/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright (C) 2020, Google Inc. * * libcamera delayed controls test */ #include #include "libcamera/internal/delayed_controls.h" #include "libcamera/internal/device_enumerator.h" #include "libcamera/internal/media_device.h" #include "libcamera/internal/v4l2_videodevice.h" #include "test.h" using namespace std; using namespace libcamera; class DelayedControlsTest : public Test { public: DelayedControlsTest() { } protected: int init() override { enumerator_ = DeviceEnumerator::create(); if (!enumerator_) { cerr << "Failed to create device enumerator" << endl; return TestFail; } if (enumerator_->enumerate()) { cerr << "Failed to enumerate media devices" << endl; return TestFail; } DeviceMatch dm("vivid"); dm.add("vivid-000-vid-cap"); media_ = enumerator_->search(dm); if (!media_) { cerr << "vivid video device found" << endl; return TestSkip; } dev_ = V4L2VideoDevice::fromEntityName(media_.get(), "vivid-000-vid-cap"); if (dev_->open()) { cerr << "Failed to open video device" << endl; return TestFail; } const ControlInfoMap &infoMap = dev_->controls(); /* Make sure the controls we require are present. */ if (infoMap.empty()) { cerr << "Failed to enumerate controls" << endl; return TestFail; } if (infoMap.find(V4L2_CID_BRIGHTNESS) == infoMap.end() || infoMap.find(V4L2_CID_CONTRAST) == infoMap.end()) { cerr << "Missing controls" << endl; return TestFail; } return TestPass; } int singleControlNoDelay() { std::unordered_map delays = { { V4L2_CID_BRIGHTNESS, { 0, false } }, }; std::unique_ptr delayed = std::make_unique(dev_.get(), delays); ControlList ctrls; /* Reset control to value not used in test. */ ctrls.set(V4L2_CID_BRIGHTNESS, 1); dev_->setControls(&ctrls); delayed->reset(); /* Trigger the first frame start event */ delayed->applyControls(0); /* Test control without delay are set at once. */ for (unsigned int i = 1; i < 100; i++) { int32_t value = 100 + i; ctrls.set(V4L2_CID_BRIGHTNESS, value); delayed->push(ctrls); delayed->applyControls(i); ControlList result = delayed->get(i); int32_t brightness = result.get(V4L2_CID_BRIGHTNESS).get(); if (brightness != value) { cerr << "Failed single control without delay" << " frame " << i << " expected " << value << " got " << brightness << endl; return TestFail; } } return TestPass; } int singleControlWithDelay() { std::unordered_map delays = { { V4L2_CID_BRIGHTNESS, { 1, false } }, }; std::unique_ptr delayed = std::make_unique(dev_.get(), delays); ControlList ctrls; /* Reset control to value that will be first in test. */ int32_t expected = 4; ctrls.set(V4L2_CID_BRIGHTNESS, expected); dev_->setControls(&ctrls); delayed->reset(); /* Trigger the first frame start event */ delayed->applyControls(0); /* Test single control with delay. */ for (unsigned int i = 1; i < 100; i++) { int32_t value = 10 + i; ctrls.set(V4L2_CID_BRIGHTNESS, value); delayed->push(ctrls); delayed->applyControls(i); ControlList result = delayed->get(i); int32_t brightness = result.get(V4L2_CID_BRIGHTNESS).get(); if (brightness != expected) { cerr << "Failed single control with delay" << " frame " << i << " expected " << expected << " got " << brightness << endl; return TestFail; } expected = value; } return TestPass; } int dualControlsWithDelay() { static const unsigned int maxDelay = 2; std::unordered_map delays = { { V4L2_CID_BRIGHTNESS, { 1, false } }, { V4L2_CID_CONTRAST, { maxDelay, false } }, }; std::unique_ptr delayed = std::make_unique(dev_.get(), delays); ControlList ctrls; /* Reset control to value that will be first two frames in test. */ int32_t expected = 200; ctrls.set(V4L2_CID_BRIGHTNESS, expected); ctrls.set(V4L2_CID_CONTRAST, expected + 1); dev_->setControls(&ctrls); delayed->reset(); /* Trigger the first frame start event */ delayed->applyControls(0); /* Test dual control with delay. */ for (unsigned int i = 1; i < 100; i++) { int32_t value = 10 + i; ctrls.set(V4L2_CID_BRIGHTNESS, value); ctrls.set(V4L2_CID_CONTRAST, value + 1); delayed->push(ctrls); delayed->applyControls(i); ControlList result = delayed->get(i); int32_t brightness = result.get(V4L2_CID_BRIGHTNESS).get(); int32_t contrast = result.get(V4L2_CID_CONTRAST).get(); if (brightness != expected || contrast != expected + 1) { cerr << "Failed dual controls" << " frame " << i << " brightness " << brightness << " contrast " << contrast << " expected " << expected << endl; return TestFail; } expected = i < maxDelay ? expected : value - 1; } return TestPass; } int dualControlsMultiQueue() { static const unsigned int maxDelay = 2; std::unordered_map delays = { { V4L2_CID_BRIGHTNESS, { 1, false } }, { V4L2_CID_CONTRAST, { maxDelay, false } } }; std::unique_ptr delayed = std::make_unique(dev_.get(), delays); ControlList ctrls; /* Reset control to value that will be first two frames in test. */ int32_t expected = 100; ctrls.set(V4L2_CID_BRIGHTNESS, expected); ctrls.set(V4L2_CID_CONTRAST, expected); dev_->setControls(&ctrls); delayed->reset(); /* Trigger the first frame start event */ delayed->applyControls(0); /* * Queue all controls before any fake frame start. Note we * can't queue up more then the delayed controls history size * which is 16. Where one spot is used by the reset control. */ for (unsigned int i = 0; i < 15; i++) { int32_t value = 10 + i; ctrls.set(V4L2_CID_BRIGHTNESS, value); ctrls.set(V4L2_CID_CONTRAST, value); delayed->push(ctrls); } /* Process all queued controls. */ for (unsigned int i = 1; i < 16; i++) { int32_t value = 10 + i - 1; delayed->applyControls(i); ControlList result = delayed->get(i); int32_t brightness = result.get(V4L2_CID_BRIGHTNESS).get(); int32_t contrast = result.get(V4L2_CID_CONTRAST).get(); if (brightness != expected || contrast != expected) { cerr << "Failed multi queue" << " frame " << i << " brightness " << brightness << " contrast " << contrast << " expected " << expected << endl; return TestFail; } expected = i < maxDelay ? expected : value - 1; } return TestPass; } int run() override { int ret; /* Test single control without delay. */ ret = singleControlNoDelay(); if (ret) return ret; /* Test single control with delay. */ ret = singleControlWithDelay(); if (ret) return ret; /* Test dual controls with different delays. */ ret = dualControlsWithDelay(); if (ret) return ret; /* Test control values produced faster than consumed. */ ret = dualControlsMultiQueue(); if (ret) return ret; return TestPass; } private: std::unique_ptr enumerator_; std::shared_ptr media_; std::unique_ptr dev_; }; TEST_REGISTER(DelayedControlsTest) 28'>128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/* SPDX-License-Identifier: BSD-2-Clause */
/*
 * Copyright (C) 2019, Raspberry Pi Ltd
 *
 * CCM (colour correction matrix) control algorithm
 */

#include <libcamera/base/log.h>

#include "../awb_status.h"
#include "../ccm_status.h"
#include "../lux_status.h"
#include "../metadata.h"

#include "ccm.h"

using namespace RPiController;
using namespace libcamera;

LOG_DEFINE_CATEGORY(RPiCcm)

/*
 * This algorithm selects a CCM (Colour Correction Matrix) according to the
 * colour temperature estimated by AWB (interpolating between known matricies as
 * necessary). Additionally the amount of colour saturation can be controlled
 * both according to the current estimated lux level and according to a
 * saturation setting that is exposed to applications.
 */

#define NAME "rpi.ccm"

Matrix3x3::Matrix3x3()
{
	memset(m, 0, sizeof(m));
}
Matrix3x3::Matrix3x3(double m0, double m1, double m2, double m3, double m4, double m5,
	       double m6, double m7, double m8)
{
	m[0][0] = m0, m[0][1] = m1, m[0][2] = m2, m[1][0] = m3, m[1][1] = m4,
	m[1][2] = m5, m[2][0] = m6, m[2][1] = m7, m[2][2] = m8;
}
int Matrix3x3::read(const libcamera::YamlObject &params)
{
	double *ptr = (double *)m;

	if (params.size() != 9) {
		LOG(RPiCcm, Error) << "Wrong number of values in CCM";
		return -EINVAL;
	}

	for (const auto &param : params.asList()) {
		auto value = param.get<double>();
		if (!value)
			return -EINVAL;
		*ptr++ = *value;
	}

	return 0;
}

Ccm::Ccm(Controller *controller)
	: CcmAlgorithm(controller), saturation_(1.0) {}

char const *Ccm::name() const
{
	return NAME;
}

int Ccm::read(const libcamera::YamlObject &params)
{
	int ret;

	if (params.contains("saturation")) {
		config_.saturation = params["saturation"].get<ipa::Pwl>(ipa::Pwl{});
		if (config_.saturation.empty())
			return -EINVAL;
	}

	for (auto &p : params["ccms"].asList()) {
		auto value = p["ct"].get<double>();
		if (!value)
			return -EINVAL;

		CtCcm ctCcm;
		ctCcm.ct = *value;
		ret = ctCcm.ccm.read(p["ccm"]);
		if (ret)
			return ret;

		if (!config_.ccms.empty() && ctCcm.ct <= config_.ccms.back().ct) {
			LOG(RPiCcm, Error)