# SPDX-License-Identifier: BSD-2-Clause # # Copyright (C) 2019, Raspberry Pi (Trading) Limited # # ctt_geq.py - camera tuning tool for GEQ (green equalisation) from ctt_tools import * import matplotlib.pyplot as plt import scipy.optimize as optimize """ Uses green differences in macbeth patches to fit green equalisation threshold model. Ideally, all macbeth chart centres would fall below the threshold as these should be corrected by geq. """ def geq_fit(Cam, plot): imgs = Cam.imgs """ green equalisation to mitigate mazing. Fits geq model by looking at difference between greens in macbeth patches """ geqs = np.array([geq(Cam, Img)*Img.againQ8_norm for Img in imgs]) Cam.log += '\nProcessed all images' geqs = geqs.reshape((-1, 2)) """ data is sorted by green difference and top half is selected since higher green difference data define the decision boundary. """ geqs = np.array(sorted(geqs, key=lambda r: np.abs((r[1]-r[0])/r[0]))) length = len(geqs) g0 = geqs[length//2:, 0] g1 = geqs[length//2:, 1] gdiff = np.abs(g0-g1) """ find linear fit by minimising asymmetric least square errors in order to cover most of the macbeth images. the philosophy here is that every macbeth patch should fall within the threshold, hence the upper bound approach """ def f(params): m, c = params a = gdiff - (m*g0+c) """ asymmetric square error returns: 1.95 * a**2 if a is positive 0.05 * a**2 if a is negative """ return(np.sum(a**2+0.95*np.abs(a)*a)) initial_guess = [0.01, 500] """ Nelder-Mead is usually not the most desirable optimisation method but has been chosen here due to its robustness to undifferentiability (is that a word?) """ result = optimize.minimize(f, initial_guess, method='Nelder-Mead') """ need to check if the fit worked correectly """ if result.success: slope, offset = result.x Cam.log += '\nFit result: slope = {:.5f} '.format(slope) Cam.log += 'offset = {}'.format(int(offset)) """ optional plotting code """ if plot: x = np.linspace(max(g0)*1.1, 100) y = slope*x + offset plt.title('GEQ Asymmetric \'Upper Bound\' Fit') plt.plot(x, y, color='red', ls='--', label='fit') plt.scatter(g0, gdiff, color='b', label='data') plt.ylabel('Difference in green channels') plt.xlabel('Green value') """ This upper bound asymmetric gives correct order of magnitude values. The pipeline approximates a 1st derivative of a gaussian with some linear piecewise functions, introducing arbitrary cutoffs. For pessimistic geq, the model parameters have been increased by a scaling factor/constant. Feel free to tune these or edit the json files directly if you belive there are still mazing effects left (threshold too low) or if you think it is being overcorrected (threshold too high). We have gone for a one size fits most approach that will produce acceptable results in most applications. """ slope *= 1.5 offset += 201 Cam.log += '\nFit after correction factors: slope = {:.5f}'.format(slope) Cam.log += ' offset = {}'.format(int(offset)) """ clamp offset at 0 due to pipeline considerations """ if offset < 0: Cam.log += '\nOffset raised to 0' offset = 0 """ optional plotting code """ if plot: y2 = slope*x + offset plt.plot(x, y2, color='green', ls='--', label='scaled fit') plt.grid() plt.legend() plt.show() """ the case where for some reason the fit didn't work correctly Transpose data and then least squares linear fit. Transposing data makes it robust to many patches where green difference is the same since they only contribute to one error minimisation, instead of dragging the entire linear fit down. """ else: print('\nError! Couldn\'t fit asymmetric lest squares') print(result.message) Cam.log += '\nWARNING: Asymmetric least squares fit failed! ' Cam.log += 'Standard fit used could possibly lead to worse results' fit = np.polyfit(gdiff, g0, 1) offset, slope = -fit[1]/fit[0], 1/fit[0] Cam.log += '\nFit result: slope = {:.5f} '.format(slope) Cam.log += 'offset = {}'.format(int(offset)) """ optional plotting code """ if plot: x = np.linspace(max(g0)*1.1, 100) y = slope*x + offset plt.title('GEQ Linear Fit') plt.plot(x, y, color='red', ls='--', label='fit') plt.scatter(g0, gdiff, color='b', label='data') plt.ylabel('Difference in green channels') plt.xlabel('Green value') """ Scaling factors (see previous justification) The model here will not be an upper bound so scaling factors have been increased. This method of deriving geq model parameters is extremely arbitrary and undesirable. """ slope *= 2.5 offset += 301 Cam.log += '\nFit after correction factors: slope = {:.5f}'.format(slope) Cam.log += ' offset = {}'.format(int(offset)) if offset < 0: Cam.log += '\nOffset raised to 0' offset = 0 """ optional plotting code """ if plot: y2 = slope*x + offset plt.plot(x, y2, color='green', ls='--', label='scaled fit') plt.legend() plt.grid() plt.show() return round(slope, 5), int(offset) """" Return green channels of macbeth patches returns g0, g1 where > g0 is green next to red > g1 is green next to blue """ def geq(Cam, Img): Cam.log += '\nProcessing image {}'.format(Img.name) patches = [Img.patches[i] for i in Img.order][1:3] g_patches = np.array([(np.mean(patches[0][i]), np.mean(patches[1][i])) for i in range(24)]) Cam.log += '\n' return(g_patches) >96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2021, Google Inc.
*
* camera_capabilities.cpp - Camera static properties manager
*/
#include "camera_capabilities.h"
#include <array>
#include <cmath>
#include <hardware/camera3.h>
#include <libcamera/base/log.h>
#include <libcamera/control_ids.h>
#include <libcamera/controls.h>
#include <libcamera/property_ids.h>
#include "libcamera/internal/formats.h"
using namespace libcamera;
LOG_DECLARE_CATEGORY(HAL)
namespace {
/*
* \var camera3Resolutions
* \brief The list of image resolutions defined as mandatory to be supported by
* the Android Camera3 specification
*/
const std::vector<Size> camera3Resolutions = {
{ 320, 240 },
{ 640, 480 },
{ 1280, 720 },
{ 1920, 1080 }
};
/*
* \struct Camera3Format
* \brief Data associated with an Android format identifier
* \var libcameraFormats List of libcamera pixel formats compatible with the
* Android format
* \var name The human-readable representation of the Android format code
*/
struct Camera3Format {
std::vector<PixelFormat> libcameraFormats;
bool mandatory;
const char *name;
};
/*
* \var camera3FormatsMap
* \brief Associate Android format code with ancillary data
*/
const std::map<int, const Camera3Format> camera3FormatsMap = {
{
HAL_PIXEL_FORMAT_BLOB, {
{ formats::MJPEG },
true,
"BLOB"
}
}, {
HAL_PIXEL_FORMAT_YCbCr_420_888, {
{ formats::NV12, formats::NV21 },
true,
"YCbCr_420_888"
}
}, {
/*
* \todo Translate IMPLEMENTATION_DEFINED inspecting the gralloc
* usage flag. For now, copy the YCbCr_420 configuration.
*/
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, {
{ formats::NV12, formats::NV21 },
true,
"IMPLEMENTATION_DEFINED"
}
}, {
HAL_PIXEL_FORMAT_RAW10, {
{
formats::SBGGR10_CSI2P,
formats::SGBRG10_CSI2P,
formats::SGRBG10_CSI2P,
formats::SRGGB10_CSI2P
},
false,
"RAW10"
}
}, {
HAL_PIXEL_FORMAT_RAW12, {
{
formats::SBGGR12_CSI2P,
formats::SGBRG12_CSI2P,
formats::SGRBG12_CSI2P,
formats::SRGGB12_CSI2P
},
false,
"RAW12"
}
}, {
HAL_PIXEL_FORMAT_RAW16, {
{
formats::SBGGR16,
formats::SGBRG16,
formats::SGRBG16,
formats::SRGGB16
},
false,
"RAW16"
}
},
};
} /* namespace */
int CameraCapabilities::initialize(std::shared_ptr<libcamera::Camera> camera,
int orientation, int facing)
{
camera_ = camera;
orientation_ = orientation;
facing_ = facing;
rawStreamAvailable_ = false;
/* Acquire the camera and initialize available stream configurations. */
int ret = camera_->acquire();
if (ret) {
LOG(HAL, Error) << "Failed to temporarily acquire the camera";
return ret;
}
ret = initializeStreamConfigurations();
camera_->release();
if (ret)
return ret;
return initializeStaticMetadata();
}
std::vector<Size>
CameraCapabilities::initializeYUVResolutions(const PixelFormat &pixelFormat,
const std::vector<Size> &resolutions)
{
std::vector<Size> supportedResolutions;
std::unique_ptr<CameraConfiguration> cameraConfig =
camera_->generateConfiguration({ StreamRole::Viewfinder });
StreamConfiguration &cfg = cameraConfig->at(0);
for (const Size &res : resolutions) {
cfg.pixelFormat = pixelFormat;
cfg.size = res;
CameraConfiguration::Status status = cameraConfig->validate();
if (status != CameraConfiguration::Valid) {
LOG(HAL, Debug) << cfg.toString() << " not supported";
continue;
}
LOG(HAL, Debug) << cfg.toString() << " supported";
supportedResolutions.push_back(res);
}
return supportedResolutions;
}
std::vector<Size>
CameraCapabilities::initializeRawResolutions(const libcamera::PixelFormat &pixelFormat)
{
std::unique_ptr<CameraConfiguration> cameraConfig =
camera_->generateConfiguration({ StreamRole::Raw });
StreamConfiguration &cfg = cameraConfig->at(0);
const StreamFormats &formats = cfg.formats();
std::vector<Size> supportedResolutions = formats.sizes(pixelFormat);
return supportedResolutions;
}
/*
* Initialize the format conversion map to translate from Android format
* identifier to libcamera pixel formats and fill in the list of supported
* stream configurations to be reported to the Android camera framework through
* the camera static metadata.
*/
int CameraCapabilities::initializeStreamConfigurations()
{
/*
* Get the maximum output resolutions
* \todo Get this from the camera properties once defined
*/
std::unique_ptr<CameraConfiguration> cameraConfig =
camera_->generateConfiguration({ StillCapture });
if (!cameraConfig) {
LOG(HAL, Error) << "Failed to get maximum resolution";
return -EINVAL;
}
StreamConfiguration &cfg = cameraConfig->at(0);
/*
* \todo JPEG - Adjust the maximum available resolution by taking the
* JPEG encoder requirements into account (alignment and aspect ratio).
*/
const Size maxRes = cfg.size;
LOG(HAL, Debug) << "Maximum supported resolution: " << maxRes.toString();
/*
* Build the list of supported image resolutions.
*
* The resolutions listed in camera3Resolution are mandatory to be
* supported, up to the camera maximum resolution.
*
* Augment the list by adding resolutions calculated from the camera
* maximum one.
*/
std::vector<Size> cameraResolutions;
std::copy_if(camera3Resolutions.begin(), camera3Resolutions.end(),
std::back_inserter(cameraResolutions),
[&](const Size &res) { return res < maxRes; });
/*
* The Camera3 specification suggests adding 1/2 and 1/4 of the maximum
* resolution.
*/
for (unsigned int divider = 2;; divider <<= 1) {
Size derivedSize{
maxRes.width / divider,
maxRes.height / divider,
};
if (derivedSize.width < 320 ||
derivedSize.height < 240)
break;
cameraResolutions.push_back(derivedSize);
}
cameraResolutions.push_back(maxRes);
/* Remove duplicated entries from the list of supported resolutions. */
std::sort(cameraResolutions.begin(), cameraResolutions.end());
auto last = std::unique(cameraResolutions.begin(), cameraResolutions.end());
cameraResolutions.erase(last, cameraResolutions.end());
/*
* Build the list of supported camera formats.
*
* To each Android format a list of compatible libcamera formats is
* associated. The first libcamera format that tests successful is added
* to the format translation map used when configuring the streams.
* It is then tested against the list of supported camera resolutions to
* build the stream configuration map reported through the camera static
* metadata.
*/
Size maxJpegSize;
for (const auto &format : camera3FormatsMap) {
int androidFormat = format.first;
const Camera3Format &camera3Format = format.second;
const std::vector<PixelFormat> &libcameraFormats =
camera3Format.libcameraFormats;
LOG(HAL, Debug) << "Trying to map Android format "
<< camera3Format.name;
/*
* JPEG is always supported, either produced directly by the
* camera, or encoded in the HAL.
*/
if (androidFormat == HAL_PIXEL_FORMAT_BLOB) {
formatsMap_[androidFormat] = formats::MJPEG;
LOG(HAL, Debug) << "Mapped Android format "
<< camera3Format.name << " to "
<< formats::MJPEG.toString()
<< " (fixed mapping)";
continue;
}
/*
* Test the libcamera formats that can produce images
* compatible with the format defined by Android.
*/
PixelFormat mappedFormat;
for (const PixelFormat &pixelFormat : libcameraFormats) {
LOG(HAL, Debug) << "Testing " << pixelFormat.toString();
/*
* The stream configuration size can be adjusted,
* not the pixel format.
*
* \todo This could be simplified once all pipeline
* handlers will report the StreamFormats list of
* supported formats.
*/
cfg.pixelFormat = pixelFormat;
CameraConfiguration::Status status = cameraConfig->validate();
if (status != CameraConfiguration::Invalid &&
cfg.pixelFormat == pixelFormat) {
mappedFormat = pixelFormat;
break;
}
}
if (!mappedFormat.isValid()) {
/* If the format is not mandatory, skip it. */
if (!camera3Format.mandatory)
continue;
LOG(HAL, Error)
<< "Failed to map mandatory Android format "
<< camera3Format.name << " ("
<< utils::hex(androidFormat) << "): aborting";
return -EINVAL;
}
/*
* Record the mapping and then proceed to generate the
* stream configurations map, by testing the image resolutions.
*/
formatsMap_[androidFormat] = mappedFormat;
LOG(HAL, Debug) << "Mapped Android format "
<< camera3Format.name << " to "
<< mappedFormat.toString();
std::vector<Size> resolutions;
const PixelFormatInfo &info = PixelFormatInfo::info(mappedFormat);
switch (info.colourEncoding) {
case PixelFormatInfo::ColourEncodingRAW:
if (info.bitsPerPixel != 16)
continue;
rawStreamAvailable_ = true;
resolutions = initializeRawResolutions(mappedFormat);
break;
case PixelFormatInfo::ColourEncodingYUV:
case PixelFormatInfo::ColourEncodingRGB:
/*
* We support enumerating RGB streams here to allow
* mapping IMPLEMENTATION_DEFINED format to RGB.
*/
resolutions = initializeYUVResolutions(mappedFormat,
cameraResolutions);
break;
}
for (const Size &res : resolutions) {
streamConfigurations_.push_back({ res, androidFormat });
/*
* If the format is HAL_PIXEL_FORMAT_YCbCr_420_888
* from which JPEG is produced, add an entry for
* the JPEG stream.
*
* \todo Wire the JPEG encoder to query the supported
* sizes provided a list of formats it can encode.
*
* \todo Support JPEG streams produced by the camera
* natively.
*/
if (androidFormat == HAL_PIXEL_FORMAT_YCbCr_420_888) {
streamConfigurations_.push_back(
{ res, HAL_PIXEL_FORMAT_BLOB });
maxJpegSize = std::max(maxJpegSize, res);
}
}
/*
* \todo Calculate the maximum JPEG buffer size by asking the
* encoder giving the maximum frame size required.
*/
maxJpegBufferSize_ = maxJpegSize.width * maxJpegSize.height * 1.5;
}
LOG(HAL, Debug) << "Collected stream configuration map: ";
for (const auto &entry : streamConfigurations_)
LOG(HAL, Debug) << "{ " << entry.resolution.toString() << " - "
<< utils::hex(entry.androidFormat) << " }";
return 0;
}
int CameraCapabilities::initializeStaticMetadata()
{
staticMetadata_ = std::make_unique<CameraMetadata>(64, 1024);
if (!staticMetadata_->isValid()) {
LOG(HAL, Error) << "Failed to allocate static metadata";
staticMetadata_.reset();
return -EINVAL;
}
const ControlInfoMap &controlsInfo = camera_->controls();
const ControlList &properties = camera_->properties();
/* Color correction static metadata. */
{
std::vector<uint8_t> data;
data.reserve(3);
const auto &infoMap = controlsInfo.find(&controls::draft::ColorCorrectionAberrationMode);
if (infoMap != controlsInfo.end()) {
for (const auto &value : infoMap->second.values())
data.push_back(value.get<int32_t>());
} else {
data.push_back(ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF);
}
staticMetadata_->addEntry(ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
data);
}
/* Control static metadata. */
std::vector<uint8_t> aeAvailableAntiBandingModes = {
ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_50HZ,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_60HZ,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
aeAvailableAntiBandingModes);
std::vector<uint8_t> aeAvailableModes = {
ANDROID_CONTROL_AE_MODE_ON,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_MODES,
aeAvailableModes);
int64_t minFrameDurationNsec = -1;
int64_t maxFrameDurationNsec = -1;
const auto frameDurationsInfo = controlsInfo.find(&controls::FrameDurationLimits);
if (frameDurationsInfo != controlsInfo.end()) {
minFrameDurationNsec = frameDurationsInfo->second.min().get<int64_t>() * 1000;
maxFrameDurationNsec = frameDurationsInfo->second.max().get<int64_t>() * 1000;
/*
* Adjust the minimum frame duration to comply with Android
* requirements. The camera service mandates all preview/record
* streams to have a minimum frame duration < 33,366 milliseconds
* (see MAX_PREVIEW_RECORD_DURATION_NS in the camera service
* implementation).
*
* If we're close enough (+ 500 useconds) to that value, round
* the minimum frame duration of the camera to an accepted
* value.
*/
static constexpr int64_t MAX_PREVIEW_RECORD_DURATION_NS = 1e9 / 29.97;
if (minFrameDurationNsec > MAX_PREVIEW_RECORD_DURATION_NS &&
minFrameDurationNsec < MAX_PREVIEW_RECORD_DURATION_NS + 500000)
minFrameDurationNsec = MAX_PREVIEW_RECORD_DURATION_NS - 1000;
/*
* The AE routine frame rate limits are computed using the frame
* duration limits, as libcamera clips the AE routine to the
* frame durations.
*/
int32_t maxFps = std::round(1e9 / minFrameDurationNsec);
int32_t minFps = std::round(1e9 / maxFrameDurationNsec);
minFps = std::max(1, minFps);
/*
* Force rounding errors so that we have the proper frame
* durations for when we reuse these variables later
*/
minFrameDurationNsec = 1e9 / maxFps;
maxFrameDurationNsec = 1e9 / minFps;
/*
* Register to the camera service {min, max} and {max, max}
* intervals as requested by the metadata documentation.
*/
int32_t availableAeFpsTarget[] = {
minFps, maxFps, maxFps, maxFps
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
availableAeFpsTarget);
}
std::vector<int32_t> aeCompensationRange = {
0, 0,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_RANGE,
aeCompensationRange);
const camera_metadata_rational_t aeCompensationStep[] = {
{ 0, 1 }
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_STEP,
aeCompensationStep);
std::vector<uint8_t> availableAfModes = {
ANDROID_CONTROL_AF_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AF_AVAILABLE_MODES,
availableAfModes);
std::vector<uint8_t> availableEffects = {
ANDROID_CONTROL_EFFECT_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_EFFECTS,
availableEffects);
std::vector<uint8_t> availableSceneModes = {
ANDROID_CONTROL_SCENE_MODE_DISABLED,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
availableSceneModes);
std::vector<uint8_t> availableStabilizationModes = {
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
availableStabilizationModes);
/*
* \todo Inspect the camera capabilities to report the available
* AWB modes. Default to AUTO as CTS tests require it.
*/
std::vector<uint8_t> availableAwbModes = {
ANDROID_CONTROL_AWB_MODE_AUTO,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
availableAwbModes);
std::vector<int32_t> availableMaxRegions = {
0, 0, 0,
};
staticMetadata_->addEntry(ANDROID_CONTROL_MAX_REGIONS,
availableMaxRegions);
std::vector<uint8_t> sceneModesOverride = {
ANDROID_CONTROL_AE_MODE_ON,
ANDROID_CONTROL_AWB_MODE_AUTO,
ANDROID_CONTROL_AF_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
sceneModesOverride);
uint8_t aeLockAvailable = ANDROID_CONTROL_AE_LOCK_AVAILABLE_FALSE;
staticMetadata_->addEntry(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
aeLockAvailable);
uint8_t awbLockAvailable = ANDROID_CONTROL_AWB_LOCK_AVAILABLE_FALSE;
staticMetadata_->addEntry(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
awbLockAvailable);
char availableControlModes = ANDROID_CONTROL_MODE_AUTO;
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_MODES,
availableControlModes);
/* JPEG static metadata. */
/*
* Create the list of supported thumbnail sizes by inspecting the
* available JPEG resolutions collected in streamConfigurations_ and
* generate one entry for each aspect ratio.
*
* The JPEG thumbnailer can freely scale, so pick an arbitrary
* (160, 160) size as the bounding rectangle, which is then cropped to
* the different supported aspect ratios.
*/
constexpr Size maxJpegThumbnail(160, 160);
std::vector<Size> thumbnailSizes;
thumbnailSizes.push_back({ 0, 0 });
for (const auto &entry : streamConfigurations_) {
if (entry.androidFormat != HAL_PIXEL_FORMAT_BLOB)
continue;
Size thumbnailSize = maxJpegThumbnail
.boundedToAspectRatio({ entry.resolution.width,
entry.resolution.height });
thumbnailSizes.push_back(thumbnailSize);
}
std::sort(thumbnailSizes.begin(), thumbnailSizes.end());
auto last = std::unique(thumbnailSizes.begin(), thumbnailSizes.end());
thumbnailSizes.erase(last, thumbnailSizes.end());
/* Transform sizes in to a list of integers that can be consumed. */
std::vector<int32_t> thumbnailEntries;
thumbnailEntries.reserve(thumbnailSizes.size() * 2);
for (const auto &size : thumbnailSizes) {
thumbnailEntries.push_back(size.width);
thumbnailEntries.push_back(size.height);
}
staticMetadata_->addEntry(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
thumbnailEntries);
staticMetadata_->addEntry(ANDROID_JPEG_MAX_SIZE, maxJpegBufferSize_);
/* Sensor static metadata. */
std::array<int32_t, 2> pixelArraySize;
{
const Size &size = properties.get(properties::PixelArraySize);
pixelArraySize[0] = size.width;
pixelArraySize[1] = size.height;
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
pixelArraySize);
}
if (properties.contains(properties::UnitCellSize)) {
const Size &cellSize = properties.get<Size>(properties::UnitCellSize);
std::array<float, 2> physicalSize{
cellSize.width * pixelArraySize[0] / 1e6f,
cellSize.height * pixelArraySize[1] / 1e6f
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
physicalSize);
}
{
const Span<const Rectangle> &rects =
properties.get(properties::PixelArrayActiveAreas);
std::vector<int32_t> data{
static_cast<int32_t>(rects[0].x),
static_cast<int32_t>(rects[0].y),
static_cast<int32_t>(rects[0].width),
static_cast<int32_t>(rects[0].height),
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
data);
}
int32_t sensitivityRange[] = {
32, 2400,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
sensitivityRange);
/* Report the color filter arrangement if the camera reports it. */
if (properties.contains(properties::draft::ColorFilterArrangement)) {
uint8_t filterArr = properties.get(properties::draft::ColorFilterArrangement);
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
filterArr);
}
const auto &exposureInfo = controlsInfo.find(&controls::ExposureTime);
if (exposureInfo != controlsInfo.end()) {
int64_t exposureTimeRange[2] = {
exposureInfo->second.min().get<int32_t>() * 1000LL,
exposureInfo->second.max().get<int32_t>() * 1000LL,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
exposureTimeRange, 2);
}
staticMetadata_->addEntry(ANDROID_SENSOR_ORIENTATION, orientation_);
std::vector<int32_t> testPatternModes = {
ANDROID_SENSOR_TEST_PATTERN_MODE_OFF
};
const auto &testPatternsInfo =
controlsInfo.find(&controls::draft::TestPatternMode);
if (testPatternsInfo != controlsInfo.end()) {
const auto &values = testPatternsInfo->second.values();
ASSERT(!values.empty());
for (const auto &value : values) {
switch (value.get<int32_t>()) {
case controls::draft::TestPatternModeOff:
/*
* ANDROID_SENSOR_TEST_PATTERN_MODE_OFF is
* already in testPatternModes.
*/
break;
case controls::draft::TestPatternModeSolidColor:
testPatternModes.push_back(
ANDROID_SENSOR_TEST_PATTERN_MODE_SOLID_COLOR);
break;
case controls::draft::TestPatternModeColorBars:
testPatternModes.push_back(
ANDROID_SENSOR_TEST_PATTERN_MODE_COLOR_BARS);
break;
case controls::draft::TestPatternModeColorBarsFadeToGray:
testPatternModes.push_back(
ANDROID_SENSOR_TEST_PATTERN_MODE_COLOR_BARS_FADE_TO_GRAY);
break;
case controls::draft::TestPatternModePn9:
testPatternModes.push_back(
ANDROID_SENSOR_TEST_PATTERN_MODE_PN9);
break;
case controls::draft::TestPatternModeCustom1:
/* We don't support this yet. */
break;
default:
LOG(HAL, Error) << "Unknown test pattern mode: "
<< value.get<int32_t>();
continue;
}
}
}
staticMetadata_->addEntry(ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
testPatternModes);
uint8_t timestampSource = ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_UNKNOWN;
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
timestampSource);
if (maxFrameDurationNsec > 0)
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_MAX_FRAME_DURATION,
maxFrameDurationNsec);
/* Statistics static metadata. */
uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
faceDetectMode);
int32_t maxFaceCount = 0;
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
maxFaceCount);
{
std::vector<uint8_t> data;
data.reserve(2);
const auto &infoMap = controlsInfo.find(&controls::draft::LensShadingMapMode);
if (infoMap != controlsInfo.end()) {
for (const auto &value : infoMap->second.values())
data.push_back(value.get<int32_t>());
} else {
data.push_back(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF);
}
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_LENS_SHADING_MAP_MODES,
data);
}
/* Sync static metadata. */
int32_t maxLatency = ANDROID_SYNC_MAX_LATENCY_UNKNOWN;
staticMetadata_->addEntry(ANDROID_SYNC_MAX_LATENCY, maxLatency);
/* Flash static metadata. */
char flashAvailable = ANDROID_FLASH_INFO_AVAILABLE_FALSE;
staticMetadata_->addEntry(ANDROID_FLASH_INFO_AVAILABLE,
flashAvailable);
/* Lens static metadata. */
std::vector<float> lensApertures = {
2.53 / 100,
};
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_APERTURES,
lensApertures);
uint8_t lensFacing;
switch (facing_) {
default:
case CAMERA_FACING_FRONT:
lensFacing = ANDROID_LENS_FACING_FRONT;
break;
case CAMERA_FACING_BACK:
lensFacing = ANDROID_LENS_FACING_BACK;
break;
case CAMERA_FACING_EXTERNAL:
lensFacing = ANDROID_LENS_FACING_EXTERNAL;
break;
}
staticMetadata_->addEntry(ANDROID_LENS_FACING, lensFacing);
std::vector<float> lensFocalLengths = {
1,
};
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
lensFocalLengths);
std::vector<uint8_t> opticalStabilizations = {
ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
opticalStabilizations);
float hypeFocalDistance = 0;
staticMetadata_->addEntry(ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
hypeFocalDistance);
float minFocusDistance = 0;
staticMetadata_->addEntry(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
minFocusDistance);
/* Noise reduction modes. */
{
std::vector<uint8_t> data;
data.reserve(5);
const auto &infoMap = controlsInfo.find(&controls::draft::NoiseReductionMode);
if (infoMap != controlsInfo.end()) {
for (const auto &value : infoMap->second.values())
data.push_back(value.get<int32_t>());
} else {
data.push_back(ANDROID_NOISE_REDUCTION_MODE_OFF);
}
staticMetadata_->addEntry(ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
data);
}
/* Scaler static metadata. */
/*
* \todo The digital zoom factor is a property that depends on the
* desired output configuration and the sensor frame size input to the
* ISP. This information is not available to the Android HAL, not at
* initialization time at least.
*
* As a workaround rely on pipeline handlers initializing the
* ScalerCrop control with the camera default configuration and use the
* maximum and minimum crop rectangles to calculate the digital zoom
* factor.
*/
float maxZoom = 1.0f;
const auto scalerCrop = controlsInfo.find(&controls::ScalerCrop);
if (scalerCrop != controlsInfo.end()) {
Rectangle min = scalerCrop->second.min().get<Rectangle>();
Rectangle max = scalerCrop->second.max().get<Rectangle>();
maxZoom = std::min(1.0f * max.width / min.width,
1.0f * max.height / min.height);
}
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
maxZoom);
std::vector<uint32_t> availableStreamConfigurations;
availableStreamConfigurations.reserve(streamConfigurations_.size() * 4);
for (const auto &entry : streamConfigurations_) {
availableStreamConfigurations.push_back(entry.androidFormat);
availableStreamConfigurations.push_back(entry.resolution.width);
availableStreamConfigurations.push_back(entry.resolution.height);
availableStreamConfigurations.push_back(
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT);
}
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
availableStreamConfigurations);
std::vector<int64_t> availableStallDurations = {
ANDROID_SCALER_AVAILABLE_FORMATS_BLOB, 2560, 1920, 33333333,
};
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
availableStallDurations);
/* Use the minimum frame duration for all the YUV/RGB formats. */
if (minFrameDurationNsec > 0) {
std::vector<int64_t> minFrameDurations;
minFrameDurations.reserve(streamConfigurations_.size() * 4);
for (const auto &entry : streamConfigurations_) {
minFrameDurations.push_back(entry.androidFormat);
minFrameDurations.push_back(entry.resolution.width);
minFrameDurations.push_back(entry.resolution.height);
minFrameDurations.push_back(minFrameDurationNsec);
}
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
minFrameDurations);
}
uint8_t croppingType = ANDROID_SCALER_CROPPING_TYPE_CENTER_ONLY;
staticMetadata_->addEntry(ANDROID_SCALER_CROPPING_TYPE, croppingType);
/* Info static metadata. */
uint8_t supportedHWLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
staticMetadata_->addEntry(ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
supportedHWLevel);
/* Request static metadata. */
int32_t partialResultCount = 1;
staticMetadata_->addEntry(ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
partialResultCount);
{
/* Default the value to 2 if not reported by the camera. */
uint8_t maxPipelineDepth = 2;
const auto &infoMap = controlsInfo.find(&controls::draft::PipelineDepth);
if (infoMap != controlsInfo.end())
maxPipelineDepth = infoMap->second.max().get<int32_t>();
staticMetadata_->addEntry(ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
maxPipelineDepth);
}
/* LIMITED does not support reprocessing. */
uint32_t maxNumInputStreams = 0;
staticMetadata_->addEntry(ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
maxNumInputStreams);
std::vector<uint8_t> availableCapabilities = {
ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE,
};
/* Report if camera supports RAW. */
if (rawStreamAvailable_)
availableCapabilities.push_back(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_RAW);
/* Number of { RAW, YUV, JPEG } supported output streams */
int32_t numOutStreams[] = { rawStreamAvailable_, 2, 1 };
staticMetadata_->addEntry(ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS,
numOutStreams);
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
availableCapabilities);
std::vector<int32_t> availableCharacteristicsKeys = {
ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
ANDROID_CONTROL_AE_AVAILABLE_MODES,
ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
ANDROID_CONTROL_AE_COMPENSATION_RANGE,
ANDROID_CONTROL_AE_COMPENSATION_STEP,
ANDROID_CONTROL_AE_LOCK_AVAILABLE,
ANDROID_CONTROL_AF_AVAILABLE_MODES,
ANDROID_CONTROL_AVAILABLE_EFFECTS,
ANDROID_CONTROL_AVAILABLE_MODES,
ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
ANDROID_CONTROL_AWB_AVAILABLE_MODES,
ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
ANDROID_CONTROL_MAX_REGIONS,
ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
ANDROID_FLASH_INFO_AVAILABLE,
ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
ANDROID_JPEG_MAX_SIZE,
ANDROID_LENS_FACING,
ANDROID_LENS_INFO_AVAILABLE_APERTURES,
ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS,
ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
ANDROID_SCALER_CROPPING_TYPE,
ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
ANDROID_SENSOR_INFO_MAX_FRAME_DURATION,
ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
ANDROID_SENSOR_ORIENTATION,
ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
ANDROID_SYNC_MAX_LATENCY,
};
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS,
availableCharacteristicsKeys);
std::vector<int32_t> availableRequestKeys = {
ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
ANDROID_CONTROL_AE_ANTIBANDING_MODE,
ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
ANDROID_CONTROL_AE_LOCK,
ANDROID_CONTROL_AE_MODE,
ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
ANDROID_CONTROL_AF_MODE,
ANDROID_CONTROL_AF_TRIGGER,
ANDROID_CONTROL_AWB_LOCK,
ANDROID_CONTROL_AWB_MODE,
ANDROID_CONTROL_CAPTURE_INTENT,
ANDROID_CONTROL_EFFECT_MODE,
ANDROID_CONTROL_MODE,
ANDROID_CONTROL_SCENE_MODE,
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE,
ANDROID_FLASH_MODE,
ANDROID_JPEG_ORIENTATION,
ANDROID_JPEG_QUALITY,
ANDROID_JPEG_THUMBNAIL_QUALITY,
ANDROID_JPEG_THUMBNAIL_SIZE,
ANDROID_LENS_APERTURE,
ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
ANDROID_NOISE_REDUCTION_MODE,
ANDROID_SCALER_CROP_REGION,
ANDROID_STATISTICS_FACE_DETECT_MODE
};
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS,
availableRequestKeys);
std::vector<int32_t> availableResultKeys = {
ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
ANDROID_CONTROL_AE_ANTIBANDING_MODE,
ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
ANDROID_CONTROL_AE_LOCK,
ANDROID_CONTROL_AE_MODE,
ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
ANDROID_CONTROL_AE_STATE,
ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
ANDROID_CONTROL_AF_MODE,
ANDROID_CONTROL_AF_STATE,
ANDROID_CONTROL_AF_TRIGGER,
ANDROID_CONTROL_AWB_LOCK,
ANDROID_CONTROL_AWB_MODE,
ANDROID_CONTROL_AWB_STATE,
ANDROID_CONTROL_CAPTURE_INTENT,
ANDROID_CONTROL_EFFECT_MODE,
ANDROID_CONTROL_MODE,
ANDROID_CONTROL_SCENE_MODE,
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE,
ANDROID_FLASH_MODE,
ANDROID_FLASH_STATE,
ANDROID_JPEG_GPS_COORDINATES,
ANDROID_JPEG_GPS_PROCESSING_METHOD,
ANDROID_JPEG_GPS_TIMESTAMP,
ANDROID_JPEG_ORIENTATION,
ANDROID_JPEG_QUALITY,
ANDROID_JPEG_SIZE,
ANDROID_JPEG_THUMBNAIL_QUALITY,
ANDROID_JPEG_THUMBNAIL_SIZE,
ANDROID_LENS_APERTURE,
ANDROID_LENS_FOCAL_LENGTH,
ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
ANDROID_LENS_STATE,
ANDROID_NOISE_REDUCTION_MODE,
ANDROID_REQUEST_PIPELINE_DEPTH,
ANDROID_SCALER_CROP_REGION,
ANDROID_SENSOR_EXPOSURE_TIME,
ANDROID_SENSOR_FRAME_DURATION,
ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
ANDROID_SENSOR_TEST_PATTERN_MODE,
ANDROID_SENSOR_TIMESTAMP,
ANDROID_STATISTICS_FACE_DETECT_MODE,
ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE,
ANDROID_STATISTICS_SCENE_FLICKER,
};
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_RESULT_KEYS,
availableResultKeys);
if (!staticMetadata_->isValid()) {
LOG(HAL, Error) << "Failed to construct static metadata";
staticMetadata_.reset();
return -EINVAL;
}
if (staticMetadata_->resized()) {
auto [entryCount, dataCount] = staticMetadata_->usage();
LOG(HAL, Info)
<< "Static metadata resized: " << entryCount
<< " entries and " << dataCount << " bytes used";
}
return 0;
}
/* Translate Android format code to libcamera pixel format. */
PixelFormat CameraCapabilities::toPixelFormat(int format) const
{
auto it = formatsMap_.find(format);
if (it == formatsMap_.end()) {
LOG(HAL, Error) << "Requested format " << utils::hex(format)
<< " not supported";
return PixelFormat();
}
return it->second;
}
std::unique_ptr<CameraMetadata> CameraCapabilities::requestTemplatePreview() const
{
/*
* \todo Keep this in sync with the actual number of entries.
* Currently: 20 entries, 35 bytes
*/
auto requestTemplate = std::make_unique<CameraMetadata>(21, 36);
if (!requestTemplate->isValid()) {
return nullptr;
}
/* Get the FPS range registered in the static metadata. */
camera_metadata_ro_entry_t entry;
bool found = staticMetadata_->getEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
&entry);
if (!found) {
LOG(HAL, Error) << "Cannot create capture template without FPS range";
return nullptr;
}
/*
* Assume the AE_AVAILABLE_TARGET_FPS_RANGE static metadata
* has been assembled as {{min, max} {max, max}}.
*/
requestTemplate->addEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
entry.data.i32, 2);
uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON;
requestTemplate->addEntry(ANDROID_CONTROL_AE_MODE, aeMode);
int32_t aeExposureCompensation = 0;
requestTemplate->addEntry(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
aeExposureCompensation);
uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
requestTemplate->addEntry(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
aePrecaptureTrigger);
uint8_t aeLock = ANDROID_CONTROL_AE_LOCK_OFF;
requestTemplate->addEntry(ANDROID_CONTROL_AE_LOCK, aeLock);
uint8_t aeAntibandingMode = ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
requestTemplate->addEntry(ANDROID_CONTROL_AE_ANTIBANDING_MODE,
aeAntibandingMode);
uint8_t afMode = ANDROID_CONTROL_AF_MODE_OFF;
requestTemplate->addEntry(ANDROID_CONTROL_AF_MODE, afMode);
uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
requestTemplate->addEntry(ANDROID_CONTROL_AF_TRIGGER, afTrigger);
uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
requestTemplate->addEntry(ANDROID_CONTROL_AWB_MODE, awbMode);
uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
requestTemplate->addEntry(ANDROID_CONTROL_AWB_LOCK, awbLock);
uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
requestTemplate->addEntry(ANDROID_FLASH_MODE, flashMode);
uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
requestTemplate->addEntry(ANDROID_STATISTICS_FACE_DETECT_MODE,
faceDetectMode);
uint8_t noiseReduction = ANDROID_NOISE_REDUCTION_MODE_OFF;
requestTemplate->addEntry(ANDROID_NOISE_REDUCTION_MODE,
noiseReduction);
uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
requestTemplate->addEntry(ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
aberrationMode);
uint8_t controlMode = ANDROID_CONTROL_MODE_AUTO;
requestTemplate->addEntry(ANDROID_CONTROL_MODE, controlMode);
float lensAperture = 2.53 / 100;
requestTemplate->addEntry(ANDROID_LENS_APERTURE, lensAperture);
uint8_t opticalStabilization = ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
requestTemplate->addEntry(ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
opticalStabilization);
uint8_t captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
requestTemplate->addEntry(ANDROID_CONTROL_CAPTURE_INTENT,
captureIntent);
return requestTemplate;
}
std::unique_ptr<CameraMetadata> CameraCapabilities::requestTemplateVideo() const
{
std::unique_ptr<CameraMetadata> previewTemplate = requestTemplatePreview();
if (!previewTemplate)
return nullptr;
/*
* The video template requires a fixed FPS range. Everything else
* stays the same as the preview template.
*/
camera_metadata_ro_entry_t entry;
staticMetadata_->getEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
&entry);
/*
* Assume the AE_AVAILABLE_TARGET_FPS_RANGE static metadata
* has been assembled as {{min, max} {max, max}}.
*/
previewTemplate->updateEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
entry.data.i32 + 2, 2);
return previewTemplate;
}