# SPDX-License-Identifier: BSD-2-Clause # # Copyright (C) 2019, Raspberry Pi Ltd # Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> # # Utilities for libtuning import cv2 import decimal import math import numpy as np import os from pathlib import Path import re import sys import logging import libtuning as lt from libtuning.image import Image from .macbeth import locate_macbeth logger = logging.getLogger(__name__) # Utility functions def get_module_by_type_name(modules, name): for module in modules: if module.type == name: return module return None # Private utility functions def _list_image_files(directory): d = Path(directory) files = [d.joinpath(f) for f in os.listdir(d) if re.search(r'\.(jp[e]g$)|(dng$)', f)] files.sort() return files def _parse_image_filename(fn: Path): lsc_only = False color_temperature = None lux = None parts = fn.stem.split('_') for part in parts: if part == 'alsc': lsc_only = True continue r = re.match(r'(\d+)[kK]', part) if r: color_temperature = int(r.group(1)) continue r = re.match(r'(\d+)[lLuU]', part) if r: lux = int(r.group(1)) if color_temperature is None: logger.error(f'The file name of "{fn.name}" does not contain a color temperature') if lux is None and lsc_only is False: logger.error(f'The file name of "{fn.name}" must either contain alsc or a lux level') return color_temperature, lux, lsc_only # \todo Implement this from check_imgs() in ctt.py def _validate_images(images): return True # Public utility functions # @brief Load images into a single list of Image instances # @param input_dir Directory from which to load image files # @param config Configuration dictionary # @param load_nonlsc Whether or not to load non-lsc images # @param load_lsc Whether or not to load lsc-only images # @return A list of Image instances def load_images(input_dir: str, config: dict, load_nonlsc: bool, load_lsc: bool) -> list: files = _list_image_files(input_dir) if len(files) == 0: logger.error(f'No images found in {input_dir}') return None images = [] for f in files: color, lux, lsc_only = _parse_image_filename(f) if color is None: logger.warning(f'Ignoring "{f.name}" as it has no associated color temperature') continue logger.info(f'Process image "{f.name}" (color={color}, lux={lux}, lsc_only={lsc_only})') # Skip lsc image if we don't need it if lsc_only and not load_lsc: logger.warning(f'Skipping {f.name} as this tuner has no LSC module') continue # Skip non-lsc image if we don't need it if not lsc_only and not load_nonlsc: logger.warning(f'Skipping {f.name} as this tuner only has an LSC module') continue # Load image try: image = Image(f) except Exception as e: logger.error(f'Failed to load image {f.name}: {e}') continue # Populate simple fields image.lsc_only = lsc_only image.color = color image.lux = lux # Black level comes from the TIFF tags, but they are overridable by the # config file. if 'blacklevel' in config['general']: image.blacklevel_16 = config['general']['blacklevel'] if lsc_only: images.append(image) continue # Handle macbeth macbeth = locate_macbeth(image, config) if macbeth is None: continue images.append(image) if not _validate_images(images): return None return images """ Some code that will save virtual macbeth charts that show the difference between optimised matrices and non optimised matrices The function creates an image that is 1550 by 1050 pixels wide, and fills it with patches which are 200x200 pixels in size Each patch contains the ideal color, the color from the original matrix, and the color from the final matrix _________________ | | | Ideal Color | |_______________| | Old | new | | Color | Color | |_______|_______| Nice way of showing how the optimisation helps change the colors and the color matricies """ def visualise_macbeth_chart(macbeth_rgb, original_rgb, new_rgb, output_filename): image = np.zeros((1050, 1550, 3), dtype=np.uint8) colorindex = -1 for y in range(6): for x in range(4): # Creates 6 x 4 grid of macbeth chart colorindex += 1 xlocation = 50 + 250 * x # Means there is 50px of black gap between each square, more like the real macbeth chart. ylocation = 50 + 250 * y for g in range(200): for i in range(100): image[xlocation + i, ylocation + g] = macbeth_rgb[colorindex] xlocation = 150 + 250 * x ylocation = 50 + 250 * y for i in range(100): for g in range(100): image[xlocation + i, ylocation + g] = original_rgb[colorindex] # Smaller squares below to compare the old colors with the new ones xlocation = 150 + 250 * x ylocation = 150 + 250 * y for i in range(100): for g in range(100): image[xlocation + i, ylocation + g] = new_rgb[colorindex] im_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) cv2.imwrite(f'{output_filename} Generated Macbeth Chart.png', im_bgr)