/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright (C) 2019, Google Inc. * * Serialize and deserialize controls */ #include #include #include #include #include "libcamera/internal/byte_stream_buffer.h" #include "libcamera/internal/control_serializer.h" #include "serialization_test.h" #include "test.h" using namespace std; using namespace libcamera; class ControlSerializationTest : public SerializationTest { protected: int init() override { return status_; } int run() override { ControlSerializer serializer(ControlSerializer::Role::Proxy); ControlSerializer deserializer(ControlSerializer::Role::Worker); std::vector infoData; std::vector listData; size_t size; int ret; /* Create a control list with three controls. */ const ControlInfoMap &infoMap = camera_->controls(); ControlList list(infoMap); list.set(controls::Brightness, 0.5f); list.set(controls::Contrast, 1.2f); list.set(controls::Saturation, 0.2f); /* * Serialize the control list, this should fail as the control * info map hasn't been serialized. */ size = serializer.binarySize(list); listData.resize(size); ByteStreamBuffer buffer(listData.data(), listData.size()); ret = serializer.serialize(list, buffer); if (!ret) { cerr << "List serialization without info map should have failed" << endl; return TestFail; } if (buffer.overflow() || buffer.offset()) { cerr << "Failed list serialization modified the buffer" << endl; return TestFail; } /* Serialize the control info map. */ size = serializer.binarySize(infoMap); infoData.resize(size); buffer = ByteStreamBuffer(infoData.data(), infoData.size()); ret = serializer.serialize(infoMap, buffer); if (ret < 0) { cerr << "Failed to serialize ControlInfoMap" << endl; return TestFail; } if (buffer.overflow()) { cerr << "Overflow when serializing ControlInfoMap" << endl; return TestFail; } /* Serialize the control list, this should now succeed. */ size = serializer.binarySize(list); listData.resize(size); buffer = ByteStreamBuffer(listData.data(), listData.size()); ret = serializer.serialize(list, buffer); if (ret) { cerr << "Failed to serialize ControlList" << endl; return TestFail; } if (buffer.overflow()) { cerr << "Overflow when serializing ControlList" << endl; return TestFail; } /* * Deserialize the control list, this should fail as the control * info map hasn't been deserialized. */ buffer = ByteStreamBuffer(const_cast(listData.data()), listData.size()); ControlList newList = deserializer.deserialize(buffer); if (!newList.empty()) { cerr << "List deserialization without info map should have failed" << endl; return TestFail; } if (buffer.overflow()) { cerr << "Failed list deserialization modified the buffer" << endl; return TestFail; } /* Deserialize the control info map and verify the contents. */ buffer = ByteStreamBuffer(const_cast(infoData.data()), infoData.size()); ControlInfoMap newInfoMap = deserializer.deserialize(buffer); if (newInfoMap.empty()) { cerr << "Failed to deserialize ControlInfoMap" << endl; return TestFail; } if (buffer.overflow()) { cerr << "Overflow when deserializing ControlInfoMap" << endl; return TestFail; } if (!equals(infoMap, newInfoMap)) { cerr << "Deserialized map doesn't match original" << endl; return TestFail; } /* Make sure control limits looked up by id are not changed. */ const ControlInfo &newLimits = newInfoMap.at(&controls::Brightness); const ControlInfo &initialLimits = infoMap.at(&controls::Brightness); if (newLimits.min() != initialLimits.min() || newLimits.max() != initialLimits.max()) { cerr << "The brightness control limits have changed" << endl; return TestFail; } /* Deserialize the control list and verify the contents. */ buffer = ByteStreamBuffer(const_cast(listData.data()), listData.size()); newList = deserializer.deserialize(buffer); if (newList.empty()) { cerr << "Failed to deserialize ControlList" << endl; return TestFail; } if (buffer.overflow()) { cerr << "Overflow when deserializing ControlList" << endl; return TestFail; } if (!equals(list, newList)) { cerr << "Deserialized list doesn't match original" << endl; return TestFail; } return TestPass; } }; TEST_REGISTER(ControlSerializationTest) 2' href='#n32'>32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2020, Google Inc.
 *
 * span.h - C++20 std::span<> implementation for C++11
 */

#ifndef __LIBCAMERA_SPAN_H__
#define __LIBCAMERA_SPAN_H__

#include <array>
#include <iterator>
#include <limits>
#include <stddef.h>
#include <type_traits>

namespace libcamera {

static constexpr std::size_t dynamic_extent = std::numeric_limits<std::size_t>::max();

template<typename T, std::size_t Extent = dynamic_extent>
class Span;

namespace details {

template<typename U>
struct is_array : public std::false_type {
};

template<typename U, std::size_t N>
struct is_array<std::array<U, N>> : public std::true_type {
};

template<typename U>
struct is_span : public std::false_type {
};

template<typename U, std::size_t Extent>
struct is_span<Span<U, Extent>> : public std::true_type {
};

} /* namespace details */

namespace utils {

template<typename C>
constexpr auto size(const C &c) -> decltype(c.size())
{
	return c.size();
}

template<typename C>
constexpr auto data(const C &c) -> decltype(c.data())
{
	return c.data();
}

template<typename C>
constexpr auto data(C &c) -> decltype(c.data())
{
	return c.data();
}

template<class T, std::size_t N>
constexpr T *data(T (&array)[N]) noexcept
{
	return array;
}

template<std::size_t I, typename T>
struct tuple_element;

template<std::size_t I, typename T, std::size_t N>
struct tuple_element<I, Span<T, N>> {
	using type = T;
};

template<typename T>
struct tuple_size;

template<typename T, std::size_t N>
struct tuple_size<Span<T, N>> : public std::integral_constant<std::size_t, N> {
};

template<typename T>
struct tuple_size<Span<T, dynamic_extent>>;

} /* namespace utils */

template<typename T, std::size_t Extent>
class Span
{
public:
	using element_type = T;
	using value_type = typename std::remove_cv_t<T>;
	using size_type = std::size_t;
	using difference_type = std::ptrdiff_t;
	using pointer = T *;
	using const_pointer = const T *;
	using reference = T &;
	using const_reference = const T &;
	using iterator = pointer;
	using const_iterator = const_pointer;
	using reverse_iterator = std::reverse_iterator<iterator>;
	using const_reverse_iterator = std::reverse_iterator<const_iterator>;

	static constexpr std::size_t extent = Extent;

	template<bool Dependent = false,
		 typename = std::enable_if_t<Dependent || Extent == 0>>
	constexpr Span() noexcept
		: data_(nullptr)
	{
	}

	constexpr Span(pointer ptr, size_type count)
		: data_(ptr)
	{
	}

	constexpr Span(pointer first, pointer last)
		: data_(first)
	{
	}

	template<std::size_t N>
	constexpr Span(element_type (&arr)[N],
		       std::enable_if_t<std::is_convertible<std::remove_pointer_t<decltype(utils::data(arr))> (*)[],
							    element_type (*)[]>::value &&
					N == Extent,
					std::nullptr_t> = nullptr) noexcept
		: data_(arr)
	{
	}

	template<std::size_t N>
	constexpr Span(std::array<value_type, N> &arr,
		       std::enable_if_t<std::is_convertible<std::remove_pointer_t<decltype(utils::data(arr))> (*)[],
							    element_type (*)[]>::value &&
					N == Extent,
					std::nullptr_t> = nullptr) noexcept
		: data_(arr.data())
	{
	}

	template<std::size_t N>
	constexpr Span(const std::array<value_type, N> &arr,
		       std::enable_if_t<std::is_convertible<std::remove_pointer_t<decltype(utils::data(arr))> (*)[],
							    element_type (*)[]>::value &&
					N == Extent,
					std::nullptr_t> = nullptr) noexcept
		: data_(arr.data())
	{
	}

	template<class Container>
	constexpr Span(Container &cont,
		       std::enable_if_t<!details::is_span<Container>::value &&
					!details::is_array<Container>::value &&
					!std::is_array<Container>::value &&
					std::is_convertible<std::remove_pointer_t<decltype(utils::data(cont))> (*)[],
							    element_type (*)[]>::value,
					std::nullptr_t> = nullptr)
		: data_(utils::data(cont))
	{
	}

	template<class Container>
	constexpr Span(const Container &cont,
		       std::enable_if_t<!details::is_span<Container>::value &&
					!details::is_array<Container>::value &&
					!std::is_array<Container>::value &&
					std::is_convertible<std::remove_pointer_t<decltype(utils::data(cont))> (*)[],
							    element_type (*)[]>::value,
					std::nullptr_t> = nullptr)
		: data_(utils::data(cont))
	{
		static_assert(utils::size(cont) == Extent, "Size mismatch");
	}

	template<class U, std::size_t N>
	constexpr Span(const Span<U, N> &s,
		       std::enable_if_t<std::is_convertible<U (*)[], element_type (*)[]>::value &&
					N == Extent,
					std::nullptr_t> = nullptr) noexcept
		: data_(s.data())
	{
	}

	constexpr Span(const Span &other) noexcept = default;

	constexpr Span &operator=(const Span &other) noexcept
	{
		data_ = other.data_;
		return *this;
	}

	constexpr iterator begin() const { return data(); }
	constexpr const_iterator cbegin() const { return begin(); }
	constexpr iterator end() const { return data() + size(); }
	constexpr const_iterator cend() const { return end(); }
	constexpr reverse_iterator rbegin() const { return reverse_iterator(data() + size() - 1); }
	constexpr const_reverse_iterator crbegin() const { return rbegin(); }
	constexpr reverse_iterator rend() const { return reverse_iterator(data() - 1); }
	constexpr const_reverse_iterator crend() const { return rend(); }

	constexpr reference front() const { return *data(); }
	constexpr reference back() const { return *(data() + size() - 1); }
	constexpr reference operator[](size_type idx) const { return data()[idx]; }
	constexpr pointer data() const noexcept { return data_; }

	constexpr size_type size() const noexcept { return Extent; }
	constexpr size_type size_bytes() const noexcept { return size() * sizeof(element_type); }
	constexpr bool empty() const noexcept { return size() == 0; }

	template<std::size_t Count>
	constexpr Span<element_type, Count> first() const
	{
		static_assert(Count <= Extent, "Count larger than size");
		return { data(), Count };
	}

	constexpr Span<element_type, dynamic_extent> first(std::size_t Count) const
	{
		return { data(), Count };
	}

	template<std::size_t Count>
	constexpr Span<element_type, Count> last() const
	{
		static_assert(Count <= Extent, "Count larger than size");
		return { data() + size() - Count, Count };
	}

	constexpr Span<element_type, dynamic_extent> last(std::size_t Count) const
	{
		return { data() + size() - Count, Count };
	}

	template<std::size_t Offset, std::size_t Count = dynamic_extent>
	constexpr Span<element_type, Count != dynamic_extent ? Count : Extent - Offset> subspan() const
	{
		static_assert(Offset <= Extent, "Offset larger than size");
		static_assert(Count == dynamic_extent || Count + Offset <= Extent,
			      "Offset + Count larger than size");
		return { data() + Offset, Count == dynamic_extent ? size() - Offset : Count };
	}

	constexpr Span<element_type, dynamic_extent>
	subspan(std::size_t Offset, std::size_t Count = dynamic_extent) const
	{
		return { data() + Offset, Count == dynamic_extent ? size() - Offset : Count };
	}

private:
	pointer data_;
};

template<typename T>
class Span<T, dynamic_extent>
{
public:
	using element_type = T;
	using value_type = typename std::remove_cv_t<T>;
	using size_type = std::size_t;
	using difference_type = std::ptrdiff_t;
	using pointer = T *;
	using const_pointer = const T *;
	using reference = T &;
	using const_reference = const T &;
	using iterator = T *;
	using const_iterator = const T *;
	using reverse_iterator = std::reverse_iterator<iterator>;
	using const_reverse_iterator = std::reverse_iterator<const_iterator>;

	static constexpr std::size_t extent = dynamic_extent;

	constexpr Span() noexcept
		: data_(nullptr), size_(0)
	{
	}

	constexpr Span(pointer ptr, size_type count)
		: data_(ptr), size_(count)
	{
	}

	constexpr Span(pointer first, pointer last)
		: data_(first), size_(last - first)
	{
	}

	template<std::size_t N>