summaryrefslogtreecommitdiff
path: root/Documentation/coding-style.rst
blob: 7acba37b8de81d253253084e77edb3c513fb9352 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
.. SPDX-License-Identifier: CC-BY-SA-4.0

.. _coding-style-guidelines:

Coding Style Guidelines
=======================

These coding guidelines are meant to ensure code quality. As a contributor
you are expected to follow them in all code submitted to the project. While
strict compliance is desired, exceptions are tolerated when justified with
good reasons. Please read the whole coding guidelines and use common sense
to decide when departing from them is appropriate.

libcamera is written in C++, a language that has seen many revisions and
offers an extensive set of features that are easy to abuse. These coding
guidelines establish the subset of C++ used by the project.


Coding Style
------------

Even if the programming language in use is different, the project embraces the
`Linux Kernel Coding Style`_ with a few exception and some C++ specificities.

.. _Linux Kernel Coding Style: https://www.kernel.org/doc/html/latest/process/coding-style.html

In particular, from the kernel style document, the following section are adopted:

* 1 "Indentation"
* 2 "Breaking Long Lines" striving to fit code within 80 columns and
  accepting up to 120 columns when necessary
* 3 "Placing Braces and Spaces"
* 3.1 "Spaces"
* 8 "Commenting" with the exception that in-function comments are not
  always un-welcome.

While libcamera uses the kernel coding style for all typographic matters, the
project is a user space library, developed in a different programming language,
and the kernel guidelines fall short for this use case.

For this reason, rules and guidelines from the `Google C++ Style Guide`_ have
been adopted as well as most coding principles specified therein, with a
few exceptions and relaxed limitations on some subjects.

.. _Google C++ Style Guide: https://google.github.io/styleguide/cppguide.html

The following exceptions apply to the naming conventions specified in the
document:

* File names: libcamera uses the .cpp extensions for C++ source files and
  the .h extension for header files
* Variables, function parameters, function names and class members use
  camel case style, with the first letter in lower-case (as in 'camelCase'
  and not 'CamelCase')
* Types (classes, structs, type aliases, and type template parameters) use
  camel case, with the first letter in capital case (as in 'CamelCase' and
  not 'camelCase')
* Enum members use 'CamelCase', while macros are in capital case with
  underscores in between
* All formatting rules specified in the selected sections of the Linux kernel
  Code Style for indentation, braces, spacing, etc
* Header guards are formatted as '__LIBCAMERA_FILE_NAME_H__'

Order of Includes
~~~~~~~~~~~~~~~~~

Headers shall be included at the beginning of .c, .cpp and .h files, right
after the file description comment block and, for .h files, the header guard
macro. For .cpp files, if the file implements an API declared in a header file,
that header file shall be included first in order to ensure it is
self-contained.

The headers shall be grouped and ordered as follows:

1. The header declaring the API being implemented (if any)
2. The C and C++ system and standard library headers
3. Other libraries' headers, with one group per library
4. Other project's headers

Groups of headers shall be separated by a single blank line. Headers within
each group shall be sorted alphabetically.

System and library headers shall be included with angle brackets. Project
headers shall be included with angle brackets for the libcamera public API
headers, and with double quotes for other libcamera headers.


C++ Specific Rules
------------------

The code shall be implemented in C++14, with the following caveats:

* Type inference (auto and decltype) shall be used with caution, to avoid
  drifting towards an untyped language.
* The explicit, override and final specifiers are to be used where applicable.
* General-purpose smart pointers (std::unique_ptr) deprecate std::auto_ptr.
  Smart pointers, as well as shared pointers and weak pointers, shall not be
  overused.
* Classes are encouraged to define move constructors and assignment operators
  where applicable, and generally make use of the features offered by rvalue
  references.

Object Ownership
~~~~~~~~~~~~~~~~

libcamera creates and destroys many objects at runtime, for both objects
internal to the library and objects exposed to the user. To guarantee proper
operation without use after free, double free or memory leaks, knowing who owns
each object at any time is crucial. The project has enacted a set of rules to
make object ownership tracking as explicit and fool-proof as possible.

In the context of this section, the terms object and instance are used
interchangeably and both refer to an instance of a class. The term reference
refers to both C++ references and C++ pointers in their capacity to refer to an
object. Passing a reference means offering a way to a callee to obtain a
reference to an object that the caller has a valid reference to. Borrowing a
reference means using a reference passed by a caller without ownership transfer
based on the assumption that the caller guarantees the validity of the
reference for the duration of the operation that borrows it.

1. Single Owner Objects

   * By default an object has a single owner at any time.
   * Storage of single owner objects varies depending on how the object
     ownership will evolve through the lifetime of the object.

     * Objects whose ownership needs to be transferred shall be stored as
       std::unique_ptr<> as much as possible to emphasize the single ownership.
     * Objects whose owner doesn't change may be embedded in other objects, or
       stored as pointer or references. They may be stored as std::unique_ptr<>
       for automatic deletion if desired.

   * Ownership is transferred by passing the reference as a std::unique_ptr<>
     and using std::move(). After ownership transfer the former owner has no
     valid reference to the object anymore and shall not access it without first
     obtaining a valid reference.
   * Objects may be borrowed by passing an object reference from the owner to
     the borrower, providing that

     * the owner guarantees the validity of the reference for the whole duration
       of the borrowing, and
     * the borrower doesn't access the reference after the end of the borrowing.

     When borrowing from caller to callee for the duration of a function call,
     this implies that the callee shall not keep any stored reference after it
     returns. These rules apply to the callee and all the functions it calls,
     directly or indirectly.

     When the object is stored in a std::unique_ptr<>, borrowing passes a
     reference to the object, not to the std::unique_ptr<>, as

     * a 'const &' when the object doesn't need to be modified and may not be
       null.
     * a pointer when the object may be modified or may be null. Unless
       otherwise specified, pointers passed to functions are considered as
       borrowed references valid for the duration of the function only.

2. Shared Objects

   * Objects that may have multiple owners at a given time are called shared
     objects. They are reference-counted and live as long as any references to
     the object exist.
   * Shared objects are created with std::make_shared<> or
     std::allocate_shared<> and stored in an std::shared_ptr<>.
   * Ownership is shared by creating and passing copies of any valid
     std::shared_ptr<>. Ownership is released by destroying the corresponding
     std::shared_ptr<>.
   * When passed to a function, std::shared_ptr<> are always passed by value,
     never by reference. The caller can decide whether to transfer its ownership
     of the std::shared_ptr<> with std::move() or retain it. The callee shall
     use std::move() if it needs to store the shared pointer.
   * Do not over-use std::move(), as it may prevent copy-elision. In particular
     a function returning a std::shared_ptr<> value shall not use std::move() in
     its return statements, and its callers shall not wrap the function call
     with std::move().
   * Borrowed references to shared objects are passed as references to the
     objects themselves, not to the std::shared_ptr<>, with the same rules as
     for single owner objects.

These rules match the `object ownership rules from the Chromium C++ Style Guide`_.

.. _object ownership rules from the Chromium C++ Style Guide: https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#object-ownership-and-calling-conventions

.. attention:: Long term borrowing of single owner objects is allowed. Example
   use cases are implementation of the singleton pattern (where the singleton
   guarantees the validity of the reference forever), or returning references
   to global objects whose lifetime matches the lifetime of the application. As
   long term borrowing isn't marked through language constructs, it shall be
   documented explicitly in details in the API.

C Compatibility Headers
~~~~~~~~~~~~~~~~~~~~~~~

The C++ standard defines a set of C++ standard library headers, and for some of
them, defines C compatibility headers. The former have a name of the form
<cxxx> while the later are named <xxx.h>. The C++ headers declare names in the
std namespace, and may declare the same names in the global namespace. The C
compatibility headers declare names in the global namespace, and may declare
the same names in the std namespace. Usage of the C compatibility headers is
strongly preferred. Code shall not rely on the optional declaration of names in
the global or std namespace.


Documentation
-------------

All public and protected classes, structures, enumerations, macros, functions
and variables shall be documented with a Doxygen comment block, using the
Javadoc style with C-style comments. When documenting private member functions
and variables the same Doxygen style shall be used as for public and protected
members.

Documentation relates to header files, but shall be stored in the .cpp source
files in order to group the implementation and documentation. Every documented
header file shall have a \file documentation block in the .cpp source file.

The following comment block shows an example of correct documentation for a
member function of the PipelineHandler class.

::

  /**
   * \fn PipelineHandler::start()
   * \brief Start capturing from a group of streams
   * \param[in] camera The camera to start
   *
   * Start the group of streams that have been configured for capture by
   * \a configureStreams(). The intended caller of this method is the Camera
   * class which will in turn be called from the application to indicate that
   * it has configured the streams and is ready to capture.
   *
   * \return 0 on success or a negative error code otherwise
   */

The comment block shall be placed right before the function it documents. If
the function is defined inline in the class definition in the header file, the
comment block shall be placed alone in the .cpp source file in the same order
as the function definitions in the header file and shall start with an \fn
line. Otherwise no \fn line shall be present.

The \brief directive shall be present. If the function takes parameters, \param
directives shall be present, with the appropriate [in], [out] or [inout]
specifiers. Only when the direction of the parameters isn't known (for instance
when defining a template function with variadic arguments) the direction
specifier shall be omitted. The \return directive shall be present when the
function returns a value, and shall be omitted otherwise.

The long description is optional. When present it shall be surrounded by empty
lines and may span multiple paragraphs. No blank lines shall otherwise be added
between the \fn, \brief, \param and \return directives.


Tools
-----

The 'clang-format' code formatting tool can be used to reformat source files
with the libcamera coding style, defined in the .clang-format file at the root
of the source tree.

Alternatively the 'astyle' tool can also be used, with the following arguments.

::

  --style=linux
  --indent=force-tab=8
  --attach-namespaces
  --attach-extern-c
  --pad-oper
  --align-pointer=name
  --align-reference=name
  --max-code-length=120

Use of astyle is discouraged as clang-format better matches the libcamera coding
style.

As both astyle and clang-format are code formatters, they operate on full files
and output reformatted source code. While they can be used to reformat code
before sending patches, it may generate unrelated changes. To avoid this,
libcamera provides a 'checkstyle.py' script wrapping the formatting tools to
only retain related changes. This should be used to validate modifications
before submitting them for review.

The script operates on one or multiple git commits specified on the command
line. It does not modify the git tree, the index or the working directory and
is thus safe to run at any point.

Commits are specified using the same revision range syntax as 'git log'. The
most usual use cases are to specify a single commit by sha1, branch name or tag
name, or a commit range with the <from>..<to> syntax. When no arguments are
given, the topmost commit of the current branch is selected.

::

	$ ./utils/checkstyle.py cc7d204b2c51
	----------------------------------------------------------------------------------
	cc7d204b2c51853f7d963d144f5944e209e7ea29 libcamera: Use the logger instead of cout
	----------------------------------------------------------------------------------
	No style issue detected

When operating on a range of commits, style checks are performed on each commit
from oldest to newest.

::

	$ ../utils/checkstyle.py 3b56ddaa96fb~3..3b56ddaa96fb
	----------------------------------------------------------------------------------
	b4351e1a6b83a9cfbfc331af3753602a02dbe062 libcamera: log: Fix Doxygen documentation
	----------------------------------------------------------------------------------
	No style issue detected
	
	--------------------------------------------------------------------------------------
	6ab3ff4501fcfa24db40fcccbce35bdded7cd4bc libcamera: log: Document the LogMessage class
	--------------------------------------------------------------------------------------
	No style issue detected
	
	---------------------------------------------------------------------------------
	3b56ddaa96fbccf4eada05d378ddaa1cb6209b57 build: Add 'std=c++11' cpp compiler flag
	---------------------------------------------------------------------------------
	Commit doesn't touch source files, skipping

Commits that do not touch any .c, .cpp or .h files are skipped.

::

	$ ./utils/checkstyle.py edbd2059d8a4
	----------------------------------------------------------------------
	edbd2059d8a4bd759302ada4368fa4055638fd7f libcamera: Add initial logger
	----------------------------------------------------------------------
	--- src/libcamera/include/log.h
	+++ src/libcamera/include/log.h
	@@ -21,11 +21,14 @@
	 {
	 public:
	        LogMessage(const char *fileName, unsigned int line,
	-                 LogSeverity severity);
	-       LogMessage(const LogMessage&) = delete;
	+                  LogSeverity severity);
	+       LogMessage(const LogMessage &) = delete;
	        ~LogMessage();
	 
	-       std::ostream& stream() { return msgStream; }
	+       std::ostream &stream()
	+       {
	+               return msgStream;
	+       }
	 
	 private:
	        std::ostringstream msgStream;
	 
	--- src/libcamera/log.cpp
	+++ src/libcamera/log.cpp
	@@ -42,7 +42,7 @@
	 
	 static const char *log_severity_name(LogSeverity severity)
	 {
	-       static const char * const names[] = {
	+       static const char *const names[] = {
	                "INFO",
	                "WARN",
	                " ERR",
	
	---
	2 potential style issues detected, please review

When potential style issues are detected, they are displayed in the form of a
diff that fixes the issues, on top of the corresponding commit. As the script is
in early development false positive are expected. The flagged issues should be
reviewed, but the diff doesn't need to be applied blindly.

The checkstyle.py script uses clang-format by default if found, and otherwise
falls back to astyle. The formatter can be manually selected with the
'--formatter' argument.

Happy hacking, libcamera awaits your patches!
an>buffer_); data_ = static_cast<unsigned char *>(map->memory); update(); buffer_ = buffer; } bool ViewFinderGL::selectFormat(const libcamera::PixelFormat &format) { bool ret = true; fragmentShaderDefines_.clear(); switch (format) { case libcamera::formats::NV12: horzSubSample_ = 2; vertSubSample_ = 2; fragmentShaderDefines_.append("#define YUV_PATTERN_UV"); fragmentShaderFile_ = ":YUV_2_planes.frag"; break; case libcamera::formats::NV21: horzSubSample_ = 2; vertSubSample_ = 2; fragmentShaderDefines_.append("#define YUV_PATTERN_VU"); fragmentShaderFile_ = ":YUV_2_planes.frag"; break; case libcamera::formats::NV16: horzSubSample_ = 2; vertSubSample_ = 1; fragmentShaderDefines_.append("#define YUV_PATTERN_UV"); fragmentShaderFile_ = ":YUV_2_planes.frag"; break; case libcamera::formats::NV61: horzSubSample_ = 2; vertSubSample_ = 1; fragmentShaderDefines_.append("#define YUV_PATTERN_VU"); fragmentShaderFile_ = ":YUV_2_planes.frag"; break; case libcamera::formats::NV24: horzSubSample_ = 1; vertSubSample_ = 1; fragmentShaderDefines_.append("#define YUV_PATTERN_UV"); fragmentShaderFile_ = ":YUV_2_planes.frag"; break; case libcamera::formats::NV42: horzSubSample_ = 1; vertSubSample_ = 1; fragmentShaderDefines_.append("#define YUV_PATTERN_VU"); fragmentShaderFile_ = ":YUV_2_planes.frag"; break; case libcamera::formats::YUV420: horzSubSample_ = 2; vertSubSample_ = 2; fragmentShaderFile_ = ":YUV_3_planes.frag"; break; case libcamera::formats::YVU420: horzSubSample_ = 2; vertSubSample_ = 2; fragmentShaderFile_ = ":YUV_3_planes.frag"; break; case libcamera::formats::UYVY: fragmentShaderDefines_.append("#define YUV_PATTERN_UYVY"); fragmentShaderFile_ = ":YUV_packed.frag"; break; case libcamera::formats::VYUY: fragmentShaderDefines_.append("#define YUV_PATTERN_VYUY"); fragmentShaderFile_ = ":YUV_packed.frag"; break; case libcamera::formats::YUYV: fragmentShaderDefines_.append("#define YUV_PATTERN_YUYV"); fragmentShaderFile_ = ":YUV_packed.frag"; break; case libcamera::formats::YVYU: fragmentShaderDefines_.append("#define YUV_PATTERN_YVYU"); fragmentShaderFile_ = ":YUV_packed.frag"; break; case libcamera::formats::ABGR8888: fragmentShaderDefines_.append("#define RGB_PATTERN rgb"); fragmentShaderFile_ = ":RGB.frag"; break; case libcamera::formats::ARGB8888: fragmentShaderDefines_.append("#define RGB_PATTERN bgr"); fragmentShaderFile_ = ":RGB.frag"; break; case libcamera::formats::BGRA8888: fragmentShaderDefines_.append("#define RGB_PATTERN gba"); fragmentShaderFile_ = ":RGB.frag"; break; case libcamera::formats::RGBA8888: fragmentShaderDefines_.append("#define RGB_PATTERN abg"); fragmentShaderFile_ = ":RGB.frag"; break; case libcamera::formats::BGR888: fragmentShaderDefines_.append("#define RGB_PATTERN rgb"); fragmentShaderFile_ = ":RGB.frag"; break; case libcamera::formats::RGB888: fragmentShaderDefines_.append("#define RGB_PATTERN bgr"); fragmentShaderFile_ = ":RGB.frag"; break; default: ret = false; qWarning() << "[ViewFinderGL]:" << "format not supported."; break; }; return ret; } bool ViewFinderGL::createVertexShader() { /* Create Vertex Shader */ vertexShader_ = std::make_unique<QOpenGLShader>(QOpenGLShader::Vertex, this); /* Compile the vertex shader */ if (!vertexShader_->compileSourceFile(":identity.vert")) { qWarning() << "[ViewFinderGL]:" << vertexShader_->log(); return false; } shaderProgram_.addShader(vertexShader_.get()); return true; } bool ViewFinderGL::createFragmentShader() { int attributeVertex; int attributeTexture; /* * Create the fragment shader, compile it, and add it to the shader * program. The #define macros stored in fragmentShaderDefines_, if * any, are prepended to the source code. */ fragmentShader_ = std::make_unique<QOpenGLShader>(QOpenGLShader::Fragment, this); QFile file(fragmentShaderFile_); if (!file.open(QIODevice::ReadOnly | QIODevice::Text)) { qWarning() << "Shader" << fragmentShaderFile_ << "not found"; return false; } QString defines = fragmentShaderDefines_.join('\n') + "\n"; QByteArray src = file.readAll(); src.prepend(defines.toUtf8()); if (!fragmentShader_->compileSourceCode(src)) { qWarning() << "[ViewFinderGL]:" << fragmentShader_->log(); return false; } shaderProgram_.addShader(fragmentShader_.get()); /* Link shader pipeline */ if (!shaderProgram_.link()) { qWarning() << "[ViewFinderGL]:" << shaderProgram_.log(); close(); } /* Bind shader pipeline for use */ if (!shaderProgram_.bind()) { qWarning() << "[ViewFinderGL]:" << shaderProgram_.log(); close(); } attributeVertex = shaderProgram_.attributeLocation("vertexIn"); attributeTexture = shaderProgram_.attributeLocation("textureIn"); shaderProgram_.enableAttributeArray(attributeVertex); shaderProgram_.setAttributeBuffer(attributeVertex, GL_FLOAT, 0, 2, 2 * sizeof(GLfloat)); shaderProgram_.enableAttributeArray(attributeTexture); shaderProgram_.setAttributeBuffer(attributeTexture, GL_FLOAT, 8 * sizeof(GLfloat), 2, 2 * sizeof(GLfloat)); textureUniformY_ = shaderProgram_.uniformLocation("tex_y"); textureUniformU_ = shaderProgram_.uniformLocation("tex_u"); textureUniformV_ = shaderProgram_.uniformLocation("tex_v"); textureUniformStepX_ = shaderProgram_.uniformLocation("tex_stepx"); /* Create the textures. */ for (std::unique_ptr<QOpenGLTexture> &texture : textures_) { if (texture) continue; texture = std::make_unique<QOpenGLTexture>(QOpenGLTexture::Target2D); texture->create(); } return true; } void ViewFinderGL::configureTexture(QOpenGLTexture &texture) { glBindTexture(GL_TEXTURE_2D, texture.textureId()); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } void ViewFinderGL::removeShader() { if (shaderProgram_.isLinked()) { shaderProgram_.release(); shaderProgram_.removeAllShaders(); } } void ViewFinderGL::initializeGL() { initializeOpenGLFunctions(); glEnable(GL_TEXTURE_2D); glDisable(GL_DEPTH_TEST); static const GLfloat coordinates[2][4][2]{ { /* Vertex coordinates */ { -1.0f, -1.0f }, { -1.0f, +1.0f }, { +1.0f, +1.0f }, { +1.0f, -1.0f }, }, { /* Texture coordinates */ { 0.0f, 1.0f }, { 0.0f, 0.0f }, { 1.0f, 0.0f }, { 1.0f, 1.0f }, }, }; vertexBuffer_.create(); vertexBuffer_.bind(); vertexBuffer_.allocate(coordinates, sizeof(coordinates)); /* Create Vertex Shader */ if (!createVertexShader()) qWarning() << "[ViewFinderGL]: create vertex shader failed."; glClearColor(1.0f, 1.0f, 1.0f, 0.0f); } void ViewFinderGL::doRender() { switch (format_) { case libcamera::formats::NV12: case libcamera::formats::NV21: case libcamera::formats::NV16: case libcamera::formats::NV61: case libcamera::formats::NV24: case libcamera::formats::NV42: /* Activate texture Y */ glActiveTexture(GL_TEXTURE0); configureTexture(*textures_[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RED, size_.width(), size_.height(), 0, GL_RED, GL_UNSIGNED_BYTE, data_); shaderProgram_.setUniformValue(textureUniformY_, 0); /* Activate texture UV/VU */ glActiveTexture(GL_TEXTURE1); configureTexture(*textures_[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RG, size_.width() / horzSubSample_, size_.height() / vertSubSample_, 0, GL_RG, GL_UNSIGNED_BYTE, data_ + size_.width() * size_.height()); shaderProgram_.setUniformValue(textureUniformU_, 1); break; case libcamera::formats::YUV420: /* Activate texture Y */ glActiveTexture(GL_TEXTURE0); configureTexture(*textures_[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RED, size_.width(), size_.height(), 0, GL_RED, GL_UNSIGNED_BYTE, data_); shaderProgram_.setUniformValue(textureUniformY_, 0); /* Activate texture U */ glActiveTexture(GL_TEXTURE1); configureTexture(*textures_[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RED, size_.width() / horzSubSample_, size_.height() / vertSubSample_, 0, GL_RED, GL_UNSIGNED_BYTE, data_ + size_.width() * size_.height()); shaderProgram_.setUniformValue(textureUniformU_, 1); /* Activate texture V */ glActiveTexture(GL_TEXTURE2); configureTexture(*textures_[2]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RED, size_.width() / horzSubSample_, size_.height() / vertSubSample_, 0, GL_RED, GL_UNSIGNED_BYTE, data_ + size_.width() * size_.height() * 5 / 4); shaderProgram_.setUniformValue(textureUniformV_, 2); break; case libcamera::formats::YVU420: /* Activate texture Y */ glActiveTexture(GL_TEXTURE0); configureTexture(*textures_[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RED, size_.width(), size_.height(), 0, GL_RED, GL_UNSIGNED_BYTE, data_); shaderProgram_.setUniformValue(textureUniformY_, 0); /* Activate texture V */ glActiveTexture(GL_TEXTURE2); configureTexture(*textures_[2]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RED, size_.width() / horzSubSample_, size_.height() / vertSubSample_, 0, GL_RED, GL_UNSIGNED_BYTE, data_ + size_.width() * size_.height()); shaderProgram_.setUniformValue(textureUniformV_, 2); /* Activate texture U */ glActiveTexture(GL_TEXTURE1); configureTexture(*textures_[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RED, size_.width() / horzSubSample_, size_.height() / vertSubSample_, 0, GL_RED, GL_UNSIGNED_BYTE, data_ + size_.width() * size_.height() * 5 / 4); shaderProgram_.setUniformValue(textureUniformU_, 1); break; case libcamera::formats::UYVY: case libcamera::formats::VYUY: case libcamera::formats::YUYV: case libcamera::formats::YVYU: /* * Packed YUV formats are stored in a RGBA texture to match the * OpenGL texel size with the 4 bytes repeating pattern in YUV. * The texture width is thus half of the image with. */ glActiveTexture(GL_TEXTURE0); configureTexture(*textures_[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, size_.width() / 2, size_.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, data_); shaderProgram_.setUniformValue(textureUniformY_, 0);