/* SPDX-License-Identifier: BSD-2-Clause */ /* * Copyright (C) 2019, Raspberry Pi (Trading) Limited * * awb.cpp - AWB control algorithm */ #include "../logging.hpp" #include "../lux_status.h" #include "awb.hpp" using namespace RPiController; #define NAME "rpi.awb" #define AWB_STATS_SIZE_X DEFAULT_AWB_REGIONS_X #define AWB_STATS_SIZE_Y DEFAULT_AWB_REGIONS_Y const double Awb::RGB::INVALID = -1.0; void AwbMode::Read(boost::property_tree::ptree const ¶ms) { ct_lo = params.get<double>("lo"); ct_hi = params.get<double>("hi"); } void AwbPrior::Read(boost::property_tree::ptree const ¶ms) { lux = params.get<double>("lux"); prior.Read(params.get_child("prior")); } static void read_ct_curve(Pwl &ct_r, Pwl &ct_b, boost::property_tree::ptree const ¶ms) { int num = 0; for (auto it = params.begin(); it != params.end(); it++) { double ct = it->second.get_value<double>(); assert(it == params.begin() || ct != ct_r.Domain().end); if (++it == params.end()) throw std::runtime_error( "AwbConfig: incomplete CT curve entry"); ct_r.Append(ct, it->second.get_value<double>()); if (++it == params.end()) throw std::runtime_error( "AwbConfig: incomplete CT curve entry"); ct_b.Append(ct, it->second.get_value<double>()); num++; } if (num < 2) throw std::runtime_error( "AwbConfig: insufficient points in CT curve"); } void AwbConfig::Read(boost::property_tree::ptree const ¶ms) { RPI_LOG("AwbConfig"); bayes = params.get<int>("bayes", 1); frame_period = params.get<uint16_t>("frame_period", 10); startup_frames = params.get<uint16_t>("startup_frames", 10); speed = params.get<double>("speed", 0.05); if (params.get_child_optional("ct_curve")) read_ct_curve(ct_r, ct_b, params.get_child("ct_curve")); if (params.get_child_optional("priors")) { for (auto &p : params.get_child("priors")) { AwbPrior prior; prior.Read(p.second); if (!priors.empty() && prior.lux <= priors.back().lux) throw std::runtime_error( "AwbConfig: Prior must be ordered in increasing lux value"); priors.push_back(prior); } if (priors.empty()) throw std::runtime_error( "AwbConfig: no AWB priors configured"); } if (params.get_child_optional("modes")) { for (auto &p : params.get_child("modes")) { modes[p.first].Read(p.second); if (default_mode == nullptr) default_mode = &modes[p.first]; } if (default_mode == nullptr) throw std::runtime_error( "AwbConfig: no AWB modes configured"); } min_pixels = params.get<double>("min_pixels", 16.0); min_G = params.get<uint16_t>("min_G", 32); min_regions = params.get<uint32_t>("min_regions", 10); delta_limit = params.get<double>("delta_limit", 0.2); coarse_step = params.get<double>("coarse_step", 0.2); transverse_pos = params.get<double>("transverse_pos", 0.01); transverse_neg = params.get<double>("transverse_neg", 0.01); if (transverse_pos <= 0 || transverse_neg <= 0) throw std::runtime_error( "AwbConfig: transverse_pos/neg must be > 0"); sensitivity_r = params.get<double>("sensitivity_r", 1.0); sensitivity_b = params.get<double>("sensitivity_b", 1.0); if (bayes) { if (ct_r.Empty() || ct_b.Empty() || priors.empty() || default_mode == nullptr) { RPI_WARN( "Bayesian AWB mis-configured - switch to Grey method"); bayes = false; } } fast = params.get<int>( "fast", bayes); // default to fast for Bayesian, otherwise slow whitepoint_r = params.get<double>("whitepoint_r", 0.0); whitepoint_b = params.get<double>("whitepoint_b", 0.0); if (bayes == false) sensitivity_r = sensitivity_b = 1.0; // nor do sensitivities make any sense } Awb::Awb(Controller *controller) : AwbAlgorithm(controller) { async_abort_ = async_start_ = async_started_ = async_finished_ = false; mode_ = nullptr; manual_r_ = manual_b_ = 0.0; async_thread_ = std::thread(std::bind(&Awb::asyncFunc, this)); } Awb::~Awb() { { std::lock_guard<std::mutex> lock(mutex_); async_abort_ = true; async_signal_.notify_one(); } async_thread_.join(); } char const *Awb::Name() const { return NAME; } void Awb::Read(boost::property_tree::ptree const ¶ms) { config_.Read(params); } void Awb::Initialise() { frame_count2_ = frame_count_ = frame_phase_ = 0; // Put something sane into the status that we are filtering towards, // just in case the first few frames don't have anything meaningful in // them. if (!config_.ct_r.Empty() && !config_.ct_b.Empty()) { sync_results_.temperature_K = config_.ct_r.Domain().Clip(4000); sync_results_.gain_r = 1.0 / config_.ct_r.Eval(sync_results_.temperature_K); sync_results_.gain_g = 1.0; sync_results_.gain_b = 1.0 / config_.ct_b.Eval(sync_results_.temperature_K); } else { // random values just to stop the world blowing up sync_results_.temperature_K = 4500; sync_results_.gain_r = sync_results_.gain_g = sync_results_.gain_b = 1.0; } prev_sync_results_ = sync_results_; } void Awb::SetMode(std::string const &mode_name) { std::unique_lock<std::mutex> lock(settings_mutex_); mode_name_ = mode_name; } void Awb::SetManualGains(double manual_r, double manual_b) { std::unique_lock<std::mutex> lock(settings_mutex_); // If any of these are 0.0, we swich back to auto. manual_r_ = manual_r; manual_b_ = manual_b; } void Awb::SwitchMode([[maybe_unused]] CameraMode const &camera_mode, Metadata *metadata) { // If fixed colour gains have been set, we should let other algorithms // know by writing it into the image metadata. if (manual_r_ != 0.0 && manual_b_ != 0.0) { prev_sync_results_.gain_r = manual_r_; prev_sync_results_.gain_g = 1.0; prev_sync_results_.gain_b = manual_b_; sync_results_ = prev_sync_results_; } metadata->Set("awb.status", prev_sync_results_); } void Awb::fetchAsyncResults() { RPI_LOG("Fetch AWB results"); async_finished_ = false; async_started_ = false; sync_results_ = async_results_; } void Awb::restartAsync(StatisticsPtr &stats, std::string const &mode_name, double lux) { RPI_LOG("Starting AWB thread"); // this makes a new reference which belongs to the asynchronous thread statistics_ = stats; // store the mode as it could technically change auto m = config_.modes.find(mode_name); mode_ = m != config_.modes.end() ? &m->second : (mode_ == nullptr ? config_.default_mode : mode_); lux_ = lux; frame_phase_ = 0; async_start_ = true; async_started_ = true; size_t len = mode_name.copy(async_results_.mode, sizeof(async_results_.mode) - 1); async_results_.mode[len] = '\0'; async_signal_.notify_one(); } void Awb::Prepare(Metadata *image_metadata) { if (frame_count_ < (int)config_.startup_frames) frame_count_++; double speed = frame_count_ < (int)config_.startup_frames ? 1.0 : config_.speed; RPI_LOG("Awb: frame_count " << frame_count_ << " speed " << speed); { std::unique_lock<std::mutex> lock(mutex_); if (async_started_ && async_finished_) { RPI_LOG("AWB thread finished"); fetchAsyncResults(); } } // Finally apply IIR filter to results and put into metadata. memcpy(prev_sync_results_.mode, sync_results_.mode, sizeof(prev_sync_results_.mode)); prev_sync_results_.temperature_K = speed * sync_results_.temperature_K + (1.0 - speed) * prev_sync_results_.temperature_K; prev_sync_results_.gain_r = speed * sync_results_.gain_r + (1.0 - speed) * prev_sync_results_.gain_r; prev_sync_results_.gain_g = speed * sync_results_.gain_g + (1.0 - speed) * prev_sync_results_.gain_g; prev_sync_results_.gain_b = speed * sync_results_.gain_b + (1.0 - speed) * prev_sync_results_.gain_b; image_metadata->Set("awb.status", prev_sync_results_); RPI_LOG("Using AWB gains r " << prev_sync_results_.gain_r << " g " << prev_sync_results_.gain_g << " b " << prev_sync_results_.gain_b); } void Awb::Process(StatisticsPtr &stats, Metadata *image_metadata) { // Count frames since we last poked the async thread. if (frame_phase_ < (int)config_.frame_period) frame_phase_++; if (frame_count2_ < (int)config_.startup_frames) frame_count2_++; RPI_LOG("Awb: frame_phase " << frame_phase_); if (frame_phase_ >= (int)config_.frame_period || frame_count2_ < (int)config_.startup_frames) { // Update any settings and any image metadata that we need. std::string mode_name; { std::unique_lock<std::mutex> lock(settings_mutex_); mode_name = mode_name_; } struct LuxStatus lux_status = {}; lux_status.lux = 400; // in case no metadata if (image_metadata->Get("lux.status", lux_status) != 0) RPI_LOG("No lux metadata found"); RPI_LOG("Awb lux value is " << lux_status.lux); std::unique_lock<std::mutex> lock(mutex_); if (async_started_ == false) { RPI_LOG("AWB thread starting"); restartAsync(stats, mode_name, lux_status.lux); } } } void Awb::asyncFunc() { while (true) { { std::unique_lock<std::mutex> lock(mutex_); async_signal_.wait(lock, [&] { return async_start_ || async_abort_; }); async_start_ = false; if (async_abort_) break; } doAwb(); { std::lock_guard<std::mutex> lock(mutex_); async_finished_ = true; sync_signal_.notify_one(); } } } static void generate_stats(std::vector<Awb::RGB> &zones, bcm2835_isp_stats_region *stats, double min_pixels, double min_G) { for (int i = 0; i < AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y; i++) { Awb::RGB zone; // this is "invalid", unless R gets overwritten later double counted = stats[i].counted; if (counted >= min_pixels) { zone.G = stats[i].g_sum / counted; if (zone.G >= min_G) { zone.R = stats[i].r_sum / counted; zone.B = stats[i].b_sum / counted; } } zones.push_back(zone); } } void Awb::prepareStats() { zones_.clear(); // LSC has already been applied to the stats in this pipeline, so stop // any LSC compensation. We also ignore config_.fast in this version. generate_stats(zones_, statistics_->awb_stats, config_.min_pixels, config_.min_G); // we're done with these; we may as well relinquish our hold on the // pointer. statistics_.reset(); // apply sensitivities, so values appear to come from our "canonical" // sensor. for (auto &zone : zones_) zone.R *= config_.sensitivity_r, zone.B *= config_.sensitivity_b; } double Awb::computeDelta2Sum(double gain_r, double gain_b) { // Compute the sum of the squared colour error (non-greyness) as it // appears in the log likelihood equation. double delta2_sum = 0; for (auto &z : zones_) { double delta_r = gain_r * z.R - 1 - config_.whitepoint_r; double delta_b = gain_b * z.B - 1 - config_.whitepoint_b; double delta2 = delta_r * delta_r + delta_b * delta_b; //RPI_LOG("delta_r " << delta_r << " delta_b " << delta_b << " delta2 " << delta2); delta2 = std::min(delta2, config_.delta_limit); delta2_sum += delta2; } return delta2_sum; } Pwl Awb::interpolatePrior() { // Interpolate the prior log likelihood function for our current lux // value. if (lux_ <= config_.priors.front().lux) return config_.priors.front().prior; else if (lux_ >= config_.priors.back().lux) return config_.priors.back().prior; else { int idx = 0; // find which two we lie between while (config_.priors[idx + 1].lux < lux_) idx++; double lux0 = config_.priors[idx].lux, lux1 = config_.priors[idx + 1].lux; return Pwl::Combine(config_.priors[idx].prior, config_.priors[idx + 1].prior, [&](double /*x*/, double y0, double y1) { return y0 + (y1 - y0) * (lux_ - lux0) / (lux1 - lux0); }); } } static double interpolate_quadatric(Pwl::Point const &A, Pwl::Point const &B, Pwl::Point const &C) { // Given 3 points on a curve, find the extremum of the function in that // interval by fitting a quadratic. const double eps = 1e-3; Pwl::Point CA = C - A, BA = B - A; double denominator = 2 * (BA.y * CA.x - CA.y * BA.x); if (abs(denominator) > eps) { double numerator = BA.y * CA.x * CA.x - CA.y * BA.x * BA.x; double result = numerator / denominator + A.x; return std::max(A.x, std::min(C.x, result)); } // has degenerated to straight line segment return A.y < C.y - eps ? A.x : (C.y < A.y - eps ? C.x : B.x); } double Awb::coarseSearch(Pwl const &prior) { points_.clear(); // assume doesn't deallocate memory size_t best_point = 0; double t = mode_->ct_lo; int span_r = 0, span_b = 0; // Step down the CT curve evaluating log likelihood. while (true) { double r = config_.ct_r.Eval(t, &span_r); double b = config_.ct_b.Eval(t, &span_b); double gain_r = 1 / r, gain_b = 1 / b; double delta2_sum = computeDelta2Sum(gain_r, gain_b); double prior_log_likelihood = prior.Eval(prior.Domain().Clip(t)); double final_log_likelihood = delta2_sum - prior_log_likelihood; RPI_LOG("t: " << t << " gain_r " << gain_r << " gain_b " << gain_b << " delta2_sum " << delta2_sum << " prior " << prior_log_likelihood << " final " << final_log_likelihood); points_.push_back(Pwl::Point(t, final_log_likelihood)); if (points_.back().y < points_[best_point].y) best_point = points_.size() - 1; if (t == mode_->ct_hi) break; // for even steps along the r/b curve scale them by the current t t = std::min(t + t / 10 * config_.coarse_step, mode_->ct_hi); } t = points_[best_point].x; RPI_LOG("Coarse search found CT " << t); // We have the best point of the search, but refine it with a quadratic // interpolation around its neighbours. if (points_.size() > 2) { unsigned long bp = std::min(best_point, points_.size() - 2); best_point = std::max(1UL, bp); t = interpolate_quadatric(points_[best_point - 1], points_[best_point], points_[best_point + 1]); RPI_LOG("After quadratic refinement, coarse search has CT " << t); } return t; } void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior) { int span_r = -1, span_b = -1; config_.ct_r.Eval(t, &span_r); config_.ct_b.Eval(t, &span_b); double step = t / 10 * config_.coarse_step * 0.1; int nsteps = 5; double r_diff = config_.ct_r.Eval(t + nsteps * step, &span_r) - config_.ct_r.Eval(t - nsteps * step, &span_r); double b_diff = config_.ct_b.Eval(t + nsteps * step, &span_b) - config_.ct_b.Eval(t - nsteps * step, &span_b); Pwl::Point transverse(b_diff, -r_diff); if (transverse.Len2() < 1e-6) return; // unit vector orthogonal to the b vs. r function (pointing outwards // with r and b increasing) transverse = transverse / transverse.Len(); double best_log_likelihood = 0, best_t = 0, best_r = 0, best_b = 0; double transverse_range = config_.transverse_neg + config_.transverse_pos; const int MAX_NUM_DELTAS = 12; // a transverse step approximately every 0.01 r/b units int num_deltas = floor(transverse_range * 100 + 0.5) + 1; num_deltas = num_deltas < 3 ? 3 : (num_deltas > MAX_NUM_DELTAS ? MAX_NUM_DELTAS : num_deltas); // Step down CT curve. March a bit further if the transverse range is // large. nsteps += num_deltas; for (int i = -nsteps; i <= nsteps; i++) { double t_test = t + i * step; double prior_log_likelihood = prior.Eval(prior.Domain().Clip(t_test)); double r_curve = config_.ct_r.Eval(t_test, &span_r); double b_curve = config_.ct_b.Eval(t_test, &span_b); // x will be distance off the curve, y the log likelihood there Pwl::Point points[MAX_NUM_DELTAS]; int best_point = 0; // Take some measurements transversely *off* the CT curve. for (int j = 0; j < num_deltas; j++) { points[j].x = -config_.transverse_neg + (transverse_range * j) / (num_deltas - 1); Pwl::Point rb_test = Pwl::Point(r_curve, b_curve) + transverse * points[j].x; double r_test = rb_test.x, b_test = rb_test.y; double gain_r = 1 / r_test, gain_b = 1 / b_test; double delta2_sum = computeDelta2Sum(gain_r, gain_b); points[j].y = delta2_sum - prior_log_likelihood; RPI_LOG("At t " << t_test << " r " << r_test << " b " << b_test << ": " << points[j].y); if (points[j].y < points[best_point].y) best_point = j; } // We have NUM_DELTAS points transversely across the CT curve, // now let's do a quadratic interpolation for the best result. best_point = std::max(1, std::min(best_point, num_deltas - 2)); Pwl::Point rb_test = Pwl::Point(r_curve, b_curve) + transverse * interpolate_quadatric(points[best_point - 1], points[best_point], points[best_point + 1]); double r_test = rb_test.x, b_test = rb_test.y; double gain_r = 1 / r_test, gain_b = 1 / b_test; double delta2_sum = computeDelta2Sum(gain_r, gain_b); double final_log_likelihood = delta2_sum - prior_log_likelihood; RPI_LOG("Finally " << t_test << " r " << r_test << " b " << b_test << ": " << final_log_likelihood << (final_log_likelihood < best_log_likelihood ? " BEST" : "")); if (best_t == 0 || final_log_likelihood < best_log_likelihood) best_log_likelihood = final_log_likelihood, best_t = t_test, best_r = r_test, best_b = b_test; } t = best_t, r = best_r, b = best_b; RPI_LOG("Fine search found t " << t << " r " << r << " b " << b); } void Awb::awbBayes() { // May as well divide out G to save computeDelta2Sum from doing it over // and over. for (auto &z : zones_) z.R = z.R / (z.G + 1), z.B = z.B / (z.G + 1); // Get the current prior, and scale according to how many zones are // valid... not entirely sure about this. Pwl prior = interpolatePrior(); prior *= zones_.size() / (double)(AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y); prior.Map([](double x, double y) { RPI_LOG("(" << x << "," << y << ")"); }); double t = coarseSearch(prior); double r = config_.ct_r.Eval(t); double b = config_.ct_b.Eval(t); RPI_LOG("After coarse search: r " << r << " b " << b << " (gains r " << 1 / r << " b " << 1 / b << ")"); // Not entirely sure how to handle the fine search yet. Mostly the // estimated CT is already good enough, but the fine search allows us to // wander transverely off the CT curve. Under some illuminants, where // there may be more or less green light, this may prove beneficial, // though I probably need more real datasets before deciding exactly how // this should be controlled and tuned. fineSearch(t, r, b, prior); RPI_LOG("After fine search: r " << r << " b " << b << " (gains r " << 1 / r << " b " << 1 / b << ")"); // Write results out for the main thread to pick up. Remember to adjust // the gains from the ones that the "canonical sensor" would require to // the ones needed by *this* sensor. async_results_.temperature_K = t; async_results_.gain_r = 1.0 / r * config_.sensitivity_r; async_results_.gain_g = 1.0; async_results_.gain_b = 1.0 / b * config_.sensitivity_b; } void Awb::awbGrey() { RPI_LOG("Grey world AWB"); // Make a separate list of the derivatives for each of red and blue, so // that we can sort them to exclude the extreme gains. We could // consider some variations, such as normalising all the zones first, or // doing an L2 average etc. std::vector<RGB> &derivs_R(zones_); std::vector<RGB> derivs_B(derivs_R); std::sort(derivs_R.begin(), derivs_R.end(), [](RGB const &a, RGB const &b) { return a.G * b.R < b.G * a.R; }); std::sort(derivs_B.begin(), derivs_B.end(), [](RGB const &a, RGB const &b) { return a.G * b.B < b.G * a.B; }); // Average the middle half of the values. int discard = derivs_R.size() / 4; RGB sum_R(0, 0, 0), sum_B(0, 0, 0); for (auto ri = derivs_R.begin() + discard, bi = derivs_B.begin() + discard; ri != derivs_R.end() - discard; ri++, bi++) sum_R += *ri, sum_B += *bi; double gain_r = sum_R.G / (sum_R.R + 1), gain_b = sum_B.G / (sum_B.B + 1); async_results_.temperature_K = 4500; // don't know what it is async_results_.gain_r = gain_r; async_results_.gain_g = 1.0; async_results_.gain_b = gain_b; } void Awb::doAwb() { if (manual_r_ != 0.0 && manual_b_ != 0.0) { async_results_.temperature_K = 4500; // don't know what it is async_results_.gain_r = manual_r_; async_results_.gain_g = 1.0; async_results_.gain_b = manual_b_; RPI_LOG("Using manual white balance: gain_r " << async_results_.gain_r << " gain_b " << async_results_.gain_b); } else { prepareStats(); RPI_LOG("Valid zones: " << zones_.size()); if (zones_.size() > config_.min_regions) { if (config_.bayes) awbBayes(); else awbGrey(); RPI_LOG("CT found is " << async_results_.temperature_K << " with gains r " << async_results_.gain_r << " and b " << async_results_.gain_b); } } } // Register algorithm with the system. static Algorithm *Create(Controller *controller) { return (Algorithm *)new Awb(controller); } static RegisterAlgorithm reg(NAME, &Create);