summaryrefslogtreecommitdiff
path: root/LICENSES/MIT.txt
blob: 204b93da48d02900098ced21c54062ffbff36b9c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
MIT License Copyright (c) <year> <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished
to do so, subject to the following conditions:

The above copyright notice and this permission notice (including the next
paragraph) shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2019, Raspberry Pi Ltd
#
# ctt_awb.py - camera tuning tool for AWB

from ctt_image_load import *
import matplotlib.pyplot as plt
from bisect import bisect_left
from scipy.optimize import fmin


"""
obtain piecewise linear approximation for colour curve
"""
def awb(Cam, cal_cr_list, cal_cb_list, plot):
    imgs = Cam.imgs
    """
    condense alsc calibration tables into one dictionary
    """
    if cal_cr_list is None:
        colour_cals = None
    else:
        colour_cals = {}
        for cr, cb in zip(cal_cr_list, cal_cb_list):
            cr_tab = cr['table']
            cb_tab = cb['table']
            """
            normalise tables so min value is 1
            """
            cr_tab = cr_tab/np.min(cr_tab)
            cb_tab = cb_tab/np.min(cb_tab)
            colour_cals[cr['ct']] = [cr_tab, cb_tab]
    """
    obtain data from greyscale macbeth patches
    """
    rb_raw = []
    rbs_hat = []
    for Img in imgs:
        Cam.log += '\nProcessing '+Img.name
        """
        get greyscale patches with alsc applied if alsc enabled.
        Note: if alsc is disabled then colour_cals will be set to None and the
        function will just return the greyscale patches
        """
        r_patchs, b_patchs, g_patchs = get_alsc_patches(Img, colour_cals)
        """
        calculate ratio of r, b to g
        """
        r_g = np.mean(r_patchs/g_patchs)
        b_g = np.mean(b_patchs/g_patchs)
        Cam.log += '\n       r : {:.4f}       b : {:.4f}'.format(r_g, b_g)
        """
        The curve tends to be better behaved in so-called hatspace.
        R, B, G represent the individual channels. The colour curve is plotted in
        r, b space, where:
            r = R/G
            b = B/G
        This will be referred to as dehatspace... (sorry)
        Hatspace is defined as:
            r_hat = R/(R+B+G)
            b_hat = B/(R+B+G)
        To convert from dehatspace to hastpace (hat operation):
            r_hat = r/(1+r+b)
            b_hat = b/(1+r+b)
        To convert from hatspace to dehatspace (dehat operation):
            r = r_hat/(1-r_hat-b_hat)
            b = b_hat/(1-r_hat-b_hat)
        Proof is left as an excercise to the reader...
        Throughout the code, r and b are sometimes referred to as r_g and b_g
        as a reminder that they are ratios
        """
        r_g_hat = r_g/(1+r_g+b_g)
        b_g_hat = b_g/(1+r_g+b_g)
        Cam.log += '\n   r_hat : {:.4f}   b_hat : {:.4f}'.format(r_g_hat, b_g_hat)
        rbs_hat.append((r_g_hat, b_g_hat, Img.col))
        rb_raw.append((r_g, b_g))
        Cam.log += '\n'

    Cam.log += '\nFinished processing images'
    """
    sort all lits simultaneously by r_hat
    """
    rbs_zip = list(zip(rbs_hat, rb_raw))
    rbs_zip.sort(key=lambda x: x[0][0])
    rbs_hat, rb_raw = list(zip(*rbs_zip))
    """
    unzip tuples ready for processing
    """
    rbs_hat = list(zip(*rbs_hat))
    rb_raw = list(zip(*rb_raw))
    """
    fit quadratic fit to r_g hat and b_g_hat
    """
    a, b, c = np.polyfit(rbs_hat[0], rbs_hat[1], 2)
    Cam.log += '\nFit quadratic curve in hatspace'
    """
    the algorithm now approximates the shortest distance from each point to the
    curve in dehatspace. Since the fit is done in hatspace, it is easier to
    find the actual shortest distance in hatspace and use the projection back
    into dehatspace as an overestimate.
    The distance will be used for two things:
        1) In the case that colour temperature does not strictly decrease with
        increasing r/g, the closest point to the line will be chosen out of an
        increasing pair of colours.

        2) To calculate transverse negative an dpositive, the maximum positive
        and negative distance from the line are chosen. This benefits from the
        overestimate as the transverse pos/neg are upper bound values.
    """
    """
    define fit function
    """
    def f(x):
        return a*x**2 + b*x + c
    """
    iterate over points (R, B are x and y coordinates of points) and calculate
    distance to line in dehatspace
    """
    dists = []
    for i, (R, B) in enumerate(zip(rbs_hat[0], rbs_hat[1])):
        """
        define function to minimise as square distance between datapoint and
        point on curve. Squaring is monotonic so minimising radius squared is
        equivalent to minimising radius
        """
        def f_min(x):
            y = f(x)
            return((x-R)**2+(y-B)**2)
        """
        perform optimisation with scipy.optmisie.fmin
        """
        x_hat = fmin(f_min, R, disp=0)[0]
        y_hat = f(x_hat)
        """
        dehat
        """
        x = x_hat/(1-x_hat-y_hat)
        y = y_hat/(1-x_hat-y_hat)
        rr = R/(1-R-B)
        bb = B/(1-R-B)
        """
        calculate euclidean distance in dehatspace
        """
        dist = ((x-rr)**2+(y-bb)**2)**0.5
        """
        return negative if point is below the fit curve
        """
        if (x+y) > (rr+bb):
            dist *= -1
        dists.append(dist)
    Cam.log += '\nFound closest point on fit line to each point in dehatspace'
    """
    calculate wiggle factors in awb. 10% added since this is an upper bound
    """
    transverse_neg = - np.min(dists) * 1.1
    transverse_pos = np.max(dists) * 1.1
    Cam.log += '\nTransverse pos : {:.5f}'.format(transverse_pos)
    Cam.log += '\nTransverse neg : {:.5f}'.format(transverse_neg)
    """
    set minimum transverse wiggles to 0.1 .
    Wiggle factors dictate how far off of the curve the algorithm searches. 0.1
    is a suitable minimum that gives better results for lighting conditions not
    within calibration dataset. Anything less will generalise poorly.
    """
    if transverse_pos < 0.01:
        transverse_pos = 0.01
        Cam.log += '\nForced transverse pos to 0.01'
    if transverse_neg < 0.01:
        transverse_neg = 0.01
        Cam.log += '\nForced transverse neg to 0.01'

    """
    generate new b_hat values at each r_hat according to fit
    """
    r_hat_fit = np.array(rbs_hat[0])
    b_hat_fit = a*r_hat_fit**2 + b*r_hat_fit + c
    """
    transform from hatspace to dehatspace
    """
    r_fit = r_hat_fit/(1-r_hat_fit-b_hat_fit)
    b_fit = b_hat_fit/(1-r_hat_fit-b_hat_fit)
    c_fit = np.round(rbs_hat[2], 0)
    """
    round to 4dp
    """
    r_fit = np.where((1000*r_fit) % 1 <= 0.05, r_fit+0.0001, r_fit)
    r_fit = np.where((1000*r_fit) % 1 >= 0.95, r_fit-0.0001, r_fit)
    b_fit = np.where((1000*b_fit) % 1 <= 0.05, b_fit+0.0001, b_fit)
    b_fit = np.where((1000*b_fit) % 1 >= 0.95, b_fit-0.0001, b_fit)
    r_fit = np.round(r_fit, 4)
    b_fit = np.round(b_fit, 4)
    """
    The following code ensures that colour temperature decreases with
    increasing r/g
    """
    """
    iterate backwards over list for easier indexing
    """
    i = len(c_fit) - 1
    while i > 0:
        if c_fit[i] > c_fit[i-1]:
            Cam.log += '\nColour temperature increase found\n'
            Cam.log += '{} K at r = {} to '.format(c_fit[i-1], r_fit[i-1])
            Cam.log += '{} K at r = {}'.format(c_fit[i], r_fit[i])
            """
            if colour temperature increases then discard point furthest from
            the transformed fit (dehatspace)
            """
            error_1 = abs(dists[i-1])
            error_2 = abs(dists[i])
            Cam.log += '\nDistances from fit:\n'
            Cam.log += '{} K : {:.5f} , '.format(c_fit[i], error_1)
            Cam.log += '{} K : {:.5f}'.format(c_fit[i-1], error_2)
            """
            find bad index
            note that in python false = 0 and true = 1
            """
            bad = i - (error_1 < error_2)
            Cam.log += '\nPoint at {} K deleted as '.format(c_fit[bad])
            Cam.log += 'it is furthest from fit'
            """
            delete bad point
            """
            r_fit = np.delete(r_fit, bad)
            b_fit = np.delete(b_fit, bad)
            c_fit = np.delete(c_fit, bad).astype(np.uint16)
        """
        note that if a point has been discarded then the length has decreased
        by one, meaning that decreasing the index by one will reassess the kept
        point against the next point. It is therefore possible, in theory, for
        two adjacent points to be discarded, although probably rare
        """
        i -= 1

    """
    return formatted ct curve, ordered by increasing colour temperature
    """
    ct_curve = list(np.array(list(zip(b_fit, r_fit, c_fit))).flatten())[::-1]
    Cam.log += '\nFinal CT curve:'
    for i in range(len(ct_curve)//3):
        j = 3*i
        Cam.log += '\n  ct: {}  '.format(ct_curve[j])
        Cam.log += '  r: {}  '.format(ct_curve[j+1])
        Cam.log += '  b: {}  '.format(ct_curve[j+2])

    """
    plotting code for debug
    """
    if plot:
        x = np.linspace(np.min(rbs_hat[0]), np.max(rbs_hat[0]), 100)
        y = a*x**2 + b*x + c
        plt.subplot(2, 1, 1)
        plt.title('hatspace')
        plt.plot(rbs_hat[0], rbs_hat[1], ls='--', color='blue')
        plt.plot(x, y, color='green', ls='-')
        plt.scatter(rbs_hat[0], rbs_hat[1], color='red')
        for i, ct in enumerate(rbs_hat[2]):
            plt.annotate(str(ct), (rbs_hat[0][i], rbs_hat[1][i]))
        plt.xlabel('$\\hat{r}$')
        plt.ylabel('$\\hat{b}$')
        """
        optional set axes equal to shortest distance so line really does
        looks perpendicular and everybody is happy
        """
        # ax = plt.gca()
        # ax.set_aspect('equal')
        plt.grid()
        plt.subplot(2, 1, 2)
        plt.title('dehatspace - indoors?')
        plt.plot(r_fit, b_fit, color='blue')
        plt.scatter(rb_raw[0], rb_raw[1], color='green')
        plt.scatter(r_fit, b_fit, color='red')
        for i, ct in enumerate(c_fit):
            plt.annotate(str(ct), (r_fit[i], b_fit[i]))
        plt.xlabel('$r$')
        plt.ylabel('$b$')
        """
        optional set axes equal to shortest distance so line really does
        looks perpendicular and everybody is happy
        """
        # ax = plt.gca()
        # ax.set_aspect('equal')
        plt.subplots_adjust(hspace=0.5)
        plt.grid()
        plt.show()
    """
    end of plotting code
    """
    return(ct_curve, np.round(transverse_pos, 5), np.round(transverse_neg, 5))


"""
obtain greyscale patches and perform alsc colour correction
"""
def get_alsc_patches(Img, colour_cals, grey=True):
    """
    get patch centre coordinates, image colour and the actual
    patches for each channel, remembering to subtract blacklevel
    If grey then only greyscale patches considered
    """
    if grey:
        cen_coords = Img.cen_coords[3::4]
        col = Img.col
        patches = [np.array(Img.patches[i]) for i in Img.order]
        r_patchs = patches[0][3::4] - Img.blacklevel_16
        b_patchs = patches[3][3::4] - Img.blacklevel_16
        """
        note two green channels are averages
        """
        g_patchs = (patches[1][3::4]+patches[2][3::4])/2 - Img.blacklevel_16
    else:
        cen_coords = Img.cen_coords
        col = Img.col
        patches = [np.array(Img.patches[i]) for i in Img.order]
        r_patchs = patches[0] - Img.blacklevel_16
        b_patchs = patches[3] - Img.blacklevel_16
        g_patchs = (patches[1]+patches[2])/2 - Img.blacklevel_16

    if colour_cals is None:
        return r_patchs, b_patchs, g_patchs
    """
    find where image colour fits in alsc colour calibration tables
    """
    cts = list(colour_cals.keys())
    pos = bisect_left(cts, col)
    """
    if img colour is below minimum or above maximum alsc calibration colour, simply
    pick extreme closest to img colour
    """
    if pos % len(cts) == 0:
        """
        this works because -0 = 0 = first and -1 = last index
        """
        col_tabs = np.array(colour_cals[cts[-pos//len(cts)]])
        """
    else, perform linear interpolation between existing alsc colour
    calibration tables
    """
    else:
        bef = cts[pos-1]
        aft = cts[pos]
        da = col-bef
        db = aft-col
        bef_tabs = np.array(colour_cals[bef])
        aft_tabs = np.array(colour_cals[aft])
        col_tabs = (bef_tabs*db + aft_tabs*da)/(da+db)
    col_tabs = np.reshape(col_tabs, (2, 12, 16))
    """
    calculate dx, dy used to calculate alsc table
    """
    w, h = Img.w/2, Img.h/2
    dx, dy = int(-(-(w-1)//16)), int(-(-(h-1)//12))
    """
    make list of pairs of gains for each patch by selecting the correct value
    in alsc colour calibration table
    """
    patch_gains = []
    for cen in cen_coords:
        x, y = cen[0]//dx, cen[1]//dy
        # We could probably do with some better spatial interpolation here?
        col_gains = (col_tabs[0][y][x], col_tabs[1][y][x])
        patch_gains.append(col_gains)

    """
    multiply the r and b channels in each patch by the respective gain, finally
    performing the alsc colour correction
    """
    for i, gains in enumerate(patch_gains):
        r_patchs[i] = r_patchs[i] * gains[0]
        b_patchs[i] = b_patchs[i] * gains[1]

    """
    return greyscale patches, g channel and correct r, b channels
    """
    return r_patchs, b_patchs, g_patchs