/* SPDX-License-Identifier: LGPL-2.1-or-later */ /* * Copyright (C) 2020, Raspberry Pi (Trading) Ltd. * * dng_writer.cpp - DNG writer */ #include "dng_writer.h" #include <algorithm> #include <iostream> #include <map> #include <tiffio.h> #include <libcamera/control_ids.h> #include <libcamera/formats.h> using namespace libcamera; enum CFAPatternColour : uint8_t { CFAPatternRed = 0, CFAPatternGreen = 1, CFAPatternBlue = 2, }; struct FormatInfo { uint8_t bitsPerSample; CFAPatternColour pattern[4]; void (*packScanline)(void *output, const void *input, unsigned int width); void (*thumbScanline)(const FormatInfo &info, void *output, const void *input, unsigned int width, unsigned int stride); }; struct Matrix3d { Matrix3d() { } Matrix3d(float m0, float m1, float m2, float m3, float m4, float m5, float m6, float m7, float m8) { m[0] = m0, m[1] = m1, m[2] = m2; m[3] = m3, m[4] = m4, m[5] = m5; m[6] = m6, m[7] = m7, m[8] = m8; } Matrix3d(const Span<const float> &span) : Matrix3d(span[0], span[1], span[2], span[3], span[4], span[5], span[6], span[7], span[8]) { } static Matrix3d diag(float diag0, float diag1, float diag2) { return Matrix3d(diag0, 0, 0, 0, diag1, 0, 0, 0, diag2); } static Matrix3d identity() { return Matrix3d(1, 0, 0, 0, 1, 0, 0, 0, 1); } Matrix3d transpose() const { return { m[0], m[3], m[6], m[1], m[4], m[7], m[2], m[5], m[8] }; } Matrix3d cofactors() const { return { m[4] * m[8] - m[5] * m[7], -(m[3] * m[8] - m[5] * m[6]), m[3] * m[7] - m[4] * m[6], -(m[1] * m[8] - m[2] * m[7]), m[0] * m[8] - m[2] * m[6], -(m[0] * m[7] - m[1] * m[6]), m[1] * m[5] - m[2] * m[4], -(m[0] * m[5] - m[2] * m[3]), m[0] * m[4] - m[1] * m[3] }; } Matrix3d adjugate() const { return cofactors().transpose(); } float determinant() const { return m[0] * (m[4] * m[8] - m[5] * m[7]) - m[1] * (m[3] * m[8] - m[5] * m[6]) + m[2] * (m[3] * m[7] - m[4] * m[6]); } Matrix3d inverse() const { return adjugate() * (1.0 / determinant()); } Matrix3d operator*(const Matrix3d &other) const { Matrix3d result; for (unsigned int i = 0; i < 3; i++) { for (unsigned int j = 0; j < 3; j++) { result.m[i * 3 + j] = m[i * 3 + 0] * other.m[0 + j] + m[i * 3 + 1] * other.m[3 + j] + m[i * 3 + 2] * other.m[6 + j]; } } return result; } Matrix3d operator*(float f) const { Matrix3d result; for (unsigned int i = 0; i < 9; i++) result.m[i] = m[i] * f; return result; } float m[9]; }; void packScanlineSBGGR10P(void *output, const void *input, unsigned int width) { const uint8_t *in = static_cast<const uint8_t *>(input); uint8_t *out = static_cast<uint8_t *>(output); /* \todo Can this be made more efficient? */ for (unsigned int x = 0; x < width; x += 4) { *out++ = in[0]; *out++ = (in[4] & 0x03) << 6 | in[1] >> 2; *out++ = (in[1] & 0x03) << 6 | (in[4] & 0x0c) << 2 | in[2] >> 4; *out++ = (in[2] & 0x0f) << 4 | (in[4] & 0x30) >> 2 | in[3] >> 6; *out++ = (in[3] & 0x3f) << 2 | (in[4] & 0xc0) >> 6; in += 5; } } void packScanlineSBGGR12P(void *output, const void *input, unsigned int width) { const uint8_t *in = static_cast<const uint8_t *>(input); uint8_t *out = static_cast<uint8_t *>(output); /* \todo Can this be made more efficient? */ for (unsigned int i = 0; i < width; i += 2) { *out++ = in[0]; *out++ = (in[2] & 0x0f) << 4 | in[1] >> 4; *out++ = (in[1] & 0x0f) << 4 | in[2] >> 4; in += 3; } } void thumbScanlineSBGGRxxP(const FormatInfo &info, void *output, const void *input, unsigned int width, unsigned int stride) { const uint8_t *in = static_cast<const uint8_t *>(input); uint8_t *out = static_cast<uint8_t *>(output); /* Number of bytes corresponding to 16 pixels. */ unsigned int skip = info.bitsPerSample * 16 / 8; for (unsigned int x = 0; x < width; x++) { uint8_t value = (in[0] + in[1] + in[stride] + in[stride + 1]) >> 2; *out++ = value; *out++ = value; *out++ = value; in += skip; } } void packScanlineIPU3(void *output, const void *input, unsigned int width) { const uint8_t *in = static_cast<const uint8_t *>(input); uint16_t *out = static_cast<uint16_t *>(output); /* * Upscale the 10-bit format to 16-bit as it's not trivial to pack it * as 10-bit without gaps. * * \todo Improve packing to keep the 10-bit sample size. */ unsigned int x = 0; while (true) { for (unsigned int i = 0; i < 6; i++) { *out++ = (in[1] & 0x03) << 14 | (in[0] & 0xff) << 6; if (++x >= width) return; *out++ = (in[2] & 0x0f) << 12 | (in[1] & 0xfc) << 4; if (++x >= width) return; *out++ = (in[3] & 0x3f) << 10 | (in[2] & 0xf0) << 2; if (++x >= width) return; *out++ = (in[4] & 0xff) << 8 | (in[3] & 0xc0) << 0; if (++x >= width) return; in += 5; } *out++ = (in[1] & 0x03) << 14 | (in[0] & 0xff) << 6; if (++x >= width) return; in += 2; } } void thumbScanlineIPU3([[maybe_unused]] const FormatInfo &info, void *output, const void *input, unsigned int width, unsigned int stride) { uint8_t *out = static_cast<uint8_t *>(output); for (unsigned int x = 0; x < width; x++) { unsigned int pixel = x * 16; unsigned int block = pixel / 25; unsigned int pixelInBlock = pixel - block * 25; /* * If the pixel is the last in the block cheat a little and * move one pixel backward to avoid reading between two blocks * and having to deal with the padding bits. */ if (pixelInBlock == 24) pixelInBlock--; const uint8_t *in = static_cast<const uint8_t *>(input) + block * 32 + (pixelInBlock / 4) * 5; uint16_t val1, val2, val3, val4; switch (pixelInBlock % 4) { case 0: val1 = (in[1] & 0x03) << 14 | (in[0] & 0xff) << 6; val2 = (in[2] & 0x0f) << 12 | (in[1] & 0xfc) << 4; val3 = (in[stride + 1] & 0x03) << 14 | (in[stride + 0] & 0xff) << 6; val4 = (in[stride + 2] & 0x0f) << 12 | (in[stride + 1] & 0xfc) << 4; break; case 1: val1 = (in[2] & 0x0f) << 12 | (in[1] & 0xfc) << 4; val2 = (in[3] & 0x3f) << 10 | (in[2] & 0xf0) << 2; val3 = (in[stride + 2] & 0x0f) << 12 | (in[stride + 1] & 0xfc) << 4; val4 = (in[stride + 3] & 0x3f) << 10 | (in[stride + 2] & 0xf0) << 2; break; case 2: val1 = (in[3] & 0x3f) << 10 | (in[2] & 0xf0) << 2; val2 = (in[4] & 0xff) << 8 | (in[3] & 0xc0) << 0; val3 = (in[stride + 3] & 0x3f) << 10 | (in[stride + 2] & 0xf0) << 2; val4 = (in[stride + 4] & 0xff) << 8 | (in[stride + 3] & 0xc0) << 0; break; case 3: val1 = (in[4] & 0xff) << 8 | (in[3] & 0xc0) << 0; val2 = (in[6] & 0x03) << 14 | (in[5] & 0xff) << 6; val3 = (in[stride + 4] & 0xff) << 8 | (in[stride + 3] & 0xc0) << 0; val4 = (in[stride + 6] & 0x03) << 14 | (in[stride + 5] & 0xff) << 6; break; } uint8_t value = (val1 + val2 + val3 + val4) >> 10; *out++ = value; *out++ = value; *out++ = value; } } static const std::map<PixelFormat, FormatInfo> formatInfo = { { formats::SBGGR10_CSI2P, { .bitsPerSample = 10, .pattern = { CFAPatternBlue, CFAPatternGreen, CFAPatternGreen, CFAPatternRed }, .packScanline = packScanlineSBGGR10P, .thumbScanline = thumbScanlineSBGGRxxP, } }, { formats::SGBRG10_CSI2P, { .bitsPerSample = 10, .pattern = { CFAPatternGreen, CFAPatternBlue, CFAPatternRed, CFAPatternGreen }, .packScanline = packScanlineSBGGR10P, .thumbScanline = thumbScanlineSBGGRxxP, } }, { formats::SGRBG10_CSI2P, { .bitsPerSample = 10, .pattern = { CFAPatternGreen, CFAPatternRed, CFAPatternBlue, CFAPatternGreen }, .packScanline = packScanlineSBGGR10P, .thumbScanline = thumbScanlineSBGGRxxP, } }, { formats::SRGGB10_CSI2P, { .bitsPerSample = 10, .pattern = { CFAPatternRed, CFAPatternGreen, CFAPatternGreen, CFAPatternBlue }, .packScanline = packScanlineSBGGR10P, .thumbScanline = thumbScanlineSBGGRxxP, } }, { formats::SBGGR12_CSI2P, { .bitsPerSample = 12, .pattern = { CFAPatternBlue, CFAPatternGreen, CFAPatternGreen, CFAPatternRed }, .packScanline = packScanlineSBGGR12P, .thumbScanline = thumbScanlineSBGGRxxP, } }, { formats::SGBRG12_CSI2P, { .bitsPerSample = 12, .pattern = { CFAPatternGreen, CFAPatternBlue, CFAPatternRed, CFAPatternGreen }, .packScanline = packScanlineSBGGR12P, .thumbScanline = thumbScanlineSBGGRxxP, } }, { formats::SGRBG12_CSI2P, { .bitsPerSample = 12, .pattern = { CFAPatternGreen, CFAPatternRed, CFAPatternBlue, CFAPatternGreen }, .packScanline = packScanlineSBGGR12P, .thumbScanline = thumbScanlineSBGGRxxP, } }, { formats::SRGGB12_CSI2P, { .bitsPerSample = 12, .pattern = { CFAPatternRed, CFAPatternGreen, CFAPatternGreen, CFAPatternBlue }, .packScanline = packScanlineSBGGR12P, .thumbScanline = thumbScanlineSBGGRxxP, } }, { formats::SBGGR10_IPU3, { .bitsPerSample = 16, .pattern = { CFAPatternBlue, CFAPatternGreen, CFAPatternGreen, CFAPatternRed }, .packScanline = packScanlineIPU3, .thumbScanline = thumbScanlineIPU3, } }, { formats::SGBRG10_IPU3, { .bitsPerSample = 16, .pattern = { CFAPatternGreen, CFAPatternBlue, CFAPatternRed, CFAPatternGreen }, .packScanline = packScanlineIPU3, .thumbScanline = thumbScanlineIPU3, } }, { formats::SGRBG10_IPU3, { .bitsPerSample = 16, .pattern = { CFAPatternGreen, CFAPatternRed, CFAPatternBlue, CFAPatternGreen }, .packScanline = packScanlineIPU3, .thumbScanline = thumbScanlineIPU3, } }, { formats::SRGGB10_IPU3, { .bitsPerSample = 16, .pattern = { CFAPatternRed, CFAPatternGreen, CFAPatternGreen, CFAPatternBlue }, .packScanline = packScanlineIPU3, .thumbScanline = thumbScanlineIPU3, } }, }; int DNGWriter::write(const char *filename, const Camera *camera, const StreamConfiguration &config, const ControlList &metadata, [[maybe_unused]] const FrameBuffer *buffer, const void *data) { const auto it = formatInfo.find(config.pixelFormat); if (it == formatInfo.cend()) { std::cerr << "Unsupported pixel format" << std::endl; return -EINVAL; } const FormatInfo *info = &it->second; TIFF *tif = TIFFOpen(filename, "w"); if (!tif) { std::cerr << "Failed to open tiff file" << std::endl; return -EINVAL; } /* * Scanline buffer, has to be large enough to store both a RAW scanline * or a thumbnail scanline. The latter will always be much smaller than * the former as we downscale by 16 in both directions. */ uint8_t scanline[(config.size.width * info->bitsPerSample + 7) / 8]; toff_t rawIFDOffset = 0; toff_t exifIFDOffset = 0; /* * Start with a thumbnail in IFD 0 for compatibility with TIFF baseline * readers, as required by the TIFF/EP specification. Tags that apply to * the whole file are stored here. */ const uint8_t version[] = { 1, 2, 0, 0 }; TIFFSetField(tif, TIFFTAG_DNGVERSION, version); TIFFSetField(tif, TIFFTAG_DNGBACKWARDVERSION, version); TIFFSetField(tif, TIFFTAG_FILLORDER, FILLORDER_MSB2LSB); TIFFSetField(tif, TIFFTAG_MAKE, "libcamera"); /* \todo Report a real model string instead of id. */ TIFFSetField(tif, TIFFTAG_MODEL, camera->id().c_str()); TIFFSetField(tif, TIFFTAG_UNIQUECAMERAMODEL, camera->id().c_str()); TIFFSetField(tif, TIFFTAG_SOFTWARE, "qcam"); TIFFSetField(tif, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT); /* * Thumbnail-specific tags. The thumbnail is stored as an RGB image * with 1/16 of the raw image resolution. Greyscale would save space, * but doesn't seem well supported by RawTherapee. */ TIFFSetField(tif, TIFFTAG_SUBFILETYPE, FILETYPE_REDUCEDIMAGE); TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, config.size.width / 16); TIFFSetField(tif, TIFFTAG_IMAGELENGTH, config.size.height / 16); TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8); TIFFSetField(tif, TIFFTAG_COMPRESSION, COMPRESSION_NONE); TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB); TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 3); TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG); TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT); /* * Fill in some reasonable colour information in the DNG. We supply * the "neutral" colour values which determine the white balance, and the * "ColorMatrix1" which converts XYZ to (un-white-balanced) camera RGB. * Note that this is not a "proper" colour calibration for the DNG, * nonetheless, many tools should be able to render the colours better. */ float neutral[3] = { 1, 1, 1 }; Matrix3d wbGain = Matrix3d::identity(); /* From http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html */ const Matrix3d rgb2xyz(0.4124564, 0.3575761, 0.1804375, 0.2126729, 0.7151522, 0.0721750, 0.0193339, 0.1191920, 0.9503041); Matrix3d ccm = Matrix3d::identity(); /* * Pick a reasonable number eps to protect against singularities. It * should be comfortably larger than the point at which we run into * numerical trouble, yet smaller than any plausible gain that we might * apply to a colour, either explicitly or as part of the colour matrix. */ const double eps = 1e-2; if (metadata.contains(controls::ColourGains)) { Span<const float> const &colourGains = metadata.get(controls::ColourGains); if (colourGains[0] > eps && colourGains[1] > eps) { wbGain = Matrix3d::diag(colourGains[0], 1, colourGains[1]); neutral[0] = 1.0 / colourGains[0]; /* red */ neutral[2] = 1.0 / colourGains[1]; /* blue */ } } if (metadata.contains(controls::ColourCorrectionMatrix)) { Span<const float> const &coeffs = metadata.get(controls::ColourCorrectionMatrix); Matrix3d ccmSupplied(coeffs); if (ccmSupplied.determinant() > eps) ccm = ccmSupplied; } /* * rgb2xyz is known to be invertible, and we've ensured above that both * the ccm and wbGain matrices are non-singular, so the product of all * three is guaranteed to be invertible too. */ Matrix3d colorMatrix1 = (rgb2xyz * ccm * wbGain).inverse(); TIFFSetField(tif, TIFFTAG_COLORMATRIX1, 9, colorMatrix1.m); TIFFSetField(tif, TIFFTAG_ASSHOTNEUTRAL, 3, neutral); /* * Reserve space for the SubIFD and ExifIFD tags, pointing to the IFD * for the raw image and EXIF data respectively. The real offsets will * be set later. */ TIFFSetField(tif, TIFFTAG_SUBIFD, 1, &rawIFDOffset); TIFFSetField(tif, TIFFTAG_EXIFIFD, exifIFDOffset); /* Write the thumbnail. */ const uint8_t *row = static_cast<const uint8_t *>(data); for (unsigned int y = 0; y < config.size.height / 16; y++) { info->thumbScanline(*info, &scanline, row, config.size.width / 16, config.stride); if (TIFFWriteScanline(tif, &scanline, y, 0) != 1) { std::cerr << "Failed to write thumbnail scanline" << std::endl; TIFFClose(tif); return -EINVAL; } row += config.stride * 16; } TIFFWriteDirectory(tif); /* Create a new IFD for the RAW image. */ const uint16_t cfaRepeatPatternDim[] = { 2, 2 }; const uint8_t cfaPlaneColor[] = { CFAPatternRed, CFAPatternGreen, CFAPatternBlue }; TIFFSetField(tif, TIFFTAG_SUBFILETYPE, 0); TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, config.size.width); TIFFSetField(tif, TIFFTAG_IMAGELENGTH, config.size.height); TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, info->bitsPerSample); TIFFSetField(tif, TIFFTAG_COMPRESSION, COMPRESSION_NONE); TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_CFA); TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 1); TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG); TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT); TIFFSetField(tif, TIFFTAG_CFAREPEATPATTERNDIM, cfaRepeatPatternDim); TIFFSetField(tif, TIFFTAG_CFAPATTERN, info->pattern); TIFFSetField(tif, TIFFTAG_CFAPLANECOLOR, 3, cfaPlaneColor); TIFFSetField(tif, TIFFTAG_CFALAYOUT, 1); const uint16_t blackLevelRepeatDim[] = { 2, 2 }; float blackLevel[] = { 0.0f, 0.0f, 0.0f, 0.0f }; uint32_t whiteLevel = (1 << info->bitsPerSample) - 1; if (metadata.contains(controls::SensorBlackLevels)) { Span<const int32_t> levels = metadata.get(controls::SensorBlackLevels); /* * The black levels control is specified in R, Gr, Gb, B order. * Map it to the TIFF tag that is specified in CFA pattern * order. */ unsigned int green = (info->pattern[0] == CFAPatternRed || info->pattern[1] == CFAPatternRed) ? 0 : 1; for (unsigned int i = 0; i < 4; ++i) { unsigned int level; switch (info->pattern[i]) { case CFAPatternRed: level = levels[0]; break; case CFAPatternGreen: level = levels[green + 1]; green = (green + 1) % 2; break; case CFAPatternBlue: default: level = levels[3]; break; } /* Map the 16-bit value to the bits per sample range. */ blackLevel[i] = level >> (16 - info->bitsPerSample); } } TIFFSetField(tif, TIFFTAG_BLACKLEVELREPEATDIM, &blackLevelRepeatDim); TIFFSetField(tif, TIFFTAG_BLACKLEVEL, 4, &blackLevel); TIFFSetField(tif, TIFFTAG_WHITELEVEL, 1, &whiteLevel); /* Write RAW content. */ row = static_cast<const uint8_t *>(data); for (unsigned int y = 0; y < config.size.height; y++) { info->packScanline(&scanline, row, config.size.width); if (TIFFWriteScanline(tif, &scanline, y, 0) != 1) { std::cerr << "Failed to write RAW scanline" << std::endl; TIFFClose(tif); return -EINVAL; } row += config.stride; } /* Checkpoint the IFD to retrieve its offset, and write it out. */ TIFFCheckpointDirectory(tif); rawIFDOffset = TIFFCurrentDirOffset(tif); TIFFWriteDirectory(tif); /* Create a new IFD for the EXIF data and fill it. */ TIFFCreateEXIFDirectory(tif); /* Store creation time. */ time_t rawtime; struct tm *timeinfo; char strTime[20]; time(&rawtime); timeinfo = localtime(&rawtime); strftime(strTime, 20, "%Y:%m:%d %H:%M:%S", timeinfo); /* * \todo Handle timezone information by setting OffsetTimeOriginal and * OffsetTimeDigitized once libtiff catches up to the specification and * has EXIFTAG_ defines to handle them. */ TIFFSetField(tif, EXIFTAG_DATETIMEORIGINAL, strTime); TIFFSetField(tif, EXIFTAG_DATETIMEDIGITIZED, strTime); if (metadata.contains(controls::AnalogueGain)) { float gain = metadata.get(controls::AnalogueGain); uint16_t iso = std::min(std::max(gain * 100, 0.0f), 65535.0f); TIFFSetField(tif, EXIFTAG_ISOSPEEDRATINGS, 1, &iso); } if (metadata.contains(controls::ExposureTime)) { float exposureTime = metadata.get(controls::ExposureTime) / 1e6; TIFFSetField(tif, EXIFTAG_EXPOSURETIME, exposureTime); } TIFFWriteCustomDirectory(tif, &exifIFDOffset); /* Update the IFD offsets and close the file. */ TIFFSetDirectory(tif, 0); TIFFSetField(tif, TIFFTAG_SUBIFD, 1, &rawIFDOffset); TIFFSetField(tif, TIFFTAG_EXIFIFD, exifIFDOffset); TIFFWriteDirectory(tif); TIFFClose(tif); return 0; }