summaryrefslogtreecommitdiff
path: root/Documentation/docs.rst
blob: f4c6ec5b0c9468093a412f7605e5fcaca4e2e21c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
.. SPDX-License-Identifier: CC-BY-SA-4.0

.. contents::
   :local:

*************
Documentation
*************

.. toctree::
   :hidden:

   API <api-html/index>

API
===

The libcamera API is extensively documented using Doxygen. The :ref:`API
nightly build <api>` contains the most up-to-date API documentation, built from
the latest master branch.

Feature Requirements
====================

Device enumeration
------------------

The library shall support enumerating all camera devices available in the
system, including both fixed cameras and hotpluggable cameras. It shall
support cameras plugged and unplugged after the initialization of the
library, and shall offer a mechanism to notify applications of camera plug
and unplug.

The following types of cameras shall be supported:

* Internal cameras designed for point-and-shoot still image and video
  capture usage, either controlled directly by the CPU, or exposed through
  an internal USB bus as a UVC device.

* External UVC cameras designed for video conferencing usage.

Other types of camera, including analog cameras, depth cameras, thermal
cameras, external digital picture or movie cameras, are out of scope for
this project.

A hardware device that includes independent camera sensors, such as front
and back sensors in a phone, shall be considered as multiple camera devices
for the purpose of this library.

Independent Camera Devices
--------------------------

When multiple cameras are present in the system and are able to operate
independently from each other, the library shall expose them as multiple
camera devices and support parallel operation without any additional usage
restriction apart from the limitations inherent to the hardware (such as
memory bandwidth, CPU usage or number of CSI-2 receivers for instance).

Independent processes shall be able to use independent cameras devices
without interfering with each other. A single camera device shall be
usable by a single process at a time.

Multiple streams support
------------------------

The library shall support multiple video streams running in parallel
for each camera device, within the limits imposed by the system.

Per frame controls
------------------

The library shall support controlling capture parameters for each stream
on a per-frame basis, on a best effort basis based on the capabilities of the
hardware and underlying software stack (including kernel drivers and
firmware). It shall apply capture parameters to the frame they target, and
report the value of the parameters that have effectively been used for each
captured frame.

When a camera device supports multiple streams, the library shall allow both
control of each stream independently, and control of multiple streams
together. Streams that are controlled together shall be synchronized. No
synchronization is required for streams controlled independently.

Capability Enumeration
----------------------

The library shall expose capabilities of each camera device in a way that
allows applications to discover those capabilities dynamically. Applications
shall be allowed to cache capabilities for as long as they are using the
library. If capabilities can change at runtime, the library shall offer a
mechanism to notify applications of such changes. Applications shall not
cache capabilities in long term storage between runs.

Capabilities shall be discovered dynamically at runtime from the device when
possible, and may come, in part or in full, from platform configuration
data.

Device Profiles
---------------

The library may define different camera device profiles, each with a minimum
set of required capabilities. Applications may use those profiles to quickly
determine the level of features exposed by a device without parsing the full
list of capabilities. Camera devices may implement additional capabilities
on top of the minimum required set for the profile they expose.

3A and Image Enhancement Algorithms
-----------------------------------

The camera devices shall implement auto exposure, auto gain and auto white
balance. Camera devices that include a focus lens shall implement auto
focus. Additional image enhancement algorithms, such as noise reduction or
video stabilization, may be implemented.

All algorithms may be implemented in hardware or firmware outside of the
library, or in software in the library. They shall all be controllable by
applications.

The library shall be architectured to isolate the 3A and image enhancement
algorithms in a component with a documented API, respectively called the 3A
component and the 3A API. The 3A API shall be stable, and shall allow both
open-source and closed-source implementations of the 3A component.

The library may include statically-linked open-source 3A components, and
shall support dynamically-linked open-source and closed-source 3A
components.

Closed-source 3A Component Sandboxing
-------------------------------------

For security purposes, it may be desired to run closed-source 3A components
in a separate process. The 3A API would in such a case be transported over
IPC. The 3A API shall make it possible to use any IPC mechanism that
supports passing file descriptors.

The library may implement an IPC mechanism, and shall support third-party
platform-specific IPC mechanisms through the implementation of a
platform-specific 3A API wrapper. No modification to the library shall be
needed to use such third-party IPC mechanisms.

The 3A component shall not directly access any device node on the system.
Such accesses shall instead be performed through the 3A API. The library
shall validate all accesses and restrict them to what is absolutely required
by 3A components.

V4L2 Compatibility Layer
------------------------

The project shall support traditional V4L2 application through an additional
libcamera wrapper library. The wrapper library shall trap all accesses to
camera devices through `LD_PRELOAD`, and route them through libcamera to
emulate a high-level V4L2 camera device. It shall expose camera device
features on a best-effort basis, and aim for the level of features
traditionally available from a UVC camera designed for video conferencing.

Android Camera HAL v3 Compatibility
-----------------------------------

The library API shall expose all the features required to implement an
Android Camera HAL v3 on top of libcamera. Some features of the HAL may be
omitted as long as they can be implemented separately in the HAL, such as
JPEG encoding, or YUV reprocessing.


Camera Stack
============

::

    a c /    +-------------+  +-------------+  +-------------+  +-------------+
    p a |    |   Native    |  |  Framework  |  |   Native    |  |   Android   |
    p t |    |    V4L2     |  | Application |  |  libcamera  |  |   Camera    |
    l i |    | Application |  | (gstreamer) |  | Application |  |  Framework  |
    i o \    +-------------+  +-------------+  +-------------+  +-------------+
      n             ^                ^                ^                ^
                    |                |                |                |
    l a             |                |                |                |
    i d             v                v                |                v
    b a /    +-------------+  +-------------+         |         +-------------+
    c p |    |    V4L2     |  |   Camera    |         |         |   Android   |
    a t |    |   Compat.   |  |  Framework  |         |         |   Camera    |
    m a |    |             |  | (gstreamer) |         |         |     HAL     |
    e t \    +-------------+  +-------------+         |         +-------------+
    r i             ^                ^                |                ^
    a o             |                |                |                |
      n             |                |                |                |
        /           |         ,................................................
        |           |         !      :            Language             :      !
    l f |           |         !      :            Bindings             :      !
    i r |           |         !      :           (optional)            :      !
    b a |           |         \...............................................'
    c m |           |                |                |                |
    a e |           |                |                |                |
    m w |           v                v                v                v
    e o |    +----------------------------------------------------------------+
    r r |    |                                                                |
    a k |    |                           libcamera                            |
        |    |                                                                |
        \    +----------------------------------------------------------------+
                            ^                  ^                  ^
    Userspace               |                  |                  |
   ------------------------ | ---------------- | ---------------- | ---------------
    Kernel                  |                  |                  |
                            v                  v                  v
                      +-----------+      +-----------+      +-----------+
                      |   Media   | <--> |   Video   | <--> |   V4L2    |
                      |  Device   |      |  Device   |      |  Subdev   |
                      +-----------+      +-----------+      +-----------+

The camera stack comprises four software layers. From bottom to top:

* The kernel drivers control the camera hardware and expose a
  low-level interface to userspace through the Linux kernel V4L2
  family of APIs (Media Controller API, V4L2 Video Device API and
  V4L2 Subdev API).

* The libcamera framework is the core part of the stack. It
  handles all control of the camera devices in its core component,
  libcamera, and exposes a native C++ API to upper layers. Optional
  language bindings allow interfacing to libcamera from other
  programming languages.

  Those components live in the same source code repository and
  all together constitute the libcamera framework.

* The libcamera adaptation is an umbrella term designating the
  components that interface to libcamera in other frameworks.
  Notable examples are a V4L2 compatibility layer, a gstreamer
  libcamera element, and an Android camera HAL implementation based
  on libcamera.

  Those components can live in the libcamera project source code
  in separate repositories, or move to their respective project's
  repository (for instance the gstreamer libcamera element).

* The applications and upper level frameworks are based on the
  libcamera framework or libcamera adaptation, and are outside of
  the scope of the libcamera project.


libcamera Architecture
======================

::

   ---------------------------< libcamera Public API >---------------------------
                    ^                                      ^
                    |                                      |
                    v                                      v
             +-------------+  +-------------------------------------------------+
             |   Camera    |  |  Camera Device                                  |
             |   Devices   |  | +---------------------------------------------+ |
             |   Manager   |  | | Device-Agnostic                             | |
             +-------------+  | |                                             | |
                    ^         | |                    +------------------------+ |
                    |         | |                    |   ~~~~~~~~~~~~~~~~~~~~~  |
                    |         | |                    |  {  +---------------+  } |
                    |         | |                    |  }  | ////Image//// |  { |
                    |         | |                    | <-> | /Processing// |  } |
                    |         | |                    |  }  | /Algorithms// |  { |
                    |         | |                    |  {  +---------------+  } |
                    |         | |                    |   ~~~~~~~~~~~~~~~~~~~~~  |
                    |         | |                    | ======================== |
                    |         | |                    |     +---------------+    |
                    |         | |                    |     | //Pipeline/// |    |
                    |         | |                    | <-> | ///Handler/// |    |
                    |         | |                    |     | ///////////// |    |
                    |         | +--------------------+     +---------------+    |
                    |         |                                 Device-Specific |
                    |         +-------------------------------------------------+
                    |                     ^                        ^
                    |                     |                        |
                    v                     v                        v
           +--------------------------------------------------------------------+
           | Helpers and Support Classes                                        |
           | +-------------+  +-------------+  +-------------+  +-------------+ |
           | |  MC & V4L2  |  |   Buffers   |  | Sandboxing  |  |   Plugins   | |
           | |   Support   |  |  Allocator  |  |     IPC     |  |   Manager   | |
           | +-------------+  +-------------+  +-------------+  +-------------+ |
           | +-------------+  +-------------+                                   |
           | |  Pipeline   |  |     ...     |                                   |
           | |   Runner    |  |             |                                   |
           | +-------------+  +-------------+                                   |
           +--------------------------------------------------------------------+

             /// Device-Specific Components
             ~~~ Sandboxing

While offering a unified API towards upper layers, and presenting
itself as a single library, libcamera isn't monolithic. It exposes
multiple components through its public API, is built around a set of
separate helpers internally, uses device-specific components and can
load dynamic plugins.

Camera Devices Manager
  The Camera Devices Manager provides a view of available cameras
  in the system. It performs cold enumeration and runtime camera
  management, and supports a hotplug notification mechanism in its
  public API.

  To avoid the cost associated with cold enumeration of all devices
  at application start, and to arbitrate concurrent access to camera
  devices, the Camera Devices Manager could later be split to a
  separate service, possibly with integration in platform-specific
  device management.

Camera Device
  The Camera Device represents a camera device to upper layers. It
  exposes full control of the device through the public API, and is
  thus the highest level object exposed by libcamera.

  Camera Device instances are created by the Camera Devices
  Manager. An optional method to create new instances could be exposed
  through the public API to speed up initialization when the upper
  layer knows how to directly address camera devices present in the
  system.

Pipeline Handler
  The Pipeline Handler manages complex pipelines exposed by the kernel drivers
  through the Media Controller and V4L2 APIs. It abstracts pipeline handling to
  hide device-specific details to the rest of the library, and implements both
  pipeline configuration based on stream configuration, and pipeline runtime
  execution and scheduling when needed by the device.

  This component is device-specific and is part of the libcamera code base. As
  such it is covered by the same free software license as the rest of libcamera
  and needs to be contributed upstream by device vendors. The Pipeline Handler
  lives in the same process as the rest of the library, and has access to all
  helpers and kernel camera-related devices.

Image Processing Algorithms
  Together with the hardware image processing and hardware statistics
  collection, the Image Processing Algorithms implement 3A (Auto-Exposure,
  Auto-White Balance and Auto-Focus) and other algorithms. They run on the CPU
  and interact with the kernel camera devices to control hardware image
  processing based on the parameters supplied by upper layers, closing the
  control loop of the ISP.

  This component is device-specific and is loaded as an external plugin. It can
  be part of the libcamera code base, in which case it is covered by the same
  license, or provided externally as an open-source or closed-source component.

  The component is sandboxed and can only interact with libcamera through
  internal APIs specifically marked as such. In particular it will have no
  direct access to kernel camera devices, and all its accesses to image and
  metadata will be mediated by dmabuf instances explicitly passed to the
  component. The component must be prepared to run in a process separate from
  the main libcamera process, and to have a very restricted view of the system,
  including no access to networking APIs and limited access to file systems.

  The sandboxing mechanism isn't defined by libcamera. One example
  implementation will be provided as part of the project, and platforms vendors
  will be able to provide their own sandboxing mechanism as a plugin.

  libcamera should provide a basic implementation of Image Processing
  Algorithms, to serve as a reference for the internal API. Device vendors are
  expected to provide a full-fledged implementation compatible with their
  Pipeline Handler. One goal of the libcamera project is to create an
  environment in which the community will be able to compete with the
  closed-source vendor binaries and develop a high quality open source
  implementation.

Helpers and Support Classes
  While Pipeline Handlers are device-specific, implementations are expected to
  share code due to usage of identical APIs towards the kernel camera drivers
  and the Image Processing Algorithms. This includes without limitation handling
  of the MC and V4L2 APIs, buffer management through dmabuf, and pipeline
  discovery, configuration and scheduling. Such code will be factored out to
  helpers when applicable.

  Other parts of libcamera will also benefit from factoring code out to
  self-contained support classes, even if such code is present only once in the
  code base, in order to keep the source code clean and easy to read. This
  should be the case for instance for plugin management.


V4L2 Compatibility Layer
------------------------

V4L2 compatibility is achieved through a shared library that traps all
accesses to camera devices and routes them to libcamera to emulate high-level
V4L2 camera devices. It is injected in a process address space through
`LD_PRELOAD` and is completely transparent for applications.

The compatibility layer exposes camera device features on a best-effort basis,
and aims for the level of features traditionally available from a UVC camera
designed for video conferencing.


Android Camera HAL
------------------

Camera support for Android is achieved through a generic Android
camera HAL implementation on top of libcamera. The HAL will implement internally
features required by Android and missing from libcamera, such as JPEG encoding
support.

The Android camera HAL implementation will initially target the
LIMITED hardware level, with support for the FULL level then being gradually
implemented.
id='n920' href='#n920'>920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2019, Google Inc.
 *
 * v4l2_videodevice.cpp - V4L2 Video Device
 */

#include "v4l2_videodevice.h"

#include <fcntl.h>
#include <iomanip>
#include <sstream>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <sys/time.h>
#include <unistd.h>
#include <vector>

#include <linux/drm_fourcc.h>
#include <linux/version.h>

#include <libcamera/event_notifier.h>
#include <libcamera/file_descriptor.h>

#include "log.h"
#include "media_device.h"
#include "media_object.h"
#include "utils.h"

/**
 * \file v4l2_videodevice.h
 * \brief V4L2 Video Device
 */
namespace libcamera {

LOG_DECLARE_CATEGORY(V4L2)

/**
 * \struct V4L2Capability
 * \brief struct v4l2_capability object wrapper and helpers
 *
 * The V4L2Capability structure manages the information returned by the
 * VIDIOC_QUERYCAP ioctl.
 */

/**
 * \fn V4L2Capability::driver()
 * \brief Retrieve the driver module name
 * \return The string containing the name of the driver module
 */

/**
 * \fn V4L2Capability::card()
 * \brief Retrieve the video device card name
 * \return The string containing the video device name
 */

/**
 * \fn V4L2Capability::bus_info()
 * \brief Retrieve the location of the video device in the system
 * \return The string containing the video device location
 */

/**
 * \fn V4L2Capability::device_caps()
 * \brief Retrieve the capabilities of the video device
 * \return The video device specific capabilities if V4L2_CAP_DEVICE_CAPS is
 * set or driver capabilities otherwise
 */

/**
 * \fn V4L2Capability::isMultiplanar()
 * \brief Identify if the video device implements the V4L2 multiplanar APIs
 * \return True if the video device supports multiplanar APIs
 */

/**
 * \fn V4L2Capability::isCapture()
 * \brief Identify if the video device captures data
 * \return True if the video device can capture data
 */

/**
 * \fn V4L2Capability::isOutput()
 * \brief Identify if the video device outputs data
 * \return True if the video device can output data
 */

/**
 * \fn V4L2Capability::isVideo()
 * \brief Identify if the video device captures or outputs images
 * \return True if the video device can capture or output images
 */

/**
 * \fn V4L2Capability::isM2M()
 * \brief Identify if the device is a Memory-to-Memory device
 * \return True if the device can capture and output images using the M2M API
 */

/**
 * \fn V4L2Capability::isMeta()
 * \brief Identify if the video device captures or outputs image meta-data
 * \return True if the video device can capture or output image meta-data
 */

/**
 * \fn V4L2Capability::isVideoCapture()
 * \brief Identify if the video device captures images
 * \return True if the video device can capture images
 */

/**
 * \fn V4L2Capability::isVideoOutput()
 * \brief Identify if the video device outputs images
 * \return True if the video device can output images
 */

/**
 * \fn V4L2Capability::isMetaCapture()
 * \brief Identify if the video device captures image meta-data
 * \return True if the video device can capture image meta-data
 */

/**
 * \fn V4L2Capability::isMetaOutput()
 * \brief Identify if the video device outputs image meta-data
 * \return True if the video device can output image meta-data
 */

/**
 * \fn V4L2Capability::hasStreaming()
 * \brief Determine if the video device can perform Streaming I/O
 * \return True if the video device provides Streaming I/O IOCTLs
 */

/**
 * \class V4L2BufferCache
 * \brief Hot cache of associations between V4L2 buffer indexes and FrameBuffer
 *
 * When importing buffers, V4L2 performs lazy mapping of dmabuf instances at
 * VIDIOC_QBUF (or VIDIOC_PREPARE_BUF) time and keeps the mapping associated
 * with the V4L2 buffer, as identified by its index. If the same V4L2 buffer is
 * then reused and queued with different dmabufs, the old dmabufs will be
 * unmapped and the new ones mapped. To keep this process efficient, it is
 * crucial to consistently use the same V4L2 buffer for given dmabufs through
 * the whole duration of a capture cycle.
 *
 * The V4L2BufferCache class keeps a map of previous dmabufs to V4L2 buffer
 * index associations to help selecting V4L2 buffers. It tracks, for every
 * entry, if the V4L2 buffer is in use, and offers lookup of the best free V4L2
 * buffer for a set of dmabufs.
 */

/**
 * \brief Create an empty cache with \a numEntries entries
 * \param[in] numEntries Number of entries to reserve in the cache
 *
 * Create a cache with \a numEntries entries all marked as unused. The entries
 * will be populated as the cache is used. This is typically used to implement
 * buffer import, with buffers added to the cache as they are queued.
 */
V4L2BufferCache::V4L2BufferCache(unsigned int numEntries)
	: lastUsedCounter_(1), missCounter_(0)
{
	cache_.resize(numEntries);
}

/**
 * \brief Create a pre-populated cache
 * \param[in] buffers Array of buffers to pre-populated with
 *
 * Create a cache pre-populated with \a buffers. This is typically used to
 * implement buffer export, with all buffers added to the cache when they are
 * allocated.
 */
V4L2BufferCache::V4L2BufferCache(const std::vector<std::unique_ptr<FrameBuffer>> &buffers)
	: lastUsedCounter_(1), missCounter_(0)
{
	for (const std::unique_ptr<FrameBuffer> &buffer : buffers)
		cache_.emplace_back(true,
				    lastUsedCounter_.fetch_add(1, std::memory_order_acq_rel),
				    buffer->planes());
}

V4L2BufferCache::~V4L2BufferCache()
{
	if (missCounter_ > cache_.size())
		LOG(V4L2, Debug) << "Cache misses: " << missCounter_;
}

/**
 * \brief Find the best V4L2 buffer for a FrameBuffer
 * \param[in] buffer The FrameBuffer
 *
 * Find the best V4L2 buffer index to be used for the FrameBuffer \a buffer
 * based on previous mappings of frame buffers to V4L2 buffers. If a free V4L2
 * buffer previously used with the same dmabufs as \a buffer is found in the
 * cache, return its index. Otherwise return the index of the first free V4L2
 * buffer and record its association with the dmabufs of \a buffer.
 *
 * \return The index of the best V4L2 buffer, or -ENOENT if no free V4L2 buffer
 * is available
 */
int V4L2BufferCache::get(const FrameBuffer &buffer)
{
	bool hit = false;
	int use = -1;
	uint64_t oldest = UINT64_MAX;

	for (unsigned int index = 0; index < cache_.size(); index++) {
		const Entry &entry = cache_[index];

		if (!entry.free)
			continue;

		/* Try to find a cache hit by comparing the planes. */
		if (entry == buffer) {
			hit = true;
			use = index;
			break;
		}

		if (entry.lastUsed < oldest) {
			use = index;
			oldest = entry.lastUsed;
		}
	}

	if (!hit)
		missCounter_++;

	if (use < 0)
		return -ENOENT;

	cache_[use] = Entry(false,
			    lastUsedCounter_.fetch_add(1, std::memory_order_acq_rel),
			    buffer);

	return use;
}

/**
 * \brief Mark buffer \a index as free in the cache
 * \param[in] index The V4L2 buffer index
 */
void V4L2BufferCache::put(unsigned int index)
{
	ASSERT(index < cache_.size());
	cache_[index].free = true;
}

V4L2BufferCache::Entry::Entry()
	: free(true), lastUsed(0)
{
}

V4L2BufferCache::Entry::Entry(bool free, uint64_t lastUsed, const FrameBuffer &buffer)
	: free(free), lastUsed(lastUsed)
{
	for (const FrameBuffer::Plane &plane : buffer.planes())
		planes_.emplace_back(plane);
}

bool V4L2BufferCache::Entry::operator==(const FrameBuffer &buffer) const
{
	const std::vector<FrameBuffer::Plane> &planes = buffer.planes();

	if (planes_.size() != planes.size())
		return false;

	for (unsigned int i = 0; i < planes.size(); i++)
		if (planes_[i].fd != planes[i].fd.fd() ||
		    planes_[i].length != planes[i].length)
			return false;
	return true;
}

/**
 * \class V4L2PixelFormat
 * \brief V4L2 pixel format FourCC wrapper
 *
 * The V4L2PixelFormat class describes the pixel format of a V4L2 buffer. It
 * wraps the V4L2 numerical FourCC, and shall be used in all APIs that deal with
 * V4L2 pixel formats. Its purpose is to prevent unintentional confusion of
 * V4L2 and DRM FourCCs in code by catching implicit conversion attempts at
 * compile time.
 *
 * To achieve this goal, construction of a V4L2PixelFormat from an integer value
 * is explicit. To retrieve the integer value of a V4L2PixelFormat, both the
 * explicit value() and implicit uint32_t conversion operators may be used.
 */

/**
 * \fn V4L2PixelFormat::V4L2PixelFormat()
 * \brief Construct a V4L2PixelFormat with an invalid format
 *
 * V4L2PixelFormat instances constructed with the default constructor are
 * invalid, calling the isValid() function returns false.
 */

/**
 * \fn V4L2PixelFormat::V4L2PixelFormat(uint32_t fourcc)
 * \brief Construct a V4L2PixelFormat from a FourCC value
 * \param[in] fourcc The pixel format FourCC numerical value
 */

/**
 * \fn bool V4L2PixelFormat::isValid() const
 * \brief Check if the pixel format is valid
 *
 * V4L2PixelFormat instances constructed with the default constructor are
 * invalid. Instances constructed with a FourCC defined in the V4L2 API are
 * valid. The behaviour is undefined otherwise.
 *
 * \return True if the pixel format is valid, false otherwise
 */

/**
 * \fn uint32_t V4L2PixelFormat::fourcc() const
 * \brief Retrieve the pixel format FourCC numerical value
 * \return The pixel format FourCC numerical value
 */

/**
 * \fn V4L2PixelFormat::operator uint32_t() const
 * \brief Convert to the pixel format FourCC numerical value
 * \return The pixel format FourCC numerical value
 */

/**
 * \brief Assemble and return a string describing the pixel format
 * \return A string describing the pixel format
 */
std::string V4L2PixelFormat::toString() const
{
	if (fourcc_ == 0)
		return "<INVALID>";

	char ss[8] = { static_cast<char>(fourcc_ & 0x7f),
		       static_cast<char>((fourcc_ >> 8) & 0x7f),
		       static_cast<char>((fourcc_ >> 16) & 0x7f),
		       static_cast<char>((fourcc_ >> 24) & 0x7f) };

	for (unsigned int i = 0; i < 4; i++) {
		if (!isprint(ss[i]))
			ss[i] = '.';
	}

	if (fourcc_ & (1 << 31))
		strcat(ss, "-BE");

	return ss;
}

/**
 * \class V4L2DeviceFormat
 * \brief The V4L2 video device image format and sizes
 *
 * This class describes the image format and resolution to be programmed on a
 * V4L2 video device. The image format is defined by a fourcc code (as specified
 * by the V4L2 API with the V4L2_PIX_FMT_* macros), a resolution (width and
 * height) and one to three planes with configurable line stride and a total
 * per-plane size in bytes.
 *
 * Image formats, as defined by the V4L2 APIs, are categorised as packed,
 * semi-planar and planar, and describe the layout of the image pixel components
 * stored in memory.
 *
 * Packed image formats store pixel components one after the other, in a
 * contiguous memory area. Examples of packed image formats are YUYV
 * permutations, RGB with different pixel sub-sampling ratios such as RGB565 or
 * RGB666 or Raw-Bayer formats such as SRGGB8 or SGRBG12.
 *
 * Semi-planar and planar image formats store the pixel components in separate
 * and possibly non-contiguous memory areas, named planes, whose sizes depend on
 * the pixel components sub-sampling ratios, which are defined by the format.
 * Semi-planar formats use two planes to store pixel components and notable
 * examples of such formats are the NV12 and NV16 formats, while planar formats
 * use three planes to store pixel components and notable examples are YUV422
 * and YUV420.
 *
 * Image formats supported by the V4L2 API are defined and described in Section
 * number 2 of the "Part I - Video for Linux API" chapter of the "Linux Media
 * Infrastructure userspace API", part of the Linux kernel documentation.
 *
 * In the context of this document, packed image formats are referred to as
 * "packed formats" and semi-planar and planar image formats are referred to as
 * "planar formats".
 *
 * V4L2 also defines two different sets of APIs to work with devices that store
 * planes in contiguous or separate memory areas. They are named "Single-plane
 * APIs" and "Multi-plane APIs" respectively and are documented in Section 2.1
 * and Section 2.2 of the above mentioned "Part I - Video for Linux API"
 * documentation.
 *
 * The single-plane API allows, among other parameters, the configuration of the
 * image resolution, the pixel format and the stride length. In that case the
 * stride applies to all planes (possibly sub-sampled). The multi-plane API
 * allows configuring the resolution, the pixel format and a per-plane stride
 * length and total size.
 *
 * Packed image formats, which occupy a single memory area, are easily described
 * through the single-plane API. When used on a video device that implements the
 * multi-plane API, only the size and stride information contained in the first
 * plane are taken into account.
 *
 * Planar image formats, which occupy distinct memory areas, are easily
 * described through the multi-plane APIs. When used on a video device that
 * implements the single-plane API, all planes are stored one after the other
 * in a contiguous memory area, and it is not possible to configure per-plane
 * stride length and size, but only a global stride length which is applied to
 * all planes.
 *
 * The V4L2DeviceFormat class describes both packed and planar image formats,
 * regardless of the API type (single or multi plane) implemented by the video
 * device the format has to be applied to. The total size and bytes per line
 * of images represented with packed formats are configured using the first
 * entry of the V4L2DeviceFormat::planes array, while the per-plane size and
 * per-plane stride length of images represented with planar image formats are
 * configured using the opportune number of entries of the
 * V4L2DeviceFormat::planes array, as prescribed by the image format
 * definition (semi-planar formats use 2 entries, while planar formats use the
 * whole 3 entries). The number of valid entries of the
 * V4L2DeviceFormat::planes array is defined by the
 * V4L2DeviceFormat::planesCount value.
 */

/**
 * \var V4L2DeviceFormat::size
 * \brief The image size in pixels
 */

/**
 * \var V4L2DeviceFormat::fourcc
 * \brief The fourcc code describing the pixel encoding scheme
 *
 * The fourcc code, as defined by the V4L2 API with the V4L2_PIX_FMT_* macros,
 * that identifies the image format pixel encoding scheme.
 */

/**
 * \var V4L2DeviceFormat::planes
 * \brief The per-plane memory size information
 *
 * Images are stored in memory in one or more data planes. Each data plane has a
 * specific line stride and memory size, which could differ from the image
 * visible sizes to accommodate padding at the end of lines and end of planes.
 * Only the first \ref planesCount entries are considered valid.
 */

/**
 * \var V4L2DeviceFormat::planesCount
 * \brief The number of valid data planes
 */

/**
 * \brief Assemble and return a string describing the format
 * \return A string describing the V4L2DeviceFormat
 */
const std::string V4L2DeviceFormat::toString() const
{
	std::stringstream ss;
	ss << size.toString() << "-" << fourcc.toString();
	return ss.str();
}

/**
 * \class V4L2VideoDevice
 * \brief V4L2VideoDevice object and API
 *
 * The V4L2VideoDevice class models an instance of a V4L2 video device.
 * It is constructed with the path to a V4L2 video device node. The device node
 * is only opened upon a call to open() which must be checked for success.
 *
 * The video device capabilities are validated when the device is opened and the
 * device is rejected if it is not a suitable V4L2 capture or output video
 * device, or if the video device does not support streaming I/O.
 *
 * No API call other than open(), isOpen() and close() shall be called on an
 * unopened device instance.
 *
 * The V4L2VideoDevice class supports the V4L2 MMAP and DMABUF memory types:
 *
 * - The allocateBuffers() function wraps buffer allocation with the V4L2 MMAP
 *   memory type. It requests buffers from the driver, allocating the
 *   corresponding memory, and exports them as a set of FrameBuffer objects.
 *   Upon successful return the driver's internal buffer management is
 *   initialized in MMAP mode, and the video device is ready to accept
 *   queueBuffer() calls.
 *
 *   This is the most traditional V4L2 buffer management, and is mostly useful
 *   to support internal buffer pools in pipeline handlers, either for CPU
 *   consumption (such as statistics or parameters pools), or for internal
 *   image buffers shared between devices.
 *
 * - The exportBuffers() function operates similarly to allocateBuffers(), but
 *   leaves the driver's internal buffer management uninitialized. It uses the
 *   V4L2 buffer orphaning support to allocate buffers with the MMAP method,
 *   export them as a set of FrameBuffer objects, and reset the driver's
 *   internal buffer management. The video device shall be initialized with
 *   importBuffers() or allocateBuffers() before it can accept queueBuffer()
 *   calls. The exported buffers are directly usable with any V4L2 video device
 *   in DMABUF mode, or with other dmabuf importers.
 *
 *   This method is mostly useful to implement buffer allocation helpers or to
 *   allocate ancillary buffers, when a V4L2 video device is used in DMABUF
 *   mode but no other source of buffers is available. An example use case
 *   would be allocation of scratch buffers to be used in case of buffer
 *   underruns on a video device that is otherwise supplied with external
 *   buffers.
 *
 * - The importBuffers() function initializes the driver's buffer management to
 *   import buffers in DMABUF mode. It requests buffers from the driver, but
 *   doesn't allocate memory. Upon successful return, the video device is ready
 *   to accept queueBuffer() calls. The buffers to be imported are provided to
 *   queueBuffer(), and may be supplied externally, or come from a previous
 *   exportBuffers() call.
 *
 *   This is the usual buffers initialization method for video devices whose
 *   buffers are exposed outside of libcamera. It is also typically used on one
 *   of the two video device that participate in buffer sharing inside
 *   pipelines, the other video device typically using allocateBuffers().
 *
 * - The releaseBuffers() function resets the driver's internal buffer
 *   management that was initialized by a previous call to allocateBuffers() or
 *   importBuffers(). Any memory allocated by allocateBuffers() is freed.
 *   Buffer exported by exportBuffers() are not affected by this function.
 *
 * The V4L2VideoDevice class tracks queued buffers and handles buffer events. It
 * automatically dequeues completed buffers and emits the \ref bufferReady
 * signal.
 *
 * Upon destruction any device left open will be closed, and any resources
 * released.
 *
 * \context This class is \threadbound.
 */

/**
 * \brief Construct a V4L2VideoDevice
 * \param[in] deviceNode The file-system path to the video device node
 */
V4L2VideoDevice::V4L2VideoDevice(const std::string &deviceNode)
	: V4L2Device(deviceNode), cache_(nullptr), fdEvent_(nullptr)
{
	/*
	 * We default to an MMAP based CAPTURE video device, however this will
	 * be updated based upon the device capabilities.
	 */
	bufferType_ = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
	memoryType_ = V4L2_MEMORY_MMAP;
}

/**
 * \brief Construct a V4L2VideoDevice from a MediaEntity
 * \param[in] entity The MediaEntity to build the video device from
 *
 * Construct a V4L2VideoDevice from a MediaEntity's device node path.
 */
V4L2VideoDevice::V4L2VideoDevice(const MediaEntity *entity)
	: V4L2VideoDevice(entity->deviceNode())
{
}

V4L2VideoDevice::~V4L2VideoDevice()
{
	close();
}

/**
 * \brief Open the V4L2 video device node and query its capabilities
 *
 * \return 0 on success or a negative error code otherwise
 */
int V4L2VideoDevice::open()
{
	int ret;

	ret = V4L2Device::open(O_RDWR | O_NONBLOCK);
	if (ret < 0)
		return ret;

	ret = ioctl(VIDIOC_QUERYCAP, &caps_);
	if (ret < 0) {
		LOG(V4L2, Error)
			<< "Failed to query device capabilities: "
			<< strerror(-ret);
		return ret;
	}

	if (caps_.version < KERNEL_VERSION(5, 0, 0)) {
		LOG(V4L2, Error)
			<< "V4L2 API v" << (caps_.version >> 16)
			<< "." << ((caps_.version >> 8) & 0xff)
			<< "." << (caps_.version & 0xff)
			<< " too old, v5.0.0 or later is required";
		return -EINVAL;
	}

	if (!caps_.hasStreaming()) {
		LOG(V4L2, Error) << "Device does not support streaming I/O";
		return -EINVAL;
	}

	/*
	 * Set buffer type and wait for read notifications on CAPTURE video
	 * devices (POLLIN), and write notifications for OUTPUT video devices
	 * (POLLOUT).
	 */
	if (caps_.isVideoCapture()) {
		fdEvent_ = new EventNotifier(fd(), EventNotifier::Read);
		bufferType_ = caps_.isMultiplanar()
			    ? V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE
			    : V4L2_BUF_TYPE_VIDEO_CAPTURE;
	} else if (caps_.isVideoOutput()) {
		fdEvent_ = new EventNotifier(fd(), EventNotifier::Write);
		bufferType_ = caps_.isMultiplanar()
			    ? V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
			    : V4L2_BUF_TYPE_VIDEO_OUTPUT;
	} else if (caps_.isMetaCapture()) {
		fdEvent_ = new EventNotifier(fd(), EventNotifier::Read);
		bufferType_ = V4L2_BUF_TYPE_META_CAPTURE;
	} else if (caps_.isMetaOutput()) {
		fdEvent_ = new EventNotifier(fd(), EventNotifier::Write);
		bufferType_ = V4L2_BUF_TYPE_META_OUTPUT;
	} else {
		LOG(V4L2, Error) << "Device is not a supported type";
		return -EINVAL;
	}

	fdEvent_->activated.connect(this, &V4L2VideoDevice::bufferAvailable);
	fdEvent_->setEnabled(false);

	LOG(V4L2, Debug)
		<< "Opened device " << caps_.bus_info() << ": "
		<< caps_.driver() << ": " << caps_.card();

	return 0;
}

/**
 * \brief Open a V4L2 video device from an opened file handle and query its
 * capabilities
 * \param[in] handle The file descriptor to set
 * \param[in] type The device type to operate on
 *
 * This methods opens a video device from the existing file descriptor \a
 * handle. Like open(), this method queries the capabilities of the device, but
 * handles it according to the given device \a type instead of determining its
 * type from the capabilities. This can be used to force a given device type for
 * memory-to-memory devices.
 *
 * The file descriptor \a handle is duplicated, and the caller is responsible
 * for closing the \a handle when it has no further use for it. The close()
 * method will close the duplicated file descriptor, leaving \a handle
 * untouched.
 *
 * \return 0 on success or a negative error code otherwise
 */
int V4L2VideoDevice::open(int handle, enum v4l2_buf_type type)
{
	int ret;
	int newFd;

	newFd = dup(handle);
	if (newFd < 0) {
		ret = -errno;
		LOG(V4L2, Error) << "Failed to duplicate file handle: "
				 << strerror(-ret);
		return ret;
	}

	ret = V4L2Device::setFd(newFd);
	if (ret < 0) {
		LOG(V4L2, Error) << "Failed to set file handle: "
				 << strerror(-ret);
		::close(newFd);
		return ret;
	}

	ret = ioctl(VIDIOC_QUERYCAP, &caps_);
	if (ret < 0) {
		LOG(V4L2, Error)
			<< "Failed to query device capabilities: "
			<< strerror(-ret);
		return ret;
	}

	if (!caps_.hasStreaming()) {
		LOG(V4L2, Error) << "Device does not support streaming I/O";
		return -EINVAL;
	}

	/*
	 * Set buffer type and wait for read notifications on CAPTURE video
	 * devices (POLLIN), and write notifications for OUTPUT video devices
	 * (POLLOUT).
	 */
	switch (type) {
	case V4L2_BUF_TYPE_VIDEO_OUTPUT:
		fdEvent_ = new EventNotifier(fd(), EventNotifier::Write);
		bufferType_ = caps_.isMultiplanar()
			    ? V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
			    : V4L2_BUF_TYPE_VIDEO_OUTPUT;
		break;
	case V4L2_BUF_TYPE_VIDEO_CAPTURE:
		fdEvent_ = new EventNotifier(fd(), EventNotifier::Read);
		bufferType_ = caps_.isMultiplanar()
			    ? V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE
			    : V4L2_BUF_TYPE_VIDEO_CAPTURE;
		break;
	default:
		LOG(V4L2, Error) << "Unsupported buffer type";
		return -EINVAL;
	}

	fdEvent_->activated.connect(this, &V4L2VideoDevice::bufferAvailable);
	fdEvent_->setEnabled(false);

	LOG(V4L2, Debug)
		<< "Opened device " << caps_.bus_info() << ": "
		<< caps_.driver() << ": " << caps_.card();

	return 0;
}

/**
 * \brief Close the video device, releasing any resources acquired by open()
 */
void V4L2VideoDevice::close()
{
	if (!isOpen())
		return;

	releaseBuffers();
	delete fdEvent_;

	V4L2Device::close();
}

/**
 * \fn V4L2VideoDevice::driverName()
 * \brief Retrieve the name of the V4L2 device driver
 * \return The string containing the driver name
 */

/**
 * \fn V4L2VideoDevice::deviceName()
 * \brief Retrieve the name of the V4L2 video device
 * \return The string containing the device name
 */

/**
 * \fn V4L2VideoDevice::busName()
 * \brief Retrieve the location of the device in the system
 * \return The string containing the device location
 */

std::string V4L2VideoDevice::logPrefix() const
{
	return deviceNode() + (V4L2_TYPE_IS_OUTPUT(bufferType_) ? "[out]" : "[cap]");
}

/**
 * \brief Retrieve the image format set on the V4L2 video device
 * \param[out] format The image format applied on the video device
 * \return 0 on success or a negative error code otherwise
 */
int V4L2VideoDevice::getFormat(V4L2DeviceFormat *format)
{
	if (caps_.isMeta())
		return getFormatMeta(format);
	else if (caps_.isMultiplanar())
		return getFormatMultiplane(format);
	else
		return getFormatSingleplane(format);
}

/**
 * \brief Configure an image format on the V4L2 video device
 * \param[inout] format The image format to apply to the video device
 *
 * Apply the supplied \a format to the video device, and return the actually
 * applied format parameters, as \ref V4L2VideoDevice::getFormat would do.
 *
 * \return 0 on success or a negative error code otherwise
 */
int V4L2VideoDevice::setFormat(V4L2DeviceFormat *format)
{
	if (caps_.isMeta())
		return setFormatMeta(format);
	else if (caps_.isMultiplanar())
		return setFormatMultiplane(format);
	else
		return setFormatSingleplane(format);
}

int V4L2VideoDevice::getFormatMeta(V4L2DeviceFormat *format)
{
	struct v4l2_format v4l2Format = {};
	struct v4l2_meta_format *pix = &v4l2Format.fmt.meta;
	int ret;

	v4l2Format.type = bufferType_;
	ret = ioctl(VIDIOC_G_FMT, &v4l2Format);
	if (ret) {
		LOG(V4L2, Error) << "Unable to get format: " << strerror(-ret);
		return ret;
	}

	format->size.width = 0;
	format->size.height = 0;
	format->fourcc = V4L2PixelFormat(pix->dataformat);
	format->planesCount = 1;
	format->planes[0].bpl = pix->buffersize;
	format->planes[0].size = pix->buffersize;

	return 0;
}

int V4L2VideoDevice::setFormatMeta(V4L2DeviceFormat *format)
{
	struct v4l2_format v4l2Format = {};
	struct v4l2_meta_format *pix = &v4l2Format.fmt.meta;
	int ret;

	v4l2Format.type = bufferType_;
	pix->dataformat = format->fourcc;
	pix->buffersize = format->planes[0].size;
	ret = ioctl(VIDIOC_S_FMT, &v4l2Format);
	if (ret) {
		LOG(V4L2, Error) << "Unable to set format: " << strerror(-ret);
		return ret;
	}

	/*
	 * Return to caller the format actually applied on the video device,
	 * which might differ from the requested one.
	 */
	format->size.width = 0;
	format->size.height = 0;
	format->fourcc = format->fourcc;
	format->planesCount = 1;
	format->planes[0].bpl = pix->buffersize;
	format->planes[0].size = pix->buffersize;

	return 0;
}

int V4L2VideoDevice::getFormatMultiplane(V4L2DeviceFormat *format)
{
	struct v4l2_format v4l2Format = {};
	struct v4l2_pix_format_mplane *pix = &v4l2Format.fmt.pix_mp;
	int ret;

	v4l2Format.type = bufferType_;
	ret = ioctl(VIDIOC_G_FMT, &v4l2Format);
	if (ret) {
		LOG(V4L2, Error) << "Unable to get format: " << strerror(-ret);
		return ret;
	}

	format->size.width = pix->width;
	format->size.height = pix->height;
	format->fourcc = V4L2PixelFormat(pix->pixelformat);
	format->planesCount = pix->num_planes;

	for (unsigned int i = 0; i < format->planesCount; ++i) {
		format->planes[i].bpl = pix->plane_fmt[i].bytesperline;
		format->planes[i].size = pix->plane_fmt[i].sizeimage;
	}

	return 0;
}

int V4L2VideoDevice::setFormatMultiplane(V4L2DeviceFormat *format)
{
	struct v4l2_format v4l2Format = {};
	struct v4l2_pix_format_mplane *pix = &v4l2Format.fmt.pix_mp;
	int ret;

	v4l2Format.type = bufferType_;
	pix->width = format->size.width;
	pix->height = format->size.height;
	pix->pixelformat = format->fourcc;
	pix->num_planes = format->planesCount;
	pix->field = V4L2_FIELD_NONE;

	for (unsigned int i = 0; i < pix->num_planes; ++i) {
		pix->plane_fmt[i].bytesperline = format->planes[i].bpl;
		pix->plane_fmt[i].sizeimage = format->planes[i].size;
	}

	ret = ioctl(VIDIOC_S_FMT, &v4l2Format);
	if (ret) {
		LOG(V4L2, Error) << "Unable to set format: " << strerror(-ret);
		return ret;
	}

	/*
	 * Return to caller the format actually applied on the video device,
	 * which might differ from the requested one.
	 */
	format->size.width = pix->width;
	format->size.height = pix->height;
	format->fourcc = V4L2PixelFormat(pix->pixelformat);
	format->planesCount = pix->num_planes;
	for (unsigned int i = 0; i < format->planesCount; ++i) {
		format->planes[i].bpl = pix->plane_fmt[i].bytesperline;
		format->planes[i].size = pix->plane_fmt[i].sizeimage;
	}

	return 0;
}

int V4L2VideoDevice::getFormatSingleplane(V4L2DeviceFormat *format)
{
	struct v4l2_format v4l2Format = {};
	struct v4l2_pix_format *pix = &v4l2Format.fmt.pix;
	int ret;

	v4l2Format.type = bufferType_;
	ret = ioctl(VIDIOC_G_FMT, &v4l2Format);
	if (ret) {
		LOG(V4L2, Error) << "Unable to get format: " << strerror(-ret);
		return ret;
	}

	format->size.width = pix->width;
	format->size.height = pix->height;
	format->fourcc = V4L2PixelFormat(pix->pixelformat);
	format->planesCount = 1;
	format->planes[0].bpl = pix->bytesperline;
	format->planes[0].size = pix->sizeimage;

	return 0;
}

int V4L2VideoDevice::setFormatSingleplane(V4L2DeviceFormat *format)
{
	struct v4l2_format v4l2Format = {};
	struct v4l2_pix_format *pix = &v4l2Format.fmt.pix;
	int ret;

	v4l2Format.type = bufferType_;
	pix->width = format->size.width;
	pix->height = format->size.height;
	pix->pixelformat = format->fourcc;
	pix->bytesperline = format->planes[0].bpl;
	pix->field = V4L2_FIELD_NONE;
	ret = ioctl(VIDIOC_S_FMT, &v4l2Format);
	if (ret) {
		LOG(V4L2, Error) << "Unable to set format: " << strerror(-ret);
		return ret;
	}

	/*
	 * Return to caller the format actually applied on the device,
	 * which might differ from the requested one.
	 */
	format->size.width = pix->width;
	format->size.height = pix->height;
	format->fourcc = V4L2PixelFormat(pix->pixelformat);
	format->planesCount = 1;
	format->planes[0].bpl = pix->bytesperline;
	format->planes[0].size = pix->sizeimage;

	return 0;
}

/**
 * \brief Enumerate all pixel formats and frame sizes
 *
 * Enumerate all pixel formats and frame sizes supported by the video device.
 *
 * \return A list of the supported video device formats
 */
std::map<V4L2PixelFormat, std::vector<SizeRange>> V4L2VideoDevice::formats()
{
	std::map<V4L2PixelFormat, std::vector<SizeRange>> formats;

	for (V4L2PixelFormat pixelFormat : enumPixelformats()) {
		std::vector<SizeRange> sizes = enumSizes(pixelFormat);
		if (sizes.empty())
			return {};

		if (formats.find(pixelFormat) != formats.end()) {
			LOG(V4L2, Error)
				<< "Could not add sizes for pixel format "
				<< pixelFormat;
			return {};
		}

		formats.emplace(pixelFormat, sizes);
	}

	return formats;
}

std::vector<V4L2PixelFormat> V4L2VideoDevice::enumPixelformats()
{
	std::vector<V4L2PixelFormat> formats;
	int ret;

	for (unsigned int index = 0; ; index++) {
		struct v4l2_fmtdesc pixelformatEnum = {};
		pixelformatEnum.index = index;
		pixelformatEnum.type = bufferType_;

		ret = ioctl(VIDIOC_ENUM_FMT, &pixelformatEnum);
		if (ret)
			break;

		formats.push_back(V4L2PixelFormat(pixelformatEnum.pixelformat));
	}

	if (ret && ret != -EINVAL) {
		LOG(V4L2, Error)
			<< "Unable to enumerate pixel formats: "
			<< strerror(-ret);
		return {};
	}

	return formats;
}

std::vector<SizeRange> V4L2VideoDevice::enumSizes(V4L2PixelFormat pixelFormat)
{
	std::vector<SizeRange> sizes;
	int ret;

	for (unsigned int index = 0;; index++) {
		struct v4l2_frmsizeenum frameSize = {};
		frameSize.index = index;
		frameSize.pixel_format = pixelFormat;

		ret = ioctl(VIDIOC_ENUM_FRAMESIZES, &frameSize);
		if (ret)
			break;

		if (index != 0 &&
		    frameSize.type != V4L2_FRMSIZE_TYPE_DISCRETE) {
			LOG(V4L2, Error)
				<< "Non-zero index for non discrete type";
			return {};
		}

		switch (frameSize.type) {
		case V4L2_FRMSIZE_TYPE_DISCRETE:
			sizes.emplace_back(Size{ frameSize.discrete.width,
						 frameSize.discrete.height });
			break;
		case V4L2_FRMSIZE_TYPE_CONTINUOUS:
			sizes.emplace_back(Size{ frameSize.stepwise.min_width,
						 frameSize.stepwise.min_height },
					   Size{ frameSize.stepwise.max_width,
						 frameSize.stepwise.max_height });
			break;
		case V4L2_FRMSIZE_TYPE_STEPWISE:
			sizes.emplace_back(Size{ frameSize.stepwise.min_width,
						 frameSize.stepwise.min_height },
					   Size{ frameSize.stepwise.max_width,
						 frameSize.stepwise.max_height },
					   frameSize.stepwise.step_width,
					   frameSize.stepwise.step_height);
			break;
		default:
			LOG(V4L2, Error)
				<< "Unknown VIDIOC_ENUM_FRAMESIZES type "
				<< frameSize.type;
			return {};
		}
	}

	if (ret && ret != -EINVAL) {
		LOG(V4L2, Error)
			<< "Unable to enumerate frame sizes: "
			<< strerror(-ret);
		return {};
	}

	return sizes;
}

/**
 * \brief Set a crop rectangle on the V4L2 video device node
 * \param[inout] rect The rectangle describing the crop target area
 * \return 0 on success or a negative error code otherwise
 */
int V4L2VideoDevice::setCrop(Rectangle *rect)
{
	return setSelection(V4L2_SEL_TGT_CROP, rect);
}

/**
 * \brief Set a compose rectangle on the V4L2 video device node
 * \param[inout] rect The rectangle describing the compose target area
 * \return 0 on success or a negative error code otherwise
 */
int V4L2VideoDevice::setCompose(Rectangle *rect)
{
	return setSelection(V4L2_SEL_TGT_COMPOSE, rect);
}

int V4L2VideoDevice::setSelection(unsigned int target, Rectangle *rect)
{
	struct v4l2_selection sel = {};

	sel.type = bufferType_;
	sel.target = target;
	sel.flags = 0;

	sel.r.left = rect->x;
	sel.r.top = rect->y;
	sel.r.width = rect->w;
	sel.r.height = rect->h;

	int ret = ioctl(VIDIOC_S_SELECTION, &sel);
	if (ret < 0) {
		LOG(V4L2, Error) << "Unable to set rectangle " << target
				 << ": " << strerror(-ret);
		return ret;
	}

	rect->x = sel.r.left;
	rect->y = sel.r.top;
	rect->w = sel.r.width;
	rect->h = sel.r.height;

	return 0;
}

int V4L2VideoDevice::requestBuffers(unsigned int count,
				    enum v4l2_memory memoryType)
{
	struct v4l2_requestbuffers rb = {};
	int ret;

	rb.count = count;
	rb.type = bufferType_;
	rb.memory = memoryType;

	ret = ioctl(VIDIOC_REQBUFS, &rb);
	if (ret < 0) {
		LOG(V4L2, Error)
			<< "Unable to request " << count << " buffers: "
			<< strerror(-ret);
		return ret;
	}

	if (rb.count < count) {
		LOG(V4L2, Error)
			<< "Not enough buffers provided by V4L2VideoDevice";
		requestBuffers(0, memoryType);
		return -ENOMEM;
	}

	LOG(V4L2, Debug) << rb.count << " buffers requested.";

	return 0;
}

/**
 * \brief Allocate and export buffers from the video device
 * \param[in] count Number of buffers to allocate
 * \param[out] buffers Vector to store allocated buffers
 *
 * This function wraps buffer allocation with the V4L2 MMAP memory type. It
 * requests \a count buffers from the driver, allocating the corresponding
 * memory, and exports them as a set of FrameBuffer objects in \a buffers. Upon
 * successful return the driver's internal buffer management is initialized in
 * MMAP mode, and the video device is ready to accept queueBuffer() calls.
 *
 * The number of planes and the plane sizes for the allocation are determined
 * by the currently active format on the device as set by setFormat().
 *
 * Buffers allocated with this function shall later be free with
 * releaseBuffers(). If buffers have already been allocated with
 * allocateBuffers() or imported with importBuffers(), this function returns
 * -EBUSY.
 *
 * \return The number of allocated buffers on success or a negative error code
 * otherwise
 * \retval -EBUSY buffers have already been allocated or imported
 */
int V4L2VideoDevice::allocateBuffers(unsigned int count,
				     std::vector<std::unique_ptr<FrameBuffer>> *buffers)
{
	int ret = createBuffers(count, buffers);
	if (ret < 0)
		return ret;

	cache_ = new V4L2BufferCache(*buffers);
	memoryType_ = V4L2_MEMORY_MMAP;

	return ret;
}

/**
 * \brief Export buffers from the video device
 * \param[in] count Number of buffers to allocate
 * \param[out] buffers Vector to store allocated buffers
 *
 * This function allocates \a count buffer from the video device and exports
 * them as dmabuf objects, stored in \a buffers. Unlike allocateBuffers(), this
 * function leaves the driver's internal buffer management uninitialized. The
 * video device shall be initialized with importBuffers() or allocateBuffers()
 * before it can accept queueBuffer() calls. The exported buffers are directly
 * usable with any V4L2 video device in DMABUF mode, or with other dmabuf
 * importers.
 *
 * The number of planes and the plane sizes for the allocation are determined
 * by the currently active format on the device as set by setFormat().
 *
 * Multiple independent sets of buffers can be allocated with multiple calls to
 * this function. Device-specific limitations may apply regarding the minimum
 * and maximum number of buffers per set, or to total amount of allocated
 * memory. The exported dmabuf lifetime is tied to the returned \a buffers. To
 * free a buffer, the caller shall delete the corresponding FrameBuffer
 * instance. No bookkeeping and automatic free is performed by the
 * V4L2VideoDevice class.
 *
 * If buffers have already been allocated with allocateBuffers() or imported
 * with importBuffers(), this function returns -EBUSY.
 *
 * \return The number of allocated buffers on success or a negative error code
 * otherwise
 * \retval -EBUSY buffers have already been allocated or imported
 */
int V4L2VideoDevice::exportBuffers(unsigned int count,
				   std::vector<std::unique_ptr<FrameBuffer>> *buffers)
{
	int ret = createBuffers(count, buffers);
	if (ret < 0)
		return ret;

	requestBuffers(0, V4L2_MEMORY_MMAP);

	return ret;
}

int V4L2VideoDevice::createBuffers(unsigned int count,
				   std::vector<std::unique_ptr<FrameBuffer>> *buffers)
{
	if (cache_) {
		LOG(V4L2, Error) << "Buffers already allocated";
		return -EINVAL;
	}

	int ret = requestBuffers(count, V4L2_MEMORY_MMAP);
	if (ret < 0)
		return ret;

	for (unsigned i = 0; i < count; ++i) {
		std::unique_ptr<FrameBuffer> buffer = createBuffer(i);
		if (!buffer) {
			LOG(V4L2, Error) << "Unable to create buffer";

			requestBuffers(0, V4L2_MEMORY_MMAP);
			buffers->clear();

			return -EINVAL;
		}

		buffers->push_back(std::move(buffer));
	}

	return count;
}

std::unique_ptr<FrameBuffer> V4L2VideoDevice::createBuffer(unsigned int index)
{
	struct v4l2_plane v4l2Planes[VIDEO_MAX_PLANES] = {};
	struct v4l2_buffer buf = {};

	buf.index = index;
	buf.type = bufferType_;
	buf.memory = V4L2_MEMORY_MMAP;
	buf.length = ARRAY_SIZE(v4l2Planes);
	buf.m.planes = v4l2Planes;

	int ret = ioctl(VIDIOC_QUERYBUF, &buf);
	if (ret < 0) {
		LOG(V4L2, Error)
			<< "Unable to query buffer " << index << ": "
			<< strerror(-ret);
		return nullptr;
	}

	const bool multiPlanar = V4L2_TYPE_IS_MULTIPLANAR(buf.type);
	const unsigned int numPlanes = multiPlanar ? buf.length : 1;

	if (numPlanes == 0 || numPlanes > VIDEO_MAX_PLANES) {
		LOG(V4L2, Error) << "Invalid number of planes";
		return nullptr;
	}

	std::vector<FrameBuffer::Plane> planes;
	for (unsigned int nplane = 0; nplane < numPlanes; nplane++) {
		FileDescriptor fd = exportDmabufFd(buf.index, nplane);
		if (!fd.isValid())
			return nullptr;

		FrameBuffer::Plane plane;
		plane.fd = std::move(fd);
		plane.length = multiPlanar ?
			buf.m.planes[nplane].length : buf.length;

		planes.push_back(std::move(plane));
	}

	return std::make_unique<FrameBuffer>(std::move(planes));
}

FileDescriptor V4L2VideoDevice::exportDmabufFd(unsigned int index,
					       unsigned int plane)
{
	struct v4l2_exportbuffer expbuf = {};
	int ret;

	expbuf.type = bufferType_;
	expbuf.index = index;
	expbuf.plane = plane;
	expbuf.flags = O_RDWR;

	ret = ioctl(VIDIOC_EXPBUF, &expbuf);
	if (ret < 0) {
		LOG(V4L2, Error)
			<< "Failed to export buffer: " << strerror(-ret);
		return FileDescriptor();
	}

	return FileDescriptor(expbuf.fd);
}

/**
 * \brief Prepare the device to import \a count buffers
 * \param[in] count Number of buffers to prepare to import
 *
 * This function initializes the driver's buffer management to import buffers
 * in DMABUF mode. It requests buffers from the driver, but doesn't allocate
 * memory.
 *
 * Upon successful return, the video device is ready to accept queueBuffer()
 * calls. The buffers to be imported are provided to queueBuffer(), and may be
 * supplied externally, or come from a previous exportBuffers() call.
 *
 * Device initialization performed by this function shall later be cleaned up
 * with releaseBuffers(). If buffers have already been allocated with
 * allocateBuffers() or imported with importBuffers(), this function returns
 * -EBUSY.
 *
 * \return 0 on success or a negative error code otherwise
 * \retval -EBUSY buffers have already been allocated or imported
 */
int V4L2VideoDevice::importBuffers(unsigned int count)
{
	if (cache_) {
		LOG(V4L2, Error) << "Buffers already allocated";
		return -EINVAL;
	}

	memoryType_ = V4L2_MEMORY_DMABUF;

	int ret = requestBuffers(count, V4L2_MEMORY_DMABUF);
	if (ret)
		return ret;

	cache_ = new V4L2BufferCache(count);

	LOG(V4L2, Debug) << "Prepared to import " << count << " buffers";

	return 0;
}

/**
 * \brief Release resources allocated by allocateBuffers() or importBuffers()
 *
 * This function resets the driver's internal buffer management that was
 * initialized by a previous call to allocateBuffers() or importBuffers(). Any
 * memory allocated by allocateBuffers() is freed. Buffer exported by
 * exportBuffers(), if any, are not affected.
 */
int V4L2VideoDevice::releaseBuffers()
{
	LOG(V4L2, Debug) << "Releasing buffers";

	delete cache_;
	cache_ = nullptr;

	return requestBuffers(0, memoryType_);
}

/**
 * \brief Queue a buffer to the video device
 * \param[in] buffer The buffer to be queued
 *
 * For capture video devices the \a buffer will be filled with data by the
 * device. For output video devices the \a buffer shall contain valid data and
 * will be processed by the device. Once the device has finished processing the
 * buffer, it will be available for dequeue.
 *
 * The best available V4L2 buffer is picked for \a buffer using the V4L2 buffer
 * cache.
 *
 * \return 0 on success or a negative error code otherwise
 */
int V4L2VideoDevice::queueBuffer(FrameBuffer *buffer)
{
	struct v4l2_plane v4l2Planes[VIDEO_MAX_PLANES] = {};
	struct v4l2_buffer buf = {};
	int ret;

	ret = cache_->get(*buffer);
	if (ret < 0)
		return ret;

	buf.index = ret;
	buf.type = bufferType_;
	buf.memory = memoryType_;
	buf.field = V4L2_FIELD_NONE;

	bool multiPlanar = V4L2_TYPE_IS_MULTIPLANAR(buf.type);
	const std::vector<FrameBuffer::Plane> &planes = buffer->planes();

	if (buf.memory == V4L2_MEMORY_DMABUF) {
		if (multiPlanar) {
			for (unsigned int p = 0; p < planes.size(); ++p)
				v4l2Planes[p].m.fd = planes[p].fd.fd();
		} else {
			buf.m.fd = planes[0].fd.fd();
		}
	}

	if (multiPlanar) {
		buf.length = planes.size();
		buf.m.planes = v4l2Planes;
	}

	if (V4L2_TYPE_IS_OUTPUT(buf.type)) {
		const FrameMetadata &metadata = buffer->metadata();

		if (multiPlanar) {
			unsigned int nplane = 0;
			for (const FrameMetadata::Plane &plane : metadata.planes) {
				v4l2Planes[nplane].bytesused = plane.bytesused;
				v4l2Planes[nplane].length = buffer->planes()[nplane].length;
				nplane++;
			}
		} else {
			if (metadata.planes.size())
				buf.bytesused = metadata.planes[0].bytesused;
		}

		buf.sequence = metadata.sequence;
		buf.timestamp.tv_sec = metadata.timestamp / 1000000000;
		buf.timestamp.tv_usec = (metadata.timestamp / 1000) % 1000000;
	}

	LOG(V4L2, Debug) << "Queueing buffer " << buf.index;

	ret = ioctl(VIDIOC_QBUF, &buf);
	if (ret < 0) {
		LOG(V4L2, Error)
			<< "Failed to queue buffer " << buf.index << ": "
			<< strerror(-ret);
		return ret;
	}

	if (queuedBuffers_.empty())
		fdEvent_->setEnabled(true);

	queuedBuffers_[buf.index] = buffer;

	return 0;
}

/**
 * \brief Slot to handle completed buffer events from the V4L2 video device
 * \param[in] notifier The event notifier
 *
 * When this slot is called, a Buffer has become available from the device, and
 * will be emitted through the bufferReady Signal.
 *
 * For Capture video devices the FrameBuffer will contain valid data.
 * For Output video devices the FrameBuffer can be considered empty.
 */
void V4L2VideoDevice::bufferAvailable(EventNotifier *notifier)
{
	FrameBuffer *buffer = dequeueBuffer();
	if (!buffer)
		return;

	/* Notify anyone listening to the device. */
	bufferReady.emit(buffer);
}

/**
 * \brief Dequeue the next available buffer from the video device
 *
 * This method dequeues the next available buffer from the device. If no buffer
 * is available to be dequeued it will return nullptr immediately.
 *
 * \return A pointer to the dequeued buffer on success, or nullptr otherwise
 */
FrameBuffer *V4L2VideoDevice::dequeueBuffer()
{
	struct v4l2_buffer buf = {};
	struct v4l2_plane planes[VIDEO_MAX_PLANES] = {};
	int ret;

	buf.type = bufferType_;
	buf.memory = memoryType_;

	bool multiPlanar = V4L2_TYPE_IS_MULTIPLANAR(buf.type);

	if (multiPlanar) {
		buf.length = VIDEO_MAX_PLANES;
		buf.m.planes = planes;
	}

	ret = ioctl(VIDIOC_DQBUF, &buf);
	if (ret < 0) {
		LOG(V4L2, Error)
			<< "Failed to dequeue buffer: " << strerror(-ret);
		return nullptr;
	}

	LOG(V4L2, Debug) << "Dequeuing buffer " << buf.index;

	cache_->put(buf.index);

	auto it = queuedBuffers_.find(buf.index);
	FrameBuffer *buffer = it->second;
	queuedBuffers_.erase(it);

	if (queuedBuffers_.empty())
		fdEvent_->setEnabled(false);

	buffer->metadata_.status = buf.flags & V4L2_BUF_FLAG_ERROR
				 ? FrameMetadata::FrameError
				 : FrameMetadata::FrameSuccess;
	buffer->metadata_.sequence = buf.sequence;
	buffer->metadata_.timestamp = buf.timestamp.tv_sec * 1000000000ULL
				    + buf.timestamp.tv_usec * 1000ULL;

	buffer->metadata_.planes.clear();
	if (multiPlanar) {
		for (unsigned int nplane = 0; nplane < buf.length; nplane++)
			buffer->metadata_.planes.push_back({ planes[nplane].bytesused });
	} else {
		buffer->metadata_.planes.push_back({ buf.bytesused });
	}

	return buffer;
}

/**
 * \var V4L2VideoDevice::bufferReady
 * \brief A Signal emitted when a framebuffer completes
 */

/**
 * \brief Start the video stream
 * \return 0 on success or a negative error code otherwise
 */
int V4L2VideoDevice::streamOn()
{
	int ret;

	ret = ioctl(VIDIOC_STREAMON, &bufferType_);
	if (ret < 0) {
		LOG(V4L2, Error)
			<< "Failed to start streaming: " << strerror(-ret);
		return ret;
	}

	return 0;
}

/**
 * \brief Stop the video stream
 *
 * Buffers that are still queued when the video stream is stopped are
 * immediately dequeued with their status set to FrameMetadata::FrameCancelled,
 * and the bufferReady signal is emitted for them. The order in which those
 * buffers are dequeued is not specified.
 *
 * \return 0 on success or a negative error code otherwise
 */
int V4L2VideoDevice::streamOff()
{
	int ret;

	ret = ioctl(VIDIOC_STREAMOFF, &bufferType_);
	if (ret < 0) {
		LOG(V4L2, Error)
			<< "Failed to stop streaming: " << strerror(-ret);
		return ret;
	}

	/* Send back all queued buffers. */
	for (auto it : queuedBuffers_) {
		FrameBuffer *buffer = it.second;

		buffer->metadata_.status = FrameMetadata::FrameCancelled;
		bufferReady.emit(buffer);
	}

	queuedBuffers_.clear();
	fdEvent_->setEnabled(false);

	return 0;
}

/**
 * \brief Create a new video device instance from \a entity in media device
 * \a media
 * \param[in] media The media device where the entity is registered
 * \param[in] entity The media entity name
 *
 * Releasing memory of the newly created instance is responsibility of the
 * caller of this function.
 *
 * \return A newly created V4L2VideoDevice on success, nullptr otherwise
 */
V4L2VideoDevice *V4L2VideoDevice::fromEntityName(const MediaDevice *media,
						 const std::string &entity)
{
	MediaEntity *mediaEntity = media->getEntityByName(entity);
	if (!mediaEntity)
		return nullptr;

	return new V4L2VideoDevice(mediaEntity);
}

/**
 * \brief Convert a \a v4l2Fourcc to the corresponding PixelFormat
 * \param[in] v4l2Fourcc The V4L2 pixel format (V4L2_PIX_FORMAT_*)
 * \return The PixelFormat corresponding to \a v4l2Fourcc
 */
PixelFormat V4L2VideoDevice::toPixelFormat(V4L2PixelFormat v4l2Fourcc)
{
	switch (v4l2Fourcc) {
	/* RGB formats. */
	case V4L2_PIX_FMT_RGB24:
		return PixelFormat(DRM_FORMAT_BGR888);
	case V4L2_PIX_FMT_BGR24:
		return PixelFormat(DRM_FORMAT_RGB888);
	case V4L2_PIX_FMT_RGBA32:
		return PixelFormat(DRM_FORMAT_ABGR8888);
	case V4L2_PIX_FMT_ABGR32:
		return PixelFormat(DRM_FORMAT_ARGB8888);
	case V4L2_PIX_FMT_ARGB32:
		return PixelFormat(DRM_FORMAT_BGRA8888);
	case V4L2_PIX_FMT_BGRA32:
		return PixelFormat(DRM_FORMAT_RGBA8888);

	/* YUV packed formats. */
	case V4L2_PIX_FMT_YUYV:
		return PixelFormat(DRM_FORMAT_YUYV);
	case V4L2_PIX_FMT_YVYU:
		return PixelFormat(DRM_FORMAT_YVYU);
	case V4L2_PIX_FMT_UYVY:
		return PixelFormat(DRM_FORMAT_UYVY);
	case V4L2_PIX_FMT_VYUY:
		return PixelFormat(DRM_FORMAT_VYUY);

	/* YUY planar formats. */
	case V4L2_PIX_FMT_NV16:
	case V4L2_PIX_FMT_NV16M:
		return PixelFormat(DRM_FORMAT_NV16);
	case V4L2_PIX_FMT_NV61:
	case V4L2_PIX_FMT_NV61M:
		return PixelFormat(DRM_FORMAT_NV61);
	case V4L2_PIX_FMT_NV12:
	case V4L2_PIX_FMT_NV12M:
		return PixelFormat(DRM_FORMAT_NV12);
	case V4L2_PIX_FMT_NV21:
	case V4L2_PIX_FMT_NV21M:
		return PixelFormat(DRM_FORMAT_NV21);

	/* Compressed formats. */
	case V4L2_PIX_FMT_MJPEG:
		return PixelFormat(DRM_FORMAT_MJPEG);

	/* V4L2 formats not yet supported by DRM. */
	case V4L2_PIX_FMT_GREY:
	default:
		/*
		 * \todo We can't use LOG() in a static method of a Loggable
		 * class. Until we fix the logger, work around it.
		 */
		libcamera::_log(__FILE__, __LINE__, _LOG_CATEGORY(V4L2)(),
				LogError).stream()
			<< "Unsupported V4L2 pixel format "
			<< v4l2Fourcc.toString();
		return PixelFormat();
	}
}

/**
 * \brief Convert \a PixelFormat to its corresponding V4L2 FourCC
 * \param[in] pixelFormat The PixelFormat to convert
 *
 * For multiplanar formats, the V4L2 format variant (contiguous or
 * non-contiguous planes) is selected automatically based on the capabilities
 * of the video device. If the video device supports the V4L2 multiplanar API,
 * non-contiguous formats are preferred.
 *
 * \return The V4L2_PIX_FMT_* pixel format code corresponding to \a pixelFormat
 */
V4L2PixelFormat V4L2VideoDevice::toV4L2PixelFormat(const PixelFormat &pixelFormat)
{
	return toV4L2PixelFormat(pixelFormat, caps_.isMultiplanar());
}

/**
 * \brief Convert \a pixelFormat to its corresponding V4L2 FourCC
 * \param[in] pixelFormat The PixelFormat to convert
 * \param[in] multiplanar V4L2 Multiplanar API support flag
 *
 * Multiple V4L2 formats may exist for one PixelFormat when the format uses
 * multiple planes, as V4L2 defines separate 4CCs for contiguous and separate
 * planes formats. Set the \a multiplanar parameter to false to select a format
 * with contiguous planes, or to true to select a format with non-contiguous
 * planes.
 *
 * \return The V4L2_PIX_FMT_* pixel format code corresponding to \a pixelFormat
 */
V4L2PixelFormat V4L2VideoDevice::toV4L2PixelFormat(const PixelFormat &pixelFormat,
						   bool multiplanar)
{
	switch (pixelFormat) {
	/* RGB formats. */
	case DRM_FORMAT_BGR888:
		return V4L2PixelFormat(V4L2_PIX_FMT_RGB24);
	case DRM_FORMAT_RGB888:
		return V4L2PixelFormat(V4L2_PIX_FMT_BGR24);
	case DRM_FORMAT_ABGR8888:
		return V4L2PixelFormat(V4L2_PIX_FMT_RGBA32);
	case DRM_FORMAT_ARGB8888:
		return V4L2PixelFormat(V4L2_PIX_FMT_ABGR32);
	case DRM_FORMAT_BGRA8888:
		return V4L2PixelFormat(V4L2_PIX_FMT_ARGB32);
	case DRM_FORMAT_RGBA8888:
		return V4L2PixelFormat(V4L2_PIX_FMT_BGRA32);

	/* YUV packed formats. */
	case DRM_FORMAT_YUYV:
		return V4L2PixelFormat(V4L2_PIX_FMT_YUYV);
	case DRM_FORMAT_YVYU:
		return V4L2PixelFormat(V4L2_PIX_FMT_YVYU);
	case DRM_FORMAT_UYVY:
		return V4L2PixelFormat(V4L2_PIX_FMT_UYVY);
	case DRM_FORMAT_VYUY:
		return V4L2PixelFormat(V4L2_PIX_FMT_VYUY);

	/*
	 * YUY planar formats.
	 * \todo Add support for non-contiguous memory planes
	 * \todo Select the format variant not only based on \a multiplanar but
	 * also take into account the formats supported by the device.
	 */
	case DRM_FORMAT_NV16:
		return V4L2PixelFormat(V4L2_PIX_FMT_NV16);
	case DRM_FORMAT_NV61:
		return V4L2PixelFormat(V4L2_PIX_FMT_NV61);
	case DRM_FORMAT_NV12:
		return V4L2PixelFormat(V4L2_PIX_FMT_NV12);
	case DRM_FORMAT_NV21:
		return V4L2PixelFormat(V4L2_PIX_FMT_NV21);

	/* Compressed formats. */
	case DRM_FORMAT_MJPEG:
		return V4L2PixelFormat(V4L2_PIX_FMT_MJPEG);
	}

	/*
	 * \todo We can't use LOG() in a static method of a Loggable
	 * class. Until we fix the logger, work around it.
	 */
	libcamera::_log(__FILE__, __LINE__, _LOG_CATEGORY(V4L2)(), LogError).stream()
		<< "Unsupported V4L2 pixel format " << pixelFormat.toString();
	return {};
}

/**
 * \class V4L2M2MDevice
 * \brief Memory-to-Memory video device
 *
 * The V4L2M2MDevice manages two V4L2VideoDevice instances on the same
 * deviceNode which operate together using two queues to implement the V4L2
 * Memory to Memory API.
 *
 * The two devices should be opened by calling open() on the V4L2M2MDevice, and
 * can be closed by calling close on the V4L2M2MDevice.
 *
 * Calling V4L2VideoDevice::open() and V4L2VideoDevice::close() on the capture
 * or output V4L2VideoDevice is not permitted.
 */

/**
 * \fn V4L2M2MDevice::output
 * \brief Retrieve the output V4L2VideoDevice instance
 * \return The output V4L2VideoDevice instance
 */

/**
 * \fn V4L2M2MDevice::capture
 * \brief Retrieve the capture V4L2VideoDevice instance
 * \return The capture V4L2VideoDevice instance
 */

/**
 * \brief Create a new V4L2M2MDevice from the \a deviceNode
 * \param[in] deviceNode The file-system path to the video device node
 */
V4L2M2MDevice::V4L2M2MDevice(const std::string &deviceNode)
	: deviceNode_(deviceNode)
{
	output_ = new V4L2VideoDevice(deviceNode);
	capture_ = new V4L2VideoDevice(deviceNode);
}

V4L2M2MDevice::~V4L2M2MDevice()
{
	delete capture_;
	delete output_;
}

/**
 * \brief Open a V4L2 Memory to Memory device
 *
 * Open the device node and prepare the two V4L2VideoDevice instances to handle
 * their respective buffer queues.
 *
 * \return 0 on success or a negative error code otherwise
 */
int V4L2M2MDevice::open()
{
	int fd;
	int ret;

	/*
	 * The output and capture V4L2VideoDevice instances use the same file
	 * handle for the same device node. The local file handle can be closed
	 * as the V4L2VideoDevice::open() retains a handle by duplicating the
	 * fd passed in.
	 */