add_camera_metadata_entry(resultMetadata,
					ANDROID_CONTROL_AWB_LOCK,
					&awb_lock, 1);
	METADATA_ASSERT(ret);

	const uint8_t lens_state = ANDROID_LENS_STATE_STATIONARY;
	ret = add_camera_metadata_entry(resultMetadata,
					ANDROID_LENS_STATE,
					&lens_state, 1);
	METADATA_ASSERT(ret);

	int32_t sensorSizes[] = {
		0, 0, 2560, 1920,
	};
	ret = add_camera_metadata_entry(resultMetadata,
					ANDROID_SCALER_CROP_REGION,
					sensorSizes, 4);
	METADATA_ASSERT(ret);

	ret = add_camera_metadata_entry(resultMetadata,
					ANDROID_SENSOR_TIMESTAMP,
					&timestamp, 1);
	METADATA_ASSERT(ret);

	/* 33.3 msec */
	const int64_t rolling_shutter_skew = 33300000;
	ret = add_camera_metadata_entry(resultMetadata,
					ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
					&rolling_shutter_skew, 1);
	METADATA_ASSERT(ret);

	/* 16.6 msec */
	const int64_t exposure_time = 16600000;
	ret = add_camera_metadata_entry(resultMetadata,
					ANDROID_SENSOR_EXPOSURE_TIME,
					&exposure_time, 1);
	METADATA_ASSERT(ret);

	const uint8_t lens_shading_map_mode =
				ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF;
	ret = add_camera_metadata_entry(resultMetadata,
					ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
					&lens_shading_map_mode, 1);
	METADATA_ASSERT(ret);

	const uint8_t scene_flicker = ANDROID_STATISTICS_SCENE_FLICKER_NONE;
	ret = add_camera_metadata_entry(resultMetadata,
					ANDROID_STATISTICS_SCENE_FLICKER,
					&scene_flicker, 1);
	METADATA_ASSERT(ret);

	return resultMetadata;
}