/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright (C) 2019, Google Inc. * * control_list.cpp - ControlList tests */ #include #include #include #include #include #include "libcamera/internal/camera_controls.h" #include "camera_test.h" #include "test.h" using namespace std; using namespace libcamera; class ControlListTest : public CameraTest, public Test { public: ControlListTest() : CameraTest("platform/vimc.0 Sensor B") { } protected: int init() override { return status_; } int run() override { CameraControlValidator validator(camera_.get()); ControlList list(controls::controls, &validator); /* Test that the list is initially empty. */ if (!list.empty()) { cout << "List should to be empty" << endl; return TestFail; } if (list.size() != 0) { cout << "List should contain zero items" << endl; return TestFail; } if (list.contains(controls::Brightness)) { cout << "List should not contain Brightness control" << endl; return TestFail; } unsigned int count = 0; for (auto iter = list.begin(); iter != list.end(); ++iter) count++; if (count != 0) { cout << "List iteration should not produce any item" << endl; return TestFail; } /* * Set a control, and verify that the list now contains it, and * nothing else. */ list.set(controls::Brightness, -0.5f); if (list.empty()) { cout << "List should not be empty" << endl; return TestFail; } if (list.size() != 1) { cout << "List should contain one item" << endl; return TestFail; } if (!list.contains(controls::Brightness)) { cout << "List should contain Brightness control" << endl; return TestFail; } count = 0; for (auto iter = list.begin(); iter != list.end(); ++iter) count++; if (count != 1) { cout << "List iteration should produce one item" << endl; return TestFail; } if (list.get(controls::Brightness) != -0.5f) { cout << "Incorrest Brightness control value" << endl; return TestFail; } if (list.contains(controls::Contrast)) { cout << "List should not contain Contract control" << endl; return TestFail; } /* Update the first control and set a second one. */ list.set(controls::Brightness, 0.0f); list.set(controls::Contrast, 1.5f); if (!list.contains(controls::Brightness) || !list.contains(controls::Contrast)) { cout << "List should contain Brightness and Contrast controls" << endl; return TestFail; } if (list.get(controls::Brightness) != 0.0f || list.get(controls::Contrast) != 1.5f) { cout << "Failed to retrieve control value" << endl; return TestFail; } /* * Update both controls and verify that the container doesn't * grow. */ list.set(controls::Brightness, 0.5f); list.set(controls::Contrast, 1.1f); if (list.get(controls::Brightness) != 0.5f || list.get(controls::Contrast) != 1.1f) { cout << "Failed to update control value" << endl; return TestFail; } if (list.size() != 2) { cout << "List should contain two elements" << endl; return TestFail; } /* * Attempt to set an invalid control and verify that the * operation failed. */ list.set(controls::AwbEnable, true); if (list.contains(controls::AwbEnable)) { cout << "List shouldn't contain AwbEnable control" << endl; return TestFail; } /* * Create a new list with a new control and merge it with the * existing one, verifying that the existing controls * values don't get overwritten. */ ControlList mergeList(controls::controls, &validator); mergeList.set(controls::Brightness, 0.7f); mergeList.set(controls::Saturation, 0.4f); mergeList.merge(list); if (mergeList.size() != 3) { cout << "Merged list should contain three elements" << endl; return TestFail; } if (list.size() != 2) { cout << "The list to merge should contain two elements" << endl; return TestFail; } if (!mergeList.contains(controls::Brightness) || !mergeList.contains(controls::Contrast) || !mergeList.contains(controls::Saturation)) { cout << "Merged list does not contain all controls" << endl; return TestFail; } if (mergeList.get(controls::Brightness) != 0.7f) { cout << "Brightness control value changed after merging lists" << endl; return TestFail; } if (mergeList.get(controls::Contrast) != 1.1f) { cout << "Contrast control value changed after merging lists" << endl; return TestFail; } if (mergeList.get(controls::Saturation) != 0.4f) { cout << "Saturation control value changed after merging lists" << endl; return TestFail; } return TestPass; } }; TEST_REGISTER(ControlListTest) n39'>39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2021, Google Inc.
 *
 * camera_sensor_helper.cpp - Helper class that performs sensor-specific
 * parameter computations
 */
#include "camera_sensor_helper.h"

#include <cmath>

#include <libcamera/base/log.h>

/**
 * \file camera_sensor_helper.h
 * \brief Helper class that performs sensor-specific parameter computations
 *
 * Computation of sensor configuration parameters is a sensor specific
 * operation. Each CameraHelper derived class computes the value of
 * configuration parameters, for example the analogue gain value, using
 * sensor-specific functions and constants.
 *
 * Every subclass of CameraSensorHelper shall be registered with libipa using
 * the REGISTER_CAMERA_SENSOR_HELPER() macro.
 */

namespace libcamera {

LOG_DEFINE_CATEGORY(CameraSensorHelper)

namespace ipa {

/**
 * \class CameraSensorHelper
 * \brief Base class for computing sensor tuning parameters using
 * sensor-specific constants
 *
 * Instances derived from CameraSensorHelper class are sensor-specific.
 * Each supported sensor will have an associated base class defined.
 */

/**
 * \brief Construct a CameraSensorHelper instance
 *
 * CameraSensorHelper derived class instances shall never be constructed
 * manually but always through the CameraSensorHelperFactory::create() function.
 */

/**
 * \brief Compute gain code from the analogue gain absolute value
 * \param[in] gain The real gain to pass
 *
 * This function aims to abstract the calculation of the gain letting the IPA
 * use the real gain for its estimations.
 *
 * \return The gain code to pass to V4L2
 */
uint32_t CameraSensorHelper::gainCode(double gain) const
{
	const AnalogueGainConstants &k = gainConstants_;

	switch (gainType_) {
	case AnalogueGainLinear:
		ASSERT(k.linear.m0 == 0 || k.linear.m1 == 0);

		return (k.linear.c0 - k.linear.c1 * gain) /
		       (k.linear.m1 * gain - k.linear.m0);

	case AnalogueGainExponential:
		ASSERT(k.exp.a != 0 && k.exp.m != 0);

		return std::log2(gain / k.exp.a) / k.exp.m;

	default:
		ASSERT(false);
		return 0;
	}
}

/**
 * \brief Compute the real gain from the V4L2 subdev control gain code
 * \param[in] gainCode The V4L2 subdev control gain
 *
 * This function aims to abstract the calculation of the gain letting the IPA
 * use the real gain for its estimations. It is the counterpart of the function
 * CameraSensorHelper::gainCode.
 *
 * \return The real gain
 */
double CameraSensorHelper::gain(uint32_t gainCode) const
{
	const AnalogueGainConstants &k = gainConstants_;
	double gain = static_cast<double>(gainCode);

	switch (gainType_) {
	case AnalogueGainLinear:
		ASSERT(k.linear.m0 == 0 || k.linear.m1 == 0);

		return (k.linear.m0 * gain + k.linear.c0) /
		       (k.linear.m1 * gain + k.linear.c1);

	case AnalogueGainExponential:
		ASSERT(k.exp.a != 0 && k.exp.m != 0);

		return k.exp.a * std::exp2(k.exp.m * gain);

	default:
		ASSERT(false);
		return 0.0;
	}
}

/**
 * \enum CameraSensorHelper::AnalogueGainType
 * \brief The gain calculation modes as defined by the MIPI CCS
 *
 * Describes the image sensor analogue gain capabilities.
 * Two modes are possible, depending on the sensor: Linear and Exponential.
 */

/**
 * \var CameraSensorHelper::AnalogueGainLinear
 * \brief Gain is computed using linear gain estimation
 *
 * The relationship between the integer gain parameter and the resulting gain
 * multiplier is given by the following equation:
 *
 * \f$gain=\frac{m0x+c0}{m1x+c1}\f$
 *
 * Where 'x' is the gain control parameter, and m0, m1, c0 and c1 are
 * image-sensor-specific constants of the sensor.
 * These constants are static parameters, and for any given image sensor either
 * m0 or m1 shall be zero.
 *
 * The full Gain equation therefore reduces to either:
 *
 * \f$gain=\frac{c0}{m1x+c1}\f$ or \f$\frac{m0x+c0}{c1}\f$
 */

/**
 * \var CameraSensorHelper::AnalogueGainExponential
 * \brief Gain is expressed using an exponential model
 *
 * The relationship between the integer gain parameter and the resulting gain
 * multiplier is given by the following equation:
 *
 * \f$gain = a \cdot 2^{m \cdot x}\f$
 *
 * Where 'x' is the gain control parameter, and 'a' and 'm' are image
 * sensor-specific constants.
 *
 * This is a subset of the MIPI CCS exponential gain model with the linear
 * factor 'a' being a constant, but with the exponent being configurable
 * through the 'm' coefficient.
 *
 * When the gain is expressed in dB, 'a' is equal to 1 and 'm' to
 * \f$log_{2}{10^{\frac{1}{20}}}\f$.
 */

/**
 * \struct CameraSensorHelper::AnalogueGainLinearConstants
 * \brief Analogue gain constants for the linear gain model
 *
 * \var CameraSensorHelper::AnalogueGainLinearConstants::m0
 * \brief Constant used in the linear gain coding/decoding
 *