/* SPDX-License-Identifier: LGPL-2.1-or-later */ /* * Copyright (C) 2021-2022, Ideas On Board * * agc.cpp - AGC/AEC mean-based control algorithm */ #include "agc.h" #include <algorithm> #include <chrono> #include <cmath> #include <libcamera/base/log.h> #include <libcamera/base/utils.h> #include <libcamera/ipa/core_ipa_interface.h> #include "libipa/histogram.h" /** * \file agc.h */ namespace libcamera { using namespace std::literals::chrono_literals; namespace ipa::rkisp1::algorithms { /** * \class Agc * \brief A mean-based auto-exposure algorithm */ LOG_DEFINE_CATEGORY(RkISP1Agc) /* Limits for analogue gain values */ static constexpr double kMinAnalogueGain = 1.0; static constexpr double kMaxAnalogueGain = 8.0; /* \todo Honour the FrameDurationLimits control instead of hardcoding a limit */ static constexpr utils::Duration kMaxShutterSpeed = 60ms; /* Number of frames to wait before calculating stats on minimum exposure */ static constexpr uint32_t kNumStartupFrames = 10; /* Target value to reach for the top 2% of the histogram */ static constexpr double kEvGainTarget = 0.5; /* * Relative luminance target. * * It's a number that's chosen so that, when the camera points at a grey * target, the resulting image brightness is considered right. * * \todo Why is the value different between IPU3 and RkISP1 ? */ static constexpr double kRelativeLuminanceTarget = 0.4; Agc::Agc() : frameCount_(0), numCells_(0), numHistBins_(0), filteredExposure_(0s) { } /** * \brief Configure the AGC given a configInfo * \param[in] context The shared IPA context * \param[in] configInfo The IPA configuration data * * \return 0 */ int Agc::configure(IPAContext &context, const IPACameraSensorInfo &configInfo) { /* Configure the default exposure and gain. */ context.frameContext.agc.gain = std::max(context.configuration.agc.minAnalogueGain, kMinAnalogueGain); context.frameContext.agc.exposure = 10ms / context.configuration.sensor.lineDuration; /* * According to the RkISP1 documentation: * - versions < V12 have RKISP1_CIF_ISP_AE_MEAN_MAX_V10 entries, * - versions >= V12 have RKISP1_CIF_ISP_AE_MEAN_MAX_V12 entries. */ if (context.configuration.hw.revision < RKISP1_V12) { numCells_ = RKISP1_CIF_ISP_AE_MEAN_MAX_V10; numHistBins_ = RKISP1_CIF_ISP_HIST_BIN_N_MAX_V10; } else { numCells_ = RKISP1_CIF_ISP_AE_MEAN_MAX_V12; numHistBins_ = RKISP1_CIF_ISP_HIST_BIN_N_MAX_V12; } /* * Define the measurement window for AGC as a centered rectangle * covering 3/4 of the image width and height. */ context.configuration.agc.measureWindow.h_offs = configInfo.outputSize.width / 8; context.configuration.agc.measureWindow.v_offs = configInfo.outputSize.height / 8; context.configuration.agc.measureWindow.h_size = 3 * configInfo.outputSize.width / 4; context.configuration.agc.measureWindow.v_size = 3 * configInfo.outputSize.height / 4; /* \todo Use actual frame index by populating it in the frameContext. */ frameCount_ = 0; return 0; } /** * \brief Apply a filter on the exposure value to limit the speed of changes * \param[in] exposureValue The target exposure from the AGC algorithm * * The speed of the filter is adaptive, and will produce the target quicker * during startup, or when the target exposure is within 20% of the most recent * filter output. * * \return The filtered exposure */ utils::Duration Agc::filterExposure(utils::Duration exposureValue) { double speed = 0.2; /* Adapt instantly if we are in startup phase. */ if (frameCount_ < kNumStartupFrames) speed = 1.0; /* * If we are close to the desired result, go faster to avoid making * multiple micro-adjustments. * \todo Make this customisable? */ if (filteredExposure_ < 1.2 * exposureValue && filteredExposure_ > 0.8 * exposureValue) speed = sqrt(speed); filteredExposure_ = speed * exposureValue + filteredExposure_ * (1.0 - speed); LOG(RkISP1Agc, Debug) << "After filtering, exposure " << filteredExposure_; return filteredExposure_; } /** * \brief Estimate the new exposure and gain values * \param[inout] frameContext The shared IPA frame Context * \param[in] yGain The gain calculated on the current brightness level * \param[in] iqMeanGain The gain calculated based on the relative luminance target */ void Agc::computeExposure(IPAContext &context, double yGain, double iqMeanGain) { IPASessionConfiguration &configuration = context.configuration; IPAFrameContext &frameContext = context.frameContext; /* Get the effective exposure and gain applied on the sensor. */ uint32_t exposure = frameContext.sensor.exposure; double analogueGain = frameContext.sensor.gain; /* Use the highest of the two gain estimates. */ double evGain = std::max(yGain, iqMeanGain); utils::Duration minShutterSpeed = configuration.agc.minShutterSpeed; utils::Duration maxShutterSpeed = std::min(configuration.agc.maxShutterSpeed, kMaxShutterSpeed); double minAnalogueGain = std::max(configuration.agc.minAnalogueGain, kMinAnalogueGain); double maxAnalogueGain = std::min(configuration.agc.maxAnalogueGain, kMaxAnalogueGain); /* Consider within 1% of the target as correctly exposed. */ if (utils::abs_diff(evGain, 1.0) < 0.01) return; /* extracted from Rpi::Agc::computeTargetExposure. */ /* Calculate the shutter time in seconds. */ utils::Duration currentShutter = exposure * configuration.sensor.lineDuration; /* * Update the exposure value for the next computation using the values * of exposure and gain really used by the sensor. */ utils::Duration effectiveExposureValue = currentShutter * analogueGain; LOG(RkISP1Agc, Debug) << "Actual total exposure " << currentShutter * analogueGain << " Shutter speed " << currentShutter << " Gain " << analogueGain << " Needed ev gain " << evGain; /* * Calculate the current exposure value for the scene as the latest * exposure value applied multiplied by the new estimated gain. */ utils::Duration exposureValue = effectiveExposureValue * evGain; /* Clamp the exposure value to the min and max authorized. */ utils::Duration maxTotalExposure = maxShutterSpeed * maxAnalogueGain; exposureValue = std::min(exposureValue, maxTotalExposure); LOG(RkISP1Agc, Debug) << "Target total exposure " << exposureValue << ", maximum is " << maxTotalExposure; /* * Divide the exposure value as new exposure and gain values. * \todo estimate if we need to desaturate */ exposureValue = filterExposure(exposureValue); /* * Push the shutter time up to the maximum first, and only then * increase the gain. */ utils::Duration shutterTime = std::clamp<utils::Duration>(exposureValue / minAnalogueGain, minShutterSpeed, maxShutterSpeed); double stepGain = std::clamp(exposureValue / shutterTime, minAnalogueGain, maxAnalogueGain); LOG(RkISP1Agc, Debug) << "Divided up shutter and gain are " << shutterTime << " and " << stepGain; /* Update the estimated exposure and gain. */ frameContext.agc.exposure = shutterTime / configuration.sensor.lineDuration; frameContext.agc.gain = stepGain; } /** * \brief Estimate the relative luminance of the frame with a given gain * \param[in] ae The RkISP1 statistics and ISP results * \param[in] gain The gain to apply to the frame * * This function estimates the average relative luminance of the frame that * would be output by the sensor if an additional \a gain was applied. * * The estimation is based on the AE statistics for the current frame. Y * averages for all cells are first multiplied by the gain, and then saturated * to approximate the sensor behaviour at high brightness values. The * approximation is quite rough, as it doesn't take into account non-linearities * when approaching saturation. In this case, saturating after the conversion to * YUV doesn't take into account the fact that the R, G and B components * contribute differently to the relative luminance. * * \todo Have a dedicated YUV algorithm ? * * The values are normalized to the [0.0, 1.0] range, where 1.0 corresponds to a * theoretical perfect reflector of 100% reference white. * * More detailed information can be found in: * https://en.wikipedia.org/wiki/Relative_luminance * * \return The relative luminance */ double Agc::estimateLuminance(const rkisp1_cif_isp_ae_stat *ae, double gain) { double ySum = 0.0; /* Sum the averages, saturated to 255. */ for (unsigned int aeCell = 0; aeCell < numCells_; aeCell++) ySum += std::min(ae->exp_mean[aeCell] * gain, 255.0); /* \todo Weight with the AWB gains */ return ySum / numCells_ / 255; } /** * \brief Estimate the mean value of the top 2% of the histogram * \param[in] hist The histogram statistics computed by the ImgU * \return The mean value of the top 2% of the histogram */ double Agc::measureBrightness(const rkisp1_cif_isp_hist_stat *hist) const { Histogram histogram{ Span<const uint32_t>(hist->hist_bins, numHistBins_) }; /* Estimate the quantile mean of the top 2% of the histogram. */ return histogram.interQuantileMean(0.98, 1.0); } /** * \brief Process RkISP1 statistics, and run AGC operations * \param[in] context The shared IPA context * \param[in] stats The RKISP1 statistics and ISP results * * Identify the current image brightness, and use that to estimate the optimal * new exposure and gain for the scene. */ void Agc::process(IPAContext &context, [[maybe_unused]] IPAFrameContext *frameContext, const rkisp1_stat_buffer *stats) { const rkisp1_cif_isp_stat *params = &stats->params; ASSERT(stats->meas_type & RKISP1_CIF_ISP_STAT_AUTOEXP); const rkisp1_cif_isp_ae_stat *ae = ¶ms->ae; const rkisp1_cif_isp_hist_stat *hist = ¶ms->hist; double iqMean = measureBrightness(hist); double iqMeanGain = kEvGainTarget * numHistBins_ / iqMean; /* * Estimate the gain needed to achieve a relative luminance target. To * account for non-linearity caused by saturation, the value needs to be * estimated in an iterative process, as multiplying by a gain will not * increase the relative luminance by the same factor if some image * regions are saturated. */ double yGain = 1.0; double yTarget = kRelativeLuminanceTarget; for (unsigned int i = 0; i < 8; i++) { double yValue = estimateLuminance(ae, yGain); double extra_gain = std::min(10.0, yTarget / (yValue + .001)); yGain *= extra_gain; LOG(RkISP1Agc, Debug) << "Y value: " << yValue << ", Y target: " << yTarget << ", gives gain " << yGain; if (extra_gain < 1.01) break; } computeExposure(context, yGain, iqMeanGain); frameCount_++; } /** * \copydoc libcamera::ipa::Algorithm::prepare */ void Agc::prepare(IPAContext &context, rkisp1_params_cfg *params) { if (context.frameContext.frameCount > 0) return; /* Configure the measurement window. */ params->meas.aec_config.meas_window = context.configuration.agc.measureWindow; /* Use a continuous method for measure. */ params->meas.aec_config.autostop = RKISP1_CIF_ISP_EXP_CTRL_AUTOSTOP_0; /* Estimate Y as (R + G + B) x (85/256). */ params->meas.aec_config.mode = RKISP1_CIF_ISP_EXP_MEASURING_MODE_1; params->module_cfg_update |= RKISP1_CIF_ISP_MODULE_AEC; params->module_ens |= RKISP1_CIF_ISP_MODULE_AEC; params->module_en_update |= RKISP1_CIF_ISP_MODULE_AEC; /* Configure histogram. */ params->meas.hst_config.meas_window = context.configuration.agc.measureWindow; /* Produce the luminance histogram. */ params->meas.hst_config.mode = RKISP1_CIF_ISP_HISTOGRAM_MODE_Y_HISTOGRAM; /* Set an average weighted histogram. */ for (unsigned int histBin = 0; histBin < numHistBins_; histBin++) params->meas.hst_config.hist_weight[histBin] = 1; /* Step size can't be less than 3. */ params->meas.hst_config.histogram_predivider = 4; /* Update the configuration for histogram. */ params->module_cfg_update |= RKISP1_CIF_ISP_MODULE_HST; /* Enable the histogram measure unit. */ params->module_ens |= RKISP1_CIF_ISP_MODULE_HST; params->module_en_update |= RKISP1_CIF_ISP_MODULE_HST; } REGISTER_IPA_ALGORITHM(Agc, "Agc") } /* namespace ipa::rkisp1::algorithms */ } /* namespace libcamera */