/* SPDX-License-Identifier: BSD-2-Clause */ /* * Copyright (C) 2019, Raspberry Pi (Trading) Limited * * ccm.cpp - CCM (colour correction matrix) control algorithm */ #include "../awb_status.h" #include "../ccm_status.h" #include "../logging.hpp" #include "../lux_status.h" #include "../metadata.hpp" #include "ccm.hpp" using namespace RPiController; // This algorithm selects a CCM (Colour Correction Matrix) according to the // colour temperature estimated by AWB (interpolating between known matricies as // necessary). Additionally the amount of colour saturation can be controlled // both according to the current estimated lux level and according to a // saturation setting that is exposed to applications. #define NAME "rpi.ccm" Matrix::Matrix() { memset(m, 0, sizeof(m)); } Matrix::Matrix(double m0, double m1, double m2, double m3, double m4, double m5, double m6, double m7, double m8) { m[0][0] = m0, m[0][1] = m1, m[0][2] = m2, m[1][0] = m3, m[1][1] = m4, m[1][2] = m5, m[2][0] = m6, m[2][1] = m7, m[2][2] = m8; } void Matrix::Read(boost::property_tree::ptree const ¶ms) { double *ptr = (double *)m; int n = 0; for (auto it = params.begin(); it != params.end(); it++) { if (n++ == 9) throw std::runtime_error("Ccm: too many values in CCM"); *ptr++ = it->second.get_value(); } if (n < 9) throw std::runtime_error("Ccm: too few values in CCM"); } Ccm::Ccm(Controller *controller) : CcmAlgorithm(controller), saturation_(1.0) {} char const *Ccm::Name() const { return NAME; } void Ccm::Read(boost::property_tree::ptree const ¶ms) { if (params.get_child_optional("saturation")) config_.saturation.Read(params.get_child("saturation")); for (auto &p : params.get_child("ccms")) { CtCcm ct_ccm; ct_ccm.ct = p.second.get("ct"); ct_ccm.ccm.Read(p.second.get_child("ccm")); if (!config_.ccms.empty() && ct_ccm.ct <= config_.ccms.back().ct) throw std::runtime_error( "Ccm: CCM not in increasing colour temperature order"); config_.ccms.push_back(std::move(ct_ccm)); } if (config_.ccms.empty()) throw std::runtime_error("Ccm: no CCMs specified"); } void Ccm::SetSaturation(double saturation) { saturation_ = saturation; } void Ccm::Initialise() {} template static bool get_locked(Metadata *metadata, std::string const &tag, T &value) { T *ptr = metadata->GetLocked(tag); if (ptr == nullptr) return false; value = *ptr; return true; } Matrix calculate_ccm(std::vector const &ccms, double ct) { if (ct <= ccms.front().ct) return ccms.front().ccm; else if (ct >= ccms.back().ct) return ccms.back().ccm; else { int i = 0; for (; ct > ccms[i].ct; i++) ; double lambda = (ct - ccms[i - 1].ct) / (ccms[i].ct - ccms[i - 1].ct); return lambda * ccms[i].ccm + (1.0 - lambda) * ccms[i - 1].ccm; } } Matrix apply_saturation(Matrix const &ccm, double saturation) { Matrix RGB2Y(0.299, 0.587, 0.114, -0.169, -0.331, 0.500, 0.500, -0.419, -0.081); Matrix Y2RGB(1.000, 0.000, 1.402, 1.000, -0.345, -0.714, 1.000, 1.771, 0.000); Matrix S(1, 0, 0, 0, saturation, 0, 0, 0, saturation); return Y2RGB * S * RGB2Y * ccm; } void Ccm::Prepare(Metadata *image_metadata) { bool awb_ok = false, lux_ok = false; struct AwbStatus awb = {}; awb.temperature_K = 4000; // in case no metadata struct LuxStatus lux = {}; lux.lux = 400; // in case no metadata { // grab mutex just once to get everything std::lock_guard lock(*image_metadata); awb_ok = get_locked(image_metadata, "awb.status", awb); lux_ok = get_locked(image_metadata, "lux.status", lux); } if (!awb_ok) RPI_WARN("Ccm: no colour temperature found"); if (!lux_ok) RPI_WARN("Ccm: no lux value found"); Matrix ccm = calculate_ccm(config_.ccms, awb.temperature_K); double saturation = saturation_; struct CcmStatus ccm_status; ccm_status.saturation = saturation; if (!config_.saturation.Empty()) saturation *= config_.saturation.Eval( config_.saturation.Domain().Clip(lux.lux)); ccm = apply_saturation(ccm, saturation); for (int j = 0; j < 3; j++) for (int i = 0; i < 3; i++) ccm_status.matrix[j * 3 + i] = std::max(-8.0, std::min(7.9999, ccm.m[j][i])); RPI_LOG("CCM: colour temperature " << awb.temperature_K << "K"); RPI_LOG("CCM: " << ccm_status.matrix[0] << " " << ccm_status.matrix[1] << " " << ccm_status.matrix[2] << " " << ccm_status.matrix[3] << " " << ccm_status.matrix[4] << " " << ccm_status.matrix[5] << " " << ccm_status.matrix[6] << " " << ccm_status.matrix[7] << " " << ccm_status.matrix[8]); image_metadata->Set("ccm.status", ccm_status); } // Register algorithm with the system. static Algorithm *Create(Controller *controller) { return (Algorithm *)new Ccm(controller); ; } static RegisterAlgorithm reg(NAME, &Create); /a> 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2019, Google Inc.
 *
 * ipc_unixsocket.cpp - IPC mechanism based on Unix sockets
 */

#include "ipc_unixsocket.h"

#include <poll.h>
#include <string.h>
#include <sys/socket.h>
#include <unistd.h>

#include "log.h"

/**
 * \file ipc_unixsocket.h
 * \brief IPC mechanism based on Unix sockets
 */

namespace libcamera {

LOG_DEFINE_CATEGORY(IPCUnixSocket)

/**
 * \struct IPCUnixSocket::Payload
 * \brief Container for an IPC payload
 *
 * Holds an array of bytes and an array of file descriptors that can be
 * transported across a IPC boundary.
 */

/**
 * \var IPCUnixSocket::Payload::data
 * \brief Array of bytes to cross IPC boundary
 */

/**
 * \var IPCUnixSocket::Payload::fds
 * \brief Array of file descriptors to cross IPC boundary
 */

/**
 * \class IPCUnixSocket
 * \brief IPC mechanism based on Unix sockets
 *
 * The Unix socket IPC allows bidirectional communication between two processes
 * through unnamed Unix sockets. It implements datagram-based communication,
 * transporting entire payloads with guaranteed ordering.
 *
 * The IPC design is asynchronous, a message is queued to a receiver which gets
 * notified that a message is ready to be consumed by the \ref readyRead
 * signal. The sender of the message gets no notification when a message is
 * delivered nor processed. If such interactions are needed a protocol specific
 * to the users use-case should be implemented on top of the IPC objects.
 *
 * Establishment of an IPC channel is asymmetrical. The side that initiates
 * communication first instantiates a local side socket and creates the channel
 * with create(). The method returns a file descriptor for the remote side of
 * the channel, which is passed to the remote process through an out-of-band
 * communication method. The remote side then instantiates a socket, and binds
 * it to the other side by passing the file descriptor to bind(). At that point
 * the channel is operation and communication is bidirectional and symmmetrical.
 */

IPCUnixSocket::IPCUnixSocket()
	: fd_(-1), headerReceived_(false), notifier_(nullptr)
{
}

IPCUnixSocket::~IPCUnixSocket()
{
	close();
}

/**
 * \brief Create an new IPC channel
 *
 * This method creates a new IPC channel. The socket instance is bound to the
 * local side of the channel, and the method returns a file descriptor bound to
 * the remote side. The caller is responsible for passing the file descriptor to
 * the remote process, where it can be used with IPCUnixSocket::bind() to bind
 * the remote side socket.
 *
 * \return A file descriptor on success, negative error code on failure
 */
int IPCUnixSocket::create()
{
	int sockets[2];
	int ret;

	ret = socketpair(AF_UNIX, SOCK_DGRAM | SOCK_NONBLOCK, 0, sockets);
	if (ret) {
		ret = -errno;
		LOG(IPCUnixSocket, Error)
			<< "Failed to create socket pair: " << strerror(-ret);
		return ret;
	}

	ret = bind(sockets[0]);
	if (ret)
		return ret;

	return sockets[1];
}

/**
 * \brief Bind to an existing IPC channel
 * \param[in] fd File descriptor
 *
 * This method binds the socket instance to an existing IPC channel identified
 * by the file descriptor \a fd. The file descriptor is obtained from the
 * IPCUnixSocket::create() method.
 *
 * \return 0 on success or a negative error code otherwise
 */
int IPCUnixSocket::bind(int fd)
{
	if (isBound())
		return -EINVAL;

	fd_ = fd;
	notifier_ = new EventNotifier(fd_, EventNotifier::Read);
	notifier_->activated.connect(this, &IPCUnixSocket::dataNotifier);

	return 0;
}

/**
 * \brief Close the IPC channel
 *
 * No communication is possible after close() has been called.
 */
void IPCUnixSocket::close()
{
	if (!isBound())
		return;

	delete notifier_;
	notifier_ = nullptr;

	::close(fd_);

	fd_ = -1;
	headerReceived_ = false;
}

/**
 * \brief Check if the IPC channel is bound
 * \return True if the IPC channel is bound, false otherwise
 */
bool IPCUnixSocket::isBound() const
{
	return fd_ != -1;
}

/**
 * \brief Send a message payload
 * \param[in] payload Message payload to send
 *
 * This method queues the message payload for transmission to the other end of
 * the IPC channel. It returns immediately, before the message is delivered to
 * the remote side.
 *
 * \return 0 on success or a negative error code otherwise
 */
int IPCUnixSocket::send(const Payload &payload)
{
	int ret;

	if (!isBound())
		return -ENOTCONN;

	Header hdr;
	hdr.data = payload.data.size();
	hdr.fds = payload.fds.size();

	if (!hdr.data && !hdr.fds)
		return -EINVAL;

	ret = ::send(fd_, &hdr, sizeof(hdr), 0);
	if (ret < 0) {
		ret = -errno;
		LOG(IPCUnixSocket, Error)
			<< "Failed to send: " << strerror(-ret);
		return ret;
	}

	return sendData(payload.data.data(), hdr.data, payload.fds.data(), hdr.fds);
}

/**
 * \brief Receive a message payload
 * \param[out] payload Payload where to write the received message
 *
 * This method receives the message payload from the IPC channel and writes it
 * to the \a payload. If no message payload is available, it returns
 * immediately with -EAGAIN. The \ref readyRead signal shall be used to receive
 * notification of message availability.
 *
 * \todo Add state machine to make sure we don't block forever and that
 * a header is always followed by a payload.
 *
 * \return 0 on success or a negative error code otherwise
 * \retval -EAGAIN No message payload is available
 * \retval -ENOTCONN The socket is not connected (neither create() nor bind()
 * has been called)
 */
int IPCUnixSocket::receive(Payload *payload)
{
	if (!isBound())
		return -ENOTCONN;

	if (!headerReceived_)
		return -EAGAIN;

	payload->data.resize(header_.data);
	payload->fds.resize(header_.fds);

	int ret = recvData(payload->data.data(), header_.data,
			   payload->fds.data(), header_.fds);
	if (ret < 0)
		return ret;

	headerReceived_ = false;
	notifier_->setEnabled(true);

	return 0;
}

/**
 * \var IPCUnixSocket::readyRead
 * \brief A Signal emitted when a message is ready to be read
 */

int IPCUnixSocket::sendData(const void *buffer, size_t length,
			    const int32_t *fds, unsigned int num)
{
	struct iovec iov[1];
	iov[0].iov_base = const_cast<void *>(buffer);
	iov[0].iov_len = length;

	char buf[CMSG_SPACE(num * sizeof(uint32_t))];
	memset(buf, 0, sizeof(buf));

	struct cmsghdr *cmsg = (struct cmsghdr *)buf;
	cmsg->cmsg_len = CMSG_LEN(num * sizeof(uint32_t));
	cmsg->cmsg_level = SOL_SOCKET;
	cmsg->cmsg_type = SCM_RIGHTS;

	struct msghdr msg;
	msg.msg_name = nullptr;
	msg.msg_namelen = 0;
	msg.msg_iov = iov;
	msg.msg_iovlen = 1;
	msg.msg_control = cmsg;
	msg.msg_controllen = cmsg->cmsg_len;
	msg.msg_flags = 0;
	memcpy(CMSG_DATA(cmsg), fds, num * sizeof(uint32_t));

	if (sendmsg(fd_, &msg, 0) < 0) {
		int ret = -errno;
		LOG(IPCUnixSocket, Error)
			<< "Failed to sendmsg: " << strerror(-ret);
		return ret;
	}

	return 0;
}

int IPCUnixSocket::recvData(void *buffer, size_t length,
			    int32_t *fds, unsigned int num)
{
	struct iovec iov[1];
	iov[0].iov_base = buffer;
	iov[0].iov_len = length;

	char buf[CMSG_SPACE(num * sizeof(uint32_t))];
	memset(buf, 0, sizeof(buf));

	struct cmsghdr *cmsg = (struct cmsghdr *)buf;
	cmsg->cmsg_len = CMSG_LEN(num * sizeof(uint32_t));
	cmsg->cmsg_level = SOL_SOCKET;
	cmsg->cmsg_type = SCM_RIGHTS;

	struct msghdr msg;
	msg.msg_name = nullptr;
	msg.msg_namelen = 0;
	msg.msg_iov = iov;
	msg.msg_iovlen = 1;
	msg.msg_control = cmsg;
	msg.msg_controllen = cmsg->cmsg_len;
	msg.msg_flags = 0;

	if (recvmsg(fd_, &msg, 0) < 0) {
		int ret = -errno;
		if (ret != -EAGAIN)
			LOG(IPCUnixSocket, Error)
				<< "Failed to recvmsg: " << strerror(-ret);
		return ret;
	}

	memcpy(fds, CMSG_DATA(cmsg), num * sizeof(uint32_t));

	return 0;
}

void IPCUnixSocket::dataNotifier(EventNotifier *notifier)
{
	int ret;

	if (!headerReceived_) {
		/* Receive the header. */
		ret = ::recv(fd_, &header_, sizeof(header_), 0);
		if (ret < 0) {
			ret = -errno;
			LOG(IPCUnixSocket, Error)
				<< "Failed to receive header: " << strerror(-ret);
			return;
		}

		headerReceived_ = true;
	}

	/*
	 * If the payload has arrived, disable the notifier and emit the
	 * readyRead signal. The notifier will be reenabled by the receive()
	 * method.
	 */
	struct pollfd fds = { fd_, POLLIN, 0 };
	ret = poll(&fds, 1, 0);
	if (ret < 0)
		return;

	if (!(fds.revents & POLLIN))
		return;

	notifier_->setEnabled(false);
	readyRead.emit(this);
}

} /* namespace libcamera */