summaryrefslogtreecommitdiff
path: root/.gitignore
blob: e00516aaa716416a964d78cbefd25a8b43ffd5ec (plain)
1
2
3
build/
patches/
*.patch
>10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2020, Raspberry Pi (Trading) Limited
 *
 * transform.cpp - 2D plane transforms.
 */

#include <libcamera/transform.h>

/**
 * \file transform.h
 * \brief Enum to represent and manipulate 2D plane transforms
 */

namespace libcamera {

/**
 * \enum Transform
 * \brief Enum to represent a 2D plane transform
 *
 * The Transform can take 8 distinct values, representing the usual 2D plane
 * transforms listed below. Each of these transforms can be constructed
 * out of 3 basic operations, namely a horizontal flip (mirror), a vertical
 * flip, and a transposition (about the main diagonal). The transforms are
 * encoded such that a single bit indicates the presence of each of the 3
 * basic operations:
 *
 * - bit 0 - presence of a horizontal flip
 * - bit 1 - presence of a vertical flip
 * - bit 2 - presence of a transposition.
 *
 * We regard these 3 basic operations as being applied in a specific order:
 * first the two flip operations (actually they commute, so the order between
 * them is unimportant) and finally any transpose operation.
 *
 * Functions are provided to manipulate directly the bits within the transform
 * encoding, but there are also higher-level functions to invert and compose
 * transforms. Transforms are composed according to the usual mathematical
 * convention such that the right transform is applied first, and the left
 * transform is applied second.
 *
 * Finally, we have a total of 8 distinct transformations, as follows (a
 * couple of them have additional synonyms for convenience). We illustrate each
 * with its nominal effect on a rectangle with vertices labelled A, B, C and D.
 *
 * \sa https://en.wikipedia.org/wiki/Examples_of_groups#dihedral_group_of_order_8
 *
 * The set of 2D plane transforms is also known as the symmetry group of a
 * square, described in the link. Note that the group can be generated by
 * only 2 elements (the horizontal flip and a 90 degree rotation, for
 * example), however, the encoding used here makes the presence of the vertical
 * flip explicit.
 *
 * \var Transform::Identity
 *
 * Identity transform.
~~~
              A-B                          A-B
Input image   | |   goes to output image   | |
              C-D                          C-D
~~~
 * Numeric value: 0 (no bits set).
 *
 * \var Transform::Rot0
 *
 * Synonym for Transform::Identity (zero degree rotation).
 *
 * \var Transform::HFlip
 *
 * Horizontal flip.
~~~
              A-B                          B-A
Input image   | |   goes to output image   | |
              C-D                          D-C
~~~
 * Numeric value: 1 (horizontal flip bit set only).
 *
 * \var Transform::VFlip
 *
 * Vertical flip.
~~~
              A-B                          C-D
Input image   | |   goes to output image   | |
              C-D                          A-B
~~~
 * Numeric value: 2 (vertical flip bit set only).
 *
 * \var Transform::HVFlip
 *
 * Horizontal and vertical flip (identical to a 180 degree rotation).
~~~
              A-B                          D-C
Input image   | |   goes to output image   | |
              C-D                          B-A
~~~
 * Numeric value: 3 (horizontal and vertical flip bits set).
 *
 * \var Transform::Rot180
 *
 * Synonym for `HVFlip` (180 degree rotation).
 *
 * \var Transform::Transpose
 *
 * Transpose (about the main diagonal).
~~~
              A-B                          A-C
Input image   | |   goes to output image   | |
              C-D                          B-D
~~~
 * Numeric value: 4 (transpose bit set only).
 *
 * \var Transform::Rot270
 *
 * Rotation by 270 degrees clockwise (90 degrees anticlockwise).
~~~
              A-B                          B-D
Input image   | |   goes to output image   | |
              C-D                          A-C
~~~
 * Numeric value: 5 (transpose and horizontal flip bits set).
 *
 * \var Transform::Rot90
 *
 * Rotation by 90 degrees clockwise (270 degrees anticlockwise).
~~~
              A-B                          C-A
Input image   | |   goes to output image   | |
              C-D                          D-B
~~~
 * Numeric value: 6 (transpose and vertical flip bits set).
 *
 * \var Transform::Rot180Transpose
 *
 * Rotation by 180 degrees followed by transpose (alternatively, transposition
 * about the "opposite diagonal").
~~~
              A-B                          D-B
Input image   | |   goes to output image   | |
              C-D                          C-A
~~~
 * Numeric value: 7 (all bits set).
 */

/**
 * \fn operator &(Transform t0, Transform t1)
 * \brief Apply bitwise AND operator between the bits in the two transforms
 * \param[in] t0 The first transform
 * \param[in] t1 The second transform
 */

/**
 * \fn operator |(Transform t0, Transform t1)
 * \brief Apply bitwise OR operator between the bits in the two transforms
 * \param[in] t0 The first transform
 * \param[in] t1 The second transform
 */

/**
 * \fn operator ^(Transform t0, Transform t1)
 * \brief Apply bitwise XOR operator between the bits in the two transforms
 * \param[in] t0 The first transform
 * \param[in] t1 The second transform
 */

/**
 * \fn operator &=(Transform &t0, Transform t1)
 * \brief Apply bitwise AND-assignment operator between the bits in the two
 * transforms
 * \param[in] t0 The first transform
 * \param[in] t1 The second transform
 */

/**
 * \fn operator |=(Transform &t0, Transform t1)
 * \brief Apply bitwise OR-assignment operator between the bits in the two
 * transforms
 * \param[in] t0 The first transform
 * \param[in] t1 The second transform
 */

/**
 * \fn operator ^=(Transform &t0, Transform t1)
 * \brief Apply bitwise XOR-assignment operator between the bits in the two
 * transforms
 * \param[in] t0 The first transform
 * \param[in] t1 The second transform
 */

/**
 * \brief Compose two transforms together
 * \param[in] t1 The second transform
 * \param[in] t0 The first transform
 *
 * Composing transforms follows the usual mathematical convention for
 * composing functions. That is, when performing `t1 * t0`, \a t0 is applied
 * first, and then \a t1.
 * For example, `Transpose * HFlip` performs `HFlip` first and then the
 * `Transpose` yielding `Rot270`, as shown below.
~~~
             A-B                 B-A                     B-D
Input image  | |   -> HFLip ->   | |   -> Transpose ->   | |   = Rot270
             C-D                 D-C                     A-C
~~~
 * Note that composition is generally non-commutative for Transforms,
 * and not the same as XOR-ing the underlying bit representations.
 */
Transform operator*(Transform t1, Transform t0)
{
	/*
	 * Reorder the operations so that we imagine doing t0's transpose
	 * (if any) after t1's flips. The effect is to swap t1's hflips for
	 * vflips and vice versa, after which we can just xor all the bits.
	 */
	Transform reordered = t1;
	if (!!(t0 & Transform::Transpose)) {
		reordered = t1 & Transform::Transpose;
		if (!!(t1 & Transform::HFlip))
			reordered |= Transform::VFlip;
		if (!!(t1 & Transform::VFlip))
			reordered |= Transform::HFlip;
	}

	return reordered ^ t0;
}

/**
 * \brief Invert a transform
 * \param[in] t The transform to be inverted
 *
 * That is, we return the transform such that `t * (-t)` and `(-t) * t` both
 * yield the identity transform.
 */
Transform operator-(Transform t)
{
	/* All are self-inverses, except for Rot270 and Rot90. */
	static const Transform inverses[] = {
		Transform::Identity,
		Transform::HFlip,
		Transform::VFlip,
		Transform::HVFlip,
		Transform::Transpose,
		Transform::Rot90,
		Transform::Rot270,
		Transform::Rot180Transpose
	};

	return inverses[static_cast<int>(t)];
}

/**
 * \fn operator!(Transform t)
 * \brief Return `true` if the transform is the `Identity`, otherwise `false`
 * \param[in] t The transform to be tested
 */

/**
 * \fn operator~(Transform t)
 * \brief Return the transform with all the bits inverted individually
 * \param[in] t The transform of which the bits will be inverted
 *
 * This inverts the bits that encode the transform in a bitwise manner. Note
 * that this is not the proper inverse of transform \a t (for which use \a
 * operator-).
 */

/**
 * \brief Return the transform representing a rotation of the given angle
 * clockwise
 * \param[in] angle The angle of rotation in a clockwise sense. Negative values
 * can be used to represent anticlockwise rotations
 * \param[out] success Set to `true` if the angle is a multiple of 90 degrees,
 * otherwise `false`
 * \return The transform corresponding to the rotation if \a success was set to
 * `true`, otherwise the `Identity` transform
 */
Transform transformFromRotation(int angle, bool *success)
{
	angle = angle % 360;
	if (angle < 0)
		angle += 360;

	if (success != nullptr)
		*success = true;

	switch (angle) {
	case 0:
		return Transform::Identity;
	case 90:
		return Transform::Rot90;
	case 180:
		return Transform::Rot180;
	case 270:
		return Transform::Rot270;
	}

	if (success != nullptr)
		*success = false;

	return Transform::Identity;
}

/**
 * \brief Return a character string describing the transform
 * \param[in] t The transform to be described.
 */
const char *transformToString(Transform t)
{
	static const char *strings[] = {
		"identity",
		"hflip",
		"vflip",
		"hvflip",
		"transpose",
		"rot270",
		"rot90",
		"rot180transpose"
	};

	return strings[static_cast<int>(t)];
}

} /* namespace libcamera */