# SPDX-License-Identifier: BSD-2-Clause # # Copyright (C) 2019, Raspberry Pi Ltd # # ctt_tools.py - camera tuning tool miscellaneous import time import re import binascii import os import cv2 import numpy as np import imutils import sys import matplotlib.pyplot as plt from sklearn import cluster as cluster from sklearn.neighbors import NearestCentroid as get_centroids """ This file contains some useful tools, the details of which aren't important to understanding of the code. They ar collated here to attempt to improve code readability in the main files. """ """ obtain config values, unless it doesnt exist, in which case pick default Furthermore, it can check if the input is the correct type """ def get_config(dictt, key, default, ttype): try: val = dictt[key] if ttype == 'string': val = str(val) elif ttype == 'num': if 'int' not in str(type(val)): if 'float' not in str(type(val)): raise ValueError elif ttype == 'dict': if not isinstance(val, dict): raise ValueError elif ttype == 'list': if not isinstance(val, list): raise ValueError elif ttype == 'bool': ttype = int(bool(ttype)) else: val = dictt[key] except (KeyError, ValueError): val = default return val """ argument parser """ def parse_input(): arguments = sys.argv[1:] if len(arguments) % 2 != 0: raise ArgError('\n\nERROR! Enter value for each arguent passed.') params = arguments[0::2] vals = arguments[1::2] args_dict = dict(zip(params, vals)) json_output = get_config(args_dict, '-o', None, 'string') directory = get_config(args_dict, '-i', None, 'string') config = get_config(args_dict, '-c', None, 'string') log_path = get_config(args_dict, '-l', None, 'string') if directory is None: raise ArgError('\n\nERROR! No input directory given.') if json_output is None: raise ArgError('\n\nERROR! No output json given.') return json_output, directory, config, log_path """ custom arg and macbeth error class """ class ArgError(Exception): pass class MacbethError(Exception): pass """ correlation function to quantify match """ def correlate(im1, im2): f1 = im1.flatten() f2 = im2.flatten() cor = np.corrcoef(f1, f2) return cor[0][1] """ get list of files from directory """ def get_photos(directory='photos'): filename_list = [] for filename in os.listdir(directory): if 'jp' in filename or '.dng' in filename: filename_list.append(filename) return filename_list """ display image for debugging... read at your own risk... """ def represent(img, name='image'): # if type(img) == tuple or type(img) == list: # for i in range(len(img)): # name = 'image {}'.format(i) # cv2.imshow(name, img[i]) # else: # cv2.imshow(name, img) # cv2.waitKey(0) # cv2.destroyAllWindows() # return 0 """ code above displays using opencv, but this doesn't catch users pressing 'x' with their mouse to close the window.... therefore matplotlib is used.... (thanks a lot opencv) """ grid = plt.GridSpec(22, 1) plt.subplot(grid[:19, 0]) plt.imshow(img, cmap='gray') plt.axis('off') plt.subplot(grid[21, 0]) plt.title('press \'q\' to continue') plt.axis('off') plt.show() # f = plt.figure() # ax = f.add_subplot(211) # ax2 = f.add_subplot(122) # ax.imshow(img, cmap='gray') # ax.axis('off') # ax2.set_figheight(2) # ax2.title('press \'q\' to continue') # ax2.axis('off') # plt.show() """ reshape image to fixed width without distorting returns image and scale factor """ def reshape(img, width): factor = width/img.shape[0] return cv2.resize(img, None, fx=factor, fy=factor), factor f='#n31'>31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251