#!/usr/bin/env python3 # # SPDX-License-Identifier: BSD-2-Clause # # Copyright (C) 2019, Raspberry Pi (Trading) Limited # # ctt.py - camera tuning tool import os import sys from ctt_image_load import * from ctt_ccm import * from ctt_awb import * from ctt_alsc import * from ctt_lux import * from ctt_noise import * from ctt_geq import * from ctt_pretty_print_json import * import random import json import re """ This file houses the camera object, which is used to perform the calibrations. The camera object houses all the calibration images as attributes in two lists: - imgs (macbeth charts) - imgs_alsc (alsc correction images) Various calibrations are methods of the camera object, and the output is stored in a dictionary called self.json. Once all the caibration has been completed, the Camera.json is written into a json file. The camera object initialises its json dictionary by reading from a pre-written blank json file. This has been done to avoid reproducing the entire json file in the code here, thereby avoiding unecessary clutter. """ """ Get the colour and lux values from the strings of each inidvidual image """ def get_col_lux(string): """ Extract colour and lux values from filename """ col = re.search(r'([0-9]+)[kK](\.(jpg|jpeg|brcm|dng)|_.*\.(jpg|jpeg|brcm|dng))$', string) lux = re.search(r'([0-9]+)[lL](\.(jpg|jpeg|brcm|dng)|_.*\.(jpg|jpeg|brcm|dng))$', string) try: col = col.group(1) except AttributeError: """ Catch error if images labelled incorrectly and pass reasonable defaults """ return None, None try: lux = lux.group(1) except AttributeError: """ Catch error if images labelled incorrectly and pass reasonable defaults Still returns colour if that has been found. """ return col, None return int(col), int(lux) """ Camera object that is the backbone of the tuning tool. Input is the desired path of the output json. """ class Camera: def __init__(self, jfile): self.path = os.path.dirname(os.path.expanduser(__file__)) + '/' if self.path == '/': self.path = '' self.imgs = [] self.imgs_alsc = [] self.log = 'Log created : ' + time.asctime(time.localtime(time.time())) self.log_separator = '\n'+'-'*70+'\n' self.jf = jfile """ initial json dict populated by uncalibrated values """ self.json = { "rpi.black_level": { "black_level": 4096 }, "rpi.dpc": { }, "rpi.lux": { "reference_shutter_speed": 10000, "reference_gain": 1, "reference_aperture": 1.0 }, "rpi.noise": { }, "rpi.geq": { }, "rpi.sdn": { }, "rpi.awb": { "priors": [ {"lux": 0, "prior": [2000, 1.0, 3000, 0.0, 13000, 0.0]}, {"lux": 800, "prior": [2000, 0.0, 6000, 2.0, 13000, 2.0]}, {"lux": 1500, "prior": [2000, 0.0, 4000, 1.0, 6000, 6.0, 6500, 7.0, 7000, 1.0, 13000, 1.0]} ], "modes": { "auto": {"lo": 2500, "hi": 8000}, "incandescent": {"lo": 2500, "hi": 3000}, "tungsten": {"lo": 3000, "hi": 3500}, "fluorescent": {"lo": 4000, "hi": 4700}, "indoor": {"lo": 3000, "hi": 5000}, "daylight": {"lo": 5500, "hi": 6500}, "cloudy": {"lo": 7000, "hi": 8600} }, "bayes": 1 }, "rpi.agc": { "metering_modes": { "centre-weighted": { "weights": [3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0] }, "spot": { "weights": [2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] }, "matrix": { "weights": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] } }, "exposure_modes": { "normal": { "shutter": [100, 10000, 30000, 60000, 120000], "gain": [1.0, 2.0, 4.0, 6.0, 6.0] }, "short": { "shutter": [100, 5000, 10000, 20000, 120000], "gain": [1.0, 2.0, 4.0, 6.0, 6.0] } }, "constraint_modes": { "normal": [ {"bound": "LOWER", "q_lo": 0.98, "q_hi": 1.0, "y_target": [0, 0.5, 1000, 0.5]} ], "highlight": [ {"bound": "LOWER", "q_lo": 0.98, "q_hi": 1.0, "y_target": [0, 0.5, 1000, 0.5]}, {"bound": "UPPER", "q_lo": 0.98, "q_hi": 1.0, "y_target": [0, 0.8, 1000, 0.8]} ] }, "y_target": [0, 0.16, 1000, 0.165, 10000, 0.17] }, "rpi.alsc": { 'omega': 1.3, 'n_iter': 100, 'luminance_strength': 0.7, }, "rpi.contrast": { "ce_enable": 1, "gamma_curve": [ 0, 0, 1024, 5040, 2048, 9338, 3072, 12356, 4096, 15312, 5120, 18051, 6144, 20790, 7168, 23193, 8192, 25744, 9216, 27942, 10240, 30035, 11264, 32005, 12288, 33975, 13312, 35815, 14336, 37600, 15360, 39168, 16384, 40642, 18432, 43379, 20480, 45749, 22528, 47753, 24576, 49621, 26624, 51253, 28672, 52698, 30720, 53796, 32768, 54876, 36864, 57012, 40960, 58656, 45056, 59954, 49152, 61183, 53248, 62355, 57344, 63419, 61440, 64476, 65535, 65535 ] }, "rpi.ccm": { }, "rpi.sharpen": { } } """ Perform colour correction calibrations by comparing macbeth patch colours to standard macbeth chart colours. """ def ccm_cal(self, do_alsc_colour): if 'rpi.ccm' in self.disable: return 1 print('\nStarting CCM calibration') self.log_new_sec('CCM') """ if image is greyscale then CCm makes no sense """ if self.grey: print('\nERROR: Can\'t do CCM on greyscale image!') self.log += '\nERROR: Cannot perform CCM calibration ' self.log += 'on greyscale image!\nCCM aborted!' del self.json['rpi.ccm'] return 0 a = time.time() """ Check if alsc tables have been generated, if not then do ccm without alsc """ if ("rpi.alsc" not in self.disable) and do_alsc_colour: """ case where ALSC colour has been done, so no errors should be expected... """ try: cal_cr_list = self.json['rpi.alsc']['calibrations_Cr'] cal_cb_list = self.json['rpi.alsc']['calibrations_Cb'] self.log += '\nALSC tables found successfully' except KeyError: cal_cr_list, cal_cb_list = None, None print('WARNING! No ALSC tables found for CCM!') print('Performing CCM calibrations without ALSC correction...') self.log += '\nWARNING: No ALSC tables found.\nCCM calibration ' self.log += 'performed without ALSC correction...' else: """ case where config options result in CCM done without ALSC colour tables """ cal_cr_list, cal_cb_list = None, None self.log += '\nWARNING: No ALSC tables found.\nCCM calibration ' self.log += 'performed without ALSC correction...' """ Do CCM calibration """ try: ccms = ccm(self, cal_cr_list, cal_cb_list) except ArithmeticError: print('ERROR: Matrix is singular!\nTake new pictures and try again...') self.log += '\nERROR: Singular matrix encountered during fit!' self.log += '\nCCM aborted!' return 1 """ Write output to json """ self.json['rpi.ccm']['ccms'] = ccms self.log += '\nCCM calibration written to json file' print('Finished CCM calibration') """ Auto white balance calibration produces a colour curve for various colour temperatures, as well as providing a maximum 'wiggle room' distance from this curve (transverse_neg/pos). """ def awb_cal(self, greyworld, do_alsc_colour): if 'rpi.awb' in self.disable: return 1 print('\nStarting AWB calibration') self.log_new_sec('AWB') """ if image is greyscale then AWB makes no sense """ if self.grey: print('\nERROR: Can\'t do AWB on greyscale image!') self.log += '\nERROR: Cannot perform AWB calibration ' self.log += 'on greyscale image!\nAWB aborted!' del self.json['rpi.awb'] return 0 """ optional set greyworld (e.g. for noir cameras) """ if greyworld: self.json['rpi.awb']['bayes'] = 0 self.log += '\nGreyworld set' """ Check if alsc tables have been generated, if not then do awb without alsc correction """ if ("rpi.alsc" not in self.disable) and do_alsc_colour: try: cal_cr_list = self.json['rpi.alsc']['calibrations_Cr'] cal_cb_list = self.json['rpi.alsc']['calibrations_Cb'] self.log += '\nALSC tables found successfully' except KeyError: cal_cr_list, cal_cb_list = None, None print('ERROR, no ALSC calibrations found for AWB') print('Performing AWB without ALSC tables') self.log += '\nWARNING: No ALSC tables found.\nAWB calibration ' self.log += 'performed without ALSC correction...' else: cal_cr_list, cal_cb_list = None, None self.log += '\nWARNING: No ALSC tables found.\nAWB calibration ' self.log += 'performed without ALSC correction...' """ call calibration function """ plot = "rpi.awb" in self.plot awb_out = awb(self, cal_cr_list, cal_cb_list, plot) ct_curve, transverse_neg, transverse_pos = awb_out """ write output to json """ self.json['rpi.awb']['ct_curve'] = ct_curve self.json['rpi.awb']['sensitivity_r'] = 1.0 self.json['rpi.awb']['sensitivity_b'] = 1.0 self.json['rpi.awb']['transverse_pos'] = transverse_pos self.json['rpi.awb']['transverse_neg'] = transverse_neg self.log += '\nAWB calibration written to json file' print('Finished AWB calibration') """ Auto lens shading correction completely mitigates the effects of lens shading for ech colour channel seperately, and then partially corrects for vignetting. The extent of the correction depends on the 'luminance_strength' parameter. """ def alsc_cal(self, luminance_strength, do_alsc_colour): if 'rpi.alsc' in self.disable: return 1 print('\nStarting ALSC calibration') self.log_new_sec('ALSC') """ check if alsc images have been taken """ if len(self.imgs_alsc) == 0: print('\nError:\nNo alsc calibration images found') self.log += '\nERROR: No ALSC calibration images found!' self.log += '\nALSC calibration aborted!' return 1 self.json['rpi.alsc']['luminance_strength'] = luminance_strength if self.grey and do_alsc_colour: print('Greyscale camera so only luminance_lut calculated') do_alsc_colour = False self.log += '\nWARNING: ALSC colour correction cannot be done on ' self.log += 'greyscale image!\nALSC colour corrections forced off!' """ call calibration function """ plot = "rpi.alsc" in self.plot alsc_out = alsc_all(self, do_alsc_colour, plot) cal_cr_list, cal_cb_list, luminance_lut, av_corn = alsc_out """ write ouput to json and finish if not do_alsc_colour """ if not do_alsc_colour: self.json['rpi.alsc']['luminance_lut'] = luminance_lut self.json['rpi.alsc']['n_iter'] = 0 self.log += '\nALSC calibrations written to json file' self.log += '\nNo colour calibrations performed' print('Finished ALSC calibrations') return 1 self.json['rpi.alsc']['calibrations_Cr'] = cal_cr_list self.json['rpi.alsc']['calibrations_Cb'] = cal_cb_list self.json['rpi.alsc']['luminance_lut'] = luminance_lut self.log += '\nALSC colour and luminance tables written to json file' """ The sigmas determine the strength of the adaptive algorithm, that cleans up any lens shading that has slipped through the alsc. These are determined by measuring a 'worst-case' difference between two alsc tables that are adjacent in colour space. If, however, only one colour temperature has been provided, then this difference can not be computed as only one table is available. To determine the sigmas you would have to estimate the error of an alsc table with only the image it was taken on as a check. To avoid circularity, dfault exaggerated sigmas are used, which can result in too much alsc and is therefore not advised. In general, just take another alsc picture at another colour temperature! """ if len(self.imgs_alsc) == 1: self.json['rpi.alsc']['sigma'] = 0.005 self.json['rpi.alsc']['sigma_Cb'] = 0.005 print('\nWarning:\nOnly one alsc calibration found' '\nStandard sigmas used for adaptive algorithm.') print('Finished ALSC calibrations') self.log += '\nWARNING: Only one colour temperature found in ' self.log += 'calibration images.\nStandard sigmas used for adaptive ' self.log += 'algorithm!' return 1 """ obtain worst-case scenario residual sigmas """ sigma_r, sigma_b = get_sigma(self, cal_cr_list, cal_cb_list) """ write output to json """ self.json['rpi.alsc']['sigma'] = np.round(sigma_r, 5) self.json['rpi.alsc']['sigma_Cb'] = np.round(sigma_b, 5) self.log += '\nCalibrated sigmas written to json file' print('Finished ALSC calibrations') """ Green equalisation fixes problems caused by discrepancies in green channels. This is done by measuring the effect on macbeth chart patches, which ideally would have the same green values throughout. An upper bound linear model is fit, fixing a threshold for the green differences that are corrected. """ def geq_cal(self): if 'rpi.geq' in self.disable: return 1 print('\nStarting GEQ calibrations') self.log_new_sec('GEQ') """ perform calibration """ plot = 'rpi.geq' in self.plot slope, offset = geq_fit(self, plot) """ write output to json """ self.json['rpi.geq']['offset'] = offset self.json['rpi.geq']['slope'] = slope self.log += '\nGEQ calibrations written to json file' print('Finished GEQ calibrations') """ Lux calibrations allow the lux level of a scene to be estimated by a ratio calculation. Lux values are used in the pipeline for algorithms such as AGC and AWB """ def lux_cal(self): if 'rpi.lux' in self.disable: return 1 print('\nStarting LUX calibrations') self.log_new_sec('LUX') """ The lux calibration is done on a single image. For best effects, the image with lux level closest to 1000 is chosen. """ luxes = [Img.lux for Img in self.imgs] argmax = luxes.index(min(luxes, key=lambda l: abs(1000-l))) Img = self.imgs[argmax] self.log += '\nLux found closest to 1000: {} lx'.format(Img.lux) self.log += '\nImage used: ' + Img.name if Img.lux < 50: self.log += '\nWARNING: Low lux could cause inaccurate calibrations!' """ do calibration """ lux_out, shutter_speed, gain = lux(self, Img) """ write output to json """ self.json['rpi.lux']['reference_shutter_speed'] = shutter_speed self.json['rpi.lux']['reference_gain'] = gain self.json['rpi.lux']['reference_lux'] = Img.lux self.json['rpi.lux']['reference_Y'] = lux_out self.log += '\nLUX calibrations written to json file' print('Finished LUX calibrations') """ Noise alibration attempts to describe the noise profile of the sensor. The calibration is run on macbeth images and the final output is taken as the average """ def noise_cal(self): if 'rpi.noise' in self.disable: return 1 print('\nStarting NOISE calibrations') self.log_new_sec('NOISE') """ run calibration on all images and sort by slope. """ plot = "rpi.noise" in self.plot noise_out = sorted([noise(self, Img, plot) for Img in self.imgs], key=lambda x: x[0]) self.log += '\nFinished processing images' """ take the average of the interquartile """ length = len(noise_out) noise_out = np.mean(noise_out[length//4:1+3*length//4], axis=0) self.log += '\nAverage noise profile: constant = {} '.format(int(noise_out[1])) self.log += 'slope = {:.3f}'.format(noise_out[0]) """ write to json """ self.json['rpi.noise']['reference_constant'] = int(noise_out[1]) self.json['rpi.noise']['reference_slope'] = round(noise_out[0], 3) self.log += '\nNOISE calibrations written to json' print('Finished NOISE calibrations') """ Removes json entries that are turned off """ def json_remove(self, disable): self.log_new_sec('Disabling Options', cal=False) if len(self.disable) == 0: self.log += '\nNothing disabled!' return 1 for key in disable: try: del self.json[key] self.log += '\nDisabled: ' + key except KeyError: self.log += '\nERROR: ' + key + ' not found!' """ writes the json dictionary to the raw json file then make pretty """ def write_json(self): """ Write json dictionary to file """ jstring = json.dumps(self.json, sort_keys=False) """ make it pretty :) """ pretty_print_json(jstring, self.jf) """ add a new section to the log file """ def log_new_sec(self, section, cal=True): self.log += '\n'+self.log_separator self.log += section if cal: self.log += ' Calibration' self.log += self.log_separator """ write script arguments to log file """ def log_user_input(self, json_output, directory, config, log_output): self.log_new_sec('User Arguments', cal=False) self.log += '\nJson file output: ' + json_output self.log += '\nCalibration images directory: ' + directory if config is None: self.log += '\nNo configuration file input... using default options' elif config is False: self.log += '\nWARNING: Invalid configuration file path...' self.log += ' using default options' elif config is True: self.log += '\nWARNING: Invalid syntax in configuration file...' self.log += ' using default options' else: self.log += '\nConfiguration file: ' + config if log_output is None: self.log += '\nNo log file path input... using default: ctt_log.txt' else: self.log += '\nLog file output: ' + log_output # if log_output """ write log file """ def write_log(self, filename): if filename is None: filename = 'ctt_log.txt' self.log += '\n' + self.log_separator with open(filename, 'w') as logfile: logfile.write(self.log) """ Add all images from directory, pass into relevant list of images and extrace lux and temperature values. """ def add_imgs(self, directory, mac_config, blacklevel=-1): self.log_new_sec('Image Loading', cal=False) img_suc_msg = 'Image loaded successfully!' print('\n\nLoading images from '+directory) self.log += '\nDirectory: ' + directory """ get list of files """ filename_list = get_photos(directory) print("Files found: {}".format(len(filename_list))) self.log += '\nFiles found: {}'.format(len(filename_list)) """ iterate over files """ filename_list.sort() for filename in filename_list: address = directory + filename print('\nLoading image: '+filename) self.log += '\n\nImage: ' + filename """ obtain colour and lux value """ col, lux = get_col_lux(filename) """ Check if image is an alsc calibration image """ if 'alsc' in filename: Img = load_image(self, address, mac=False) self.log += '\nIdentified as an ALSC image' """ check if imagae data has been successfully unpacked """ if Img == 0: print('\nDISCARDED') self.log += '\nImage discarded!' continue """ check that image colour temperature has been successfuly obtained """ elif col is not None: """ if successful, append to list and continue to next image """ Img.col = col Img.name = filename self.log += '\nColour temperature: {} K'.format(col) self.imgs_alsc.append(Img) if blacklevel != -1: Img.blacklevel_16 = blacklevel print(img_suc_msg) continue else: print('Error! No colour temperature found!') self.log += '\nWARNING: Error reading colour temperature' self.log += '\nImage discarded!' print('DISCARDED') else: self.log += '\nIdentified as macbeth chart image' """ if image isn't an alsc correction then it must have a lux and a colour temperature value to be useful """ if lux is None: print('DISCARDED') self.log += '\nWARNING: Error reading lux value' self.log += '\nImage discarded!' continue Img = load_image(self, address, mac_config) """ check that image data has been successfuly unpacked """ if Img == 0: print('DISCARDED') self.log += '\nImage discarded!' continue else: """ if successful, append to list and continue to next image """ Img.col, Img.lux = col, lux Img.name = filename self.log += '\nColour temperature: {} K'.format(col) self.log += '\nLux value: {} lx'.format(lux) if blacklevel != -1: Img.blacklevel_16 = blacklevel print(img_suc_msg) self.imgs.append(Img) print('\nFinished loading images') """ Check that usable images have been found Possible errors include: - no macbeth chart - incorrect filename/extension - images from different cameras """ def check_imgs(self): self.log += '\n\nImages found:' self.log += '\nMacbeth : {}'.format(len(self.imgs)) self.log += '\nALSC : {} '.format(len(self.imgs_alsc)) self.log += '\n\nCamera metadata' """ check usable images found """ if len(self.imgs) == 0: print('\nERROR: No usable macbeth chart images found') self.log += '\nERROR: No usable macbeth chart images found' return 0 """ Double check that every image has come from the same camera... """ all_imgs = self.imgs + self.imgs_alsc camNames = list(set([Img.camName for Img in all_imgs])) patterns = list(set([Img.pattern for Img in all_imgs])) sigbitss = list(set([Img.sigbits for Img in all_imgs])) blacklevels = list(set([Img.blacklevel_16 for Img in all_imgs])) sizes = list(set([(Img.w, Img.h) for Img in all_imgs])) if len(camNames) == 1 and len(patterns) == 1 and len(sigbitss) == 1 and \ len(blacklevels) == 1 and len(sizes) == 1: self.grey = (patterns[0] == 128) self.blacklevel_16 = blacklevels[0] self.log += '\nName: {}'.format(camNames[0]) self.log += '\nBayer pattern case: {}'.format(patterns[0]) if self.grey: self.log += '\nGreyscale camera identified' self.log += '\nSignificant bits: {}'.format(sigbitss[0]) self.log += '\nBlacklevel: {}'.format(blacklevels[0]) self.log += '\nImage size: w = {} h = {}'.format(sizes[0][0], sizes[0][1]) return 1 else: print('\nERROR: Images from different cameras') self.log += '\nERROR: Images are from different cameras' return 0 def run_ctt(json_output, directory, config, log_output): """ check input files are jsons """ if json_output[-5:] != '.json': raise ArgError('\n\nError: Output must be a json file!') if config is not None: """ check if config file is actually a json """ if config[-5:] != '.json': raise ArgError('\n\nError: Config file must be a json file!') """ read configurations """ try: with open(config, 'r') as config_json: configs = json.load(config_json) except FileNotFoundError: configs = {} config = False except json.decoder.JSONDecodeError: configs = {} config = True else: configs = {} """ load configurations from config file, if not given then set default """ disable = get_config(configs, "disable", [], 'list') plot = get_config(configs, "plot", [], 'list') awb_d = get_config(configs, "awb", {}, 'dict') greyworld = get_config(awb_d, "greyworld", 0, 'bool') alsc_d = get_config(configs, "alsc", {}, 'dict') do_alsc_colour = get_config(alsc_d, "do_alsc_colour", 1, 'bool') luminance_strength = get_config(alsc_d, "luminance_strength", 0.5, 'num') blacklevel = get_config(configs, "blacklevel", -1, 'num') macbeth_d = get_config(configs, "macbeth", {}, 'dict') mac_small = get_config(macbeth_d, "small", 0, 'bool') mac_show = get_config(macbeth_d, "show", 0, 'bool') mac_config = (mac_small, mac_show) if blacklevel < -1 or blacklevel >= 2**16: print('\nInvalid blacklevel, defaulted to 64') blacklevel = -1 if luminance_strength < 0 or luminance_strength > 1: print('\nInvalid luminance_strength strength, defaulted to 0.5') luminance_strength = 0.5 """ sanitise directory path """ if directory[-1] != '/': directory += '/' """ initialise tuning tool and load images """ try: Cam = Camera(json_output) Cam.log_user_input(json_output, directory, config, log_output) Cam.disable = disable Cam.plot = plot Cam.add_imgs(directory, mac_config, blacklevel) except FileNotFoundError: raise ArgError('\n\nError: Input image directory not found!') """ preform calibrations as long as check_imgs returns True If alsc is activated then it must be done before awb and ccm since the alsc tables are used in awb and ccm calibrations ccm also technically does an awb but it measures this from the macbeth chart in the image rather than using calibration data """ if Cam.check_imgs(): Cam.json['rpi.black_level']['black_level'] = Cam.blacklevel_16 Cam.json_remove(disable) print('\nSTARTING CALIBRATIONS') Cam.alsc_cal(luminance_strength, do_alsc_colour) Cam.geq_cal() Cam.lux_cal() Cam.noise_cal() Cam.awb_cal(greyworld, do_alsc_colour) Cam.ccm_cal(do_alsc_colour) print('\nFINISHED CALIBRATIONS') Cam.write_json() Cam.write_log(log_output) print('\nCalibrations written to: '+json_output) if log_output is None: log_output = 'ctt_log.txt' print('Log file written to: '+log_output) pass else: Cam.write_log(log_output) if __name__ == '__main__': """ initialise calibration """ if len(sys.argv) == 1: print(""" Pisp Camera Tuning Tool version 1.0 Required Arguments: '-i' : Calibration image directory. '-o' : Name of output json file. Optional Arguments: '-c' : Config file for the CTT. If not passed, default parameters used. '-l' : Name of output log file. If not passed, 'ctt_log.txt' used. """) quit(0) else: """ parse input arguments """ json_output, directory, config, log_output = parse_input() run_ctt(json_output, directory, config, log_output) n835' href='#n835'>835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139