/* SPDX-License-Identifier: BSD-2-Clause */ /* * Copyright (C) 2019, Raspberry Pi (Trading) Limited * * agc.hpp - AGC/AEC control algorithm */ #pragma once #include #include #include "../agc_algorithm.hpp" #include "../agc_status.h" #include "../pwl.hpp" // This is our implementation of AGC. // This is the number actually set up by the firmware, not the maximum possible // number (which is 16). #define AGC_STATS_SIZE 15 namespace RPiController { struct AgcMeteringMode { double weights[AGC_STATS_SIZE]; void Read(boost::property_tree::ptree const ¶ms); }; struct AgcExposureMode { std::vector shutter; std::vector gain; void Read(boost::property_tree::ptree const ¶ms); }; struct AgcConstraint { enum class Bound { LOWER = 0, UPPER = 1 }; Bound bound; double q_lo; double q_hi; Pwl Y_target; void Read(boost::property_tree::ptree const ¶ms); }; typedef std::vector AgcConstraintMode; struct AgcConfig { void Read(boost::property_tree::ptree const ¶ms); std::map metering_modes; std::map exposure_modes; std::map constraint_modes; Pwl Y_target; double speed; uint16_t startup_frames; double max_change; double min_change; double fast_reduce_threshold; double speed_up_threshold; std::string default_metering_mode; std::string default_exposure_mode; std::string default_constraint_mode; double base_ev; double default_exposure_time; double default_analogue_gain; }; class Agc : public AgcAlgorithm { public: Agc(Controller *controller); char const *Name() const override; void Read(boost::property_tree::ptree const ¶ms) override; void SetEv(double ev) override; void SetFlickerPeriod(double flicker_period) override; void SetFixedShutter(double fixed_shutter) override; // microseconds void SetFixedAnalogueGain(double fixed_analogue_gain) override; void SetMeteringMode(std::string const &metering_mode_name) override; void SetExposureMode(std::string const &exposure_mode_name) override; void SetConstraintMode(std::string const &contraint_mode_name) override; void SwitchMode(CameraMode const &camera_mode, Metadata *metadata) override; void Prepare(Metadata *image_metadata) override; void Process(StatisticsPtr &stats, Metadata *image_metadata) override; private: AgcConfig config_; void housekeepConfig(); void fetchCurrentExposure(Metadata *image_metadata); void fetchAwbStatus(Metadata *image_metadata); void computeGain(bcm2835_isp_stats *statistics, Metadata *image_metadata, double &gain, double &target_Y); void computeTargetExposure(double gain); bool applyDigitalGain(double gain, double target_Y); void filterExposure(bool desaturate); void divideUpExposure(); void writeAndFinish(Metadata *image_metadata, bool desaturate); AgcMeteringMode *metering_mode_; AgcExposureMode *exposure_mode_; AgcConstraintMode *constraint_mode_; uint64_t frame_count_; AwbStatus awb_; struct ExposureValues { ExposureValues() : shutter(0), analogue_gain(0), total_exposure(0), total_exposure_no_dg(0) {} double shutter; double analogue_gain; double total_exposure; double total_exposure_no_dg; // without digital gain }; ExposureValues current_; // values for the current frame ExposureValues target_; // calculate the values we want here ExposureValues filtered_; // these values are filtered towards target AgcStatus status_; int lock_count_; // Below here the "settings" that applications can change. std::string metering_mode_name_; std::string exposure_mode_name_; std::string constraint_mode_name_; double ev_; double flicker_period_; double fixed_shutter_; double fixed_analogue_gain_; }; } // namespace RPiController '>30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
 * Copyright (C) 2018, Google Inc.
 *
 * utils.cpp - Miscellaneous utility tests
 */

#include <iostream>
#include <map>
#include <sstream>
#include <string>
#include <vector>

#include <libcamera/base/span.h>
#include <libcamera/base/utils.h>

#include <libcamera/geometry.h>

#include "test.h"

using namespace std;
using namespace libcamera;
using namespace std::literals::chrono_literals;

class UtilsTest : public Test
{
protected:
	int testDirname()
	{
		static const std::vector<std::string> paths = {
			"",
			"///",
			"/bin",
			"/usr/bin",
			"//etc////",
			"//tmp//d//",
			"current_file",
			"./current_file",
			"./current_dir/",
			"current_dir/",
		};

		static const std::vector<std::string> expected = {
			".",
			"/",
			"/",
			"/usr",
			"/",
			"//tmp",
			".",
			".",
			".",
			".",
		};

		std::vector<std::string> results;

		for (const auto &path : paths)
			results.push_back(utils::dirname(path));

		if (results != expected) {
			cerr << "utils::dirname() tests failed" << endl;

			cerr << "expected: " << endl;
			for (const auto &path : expected)
				cerr << "\t" << path << endl;

			cerr << "results: " << endl;
			for (const auto &path : results)
				cerr << "\t" << path << endl;

			return TestFail;
		}

		return TestPass;
	}

	int testEnumerate()
	{
		std::vector<unsigned int> integers{ 1, 2, 3, 4, 5 };
		unsigned int i = 0;

		for (auto [index, value] : utils::enumerate(integers)) {
			if (index != i || value != i + 1) {
				cerr << "utils::enumerate(<vector>) test failed: i=" << i
				     << ", index=" << index << ", value=" << value
				     << std::endl;
				return TestFail;
			}

			/* Verify that we can modify the value. */
			--value;
			++i;
		}

		if (integers != std::vector<unsigned int>{ 0, 1, 2, 3, 4 }) {
			cerr << "Failed to modify container in enumerated range loop" << endl;
			return TestFail;
		}

		Span<const unsigned int> span{ integers };
		i = 0;

		for (auto [index, value] : utils::enumerate(span)) {
			if (index != i || value != i) {
				cerr << "utils::enumerate(<span>) test failed: i=" << i
				     << ", index=" << index << ", value=" << value
				     << std::endl;
				return TestFail;
			}

			++i;
		}

		const unsigned int array[] = { 0, 2, 4, 6, 8 };
		i = 0;

		for (auto [index, value] : utils::enumerate(array)) {
			if (index != i || value != i * 2) {
				cerr << "utils::enumerate(<array>) test failed: i=" << i
				     << ", index=" << index << ", value=" << value
				     << std::endl;
				return TestFail;
			}

			++i;
		}

		return TestPass;
	}

	int testDuration()
	{
		std::ostringstream os;
		utils::Duration exposure;
		double ratio;

		exposure = 25ms + 25ms;
		if (exposure.get<std::micro>() != 50000.0) {
			cerr << "utils::Duration failed to return microsecond count";
			return TestFail;
		}

		exposure = 1.0s / 4;
		if (exposure != 250ms) {
			cerr << "utils::Duration failed scalar divide test";
			return TestFail;
		}

		exposure = 5000.5us;
		if (!exposure) {
			cerr << "utils::Duration failed boolean test";
			return TestFail;
		}

		os << exposure;
		if (os.str() != "5000.50us") {
			cerr << "utils::Duration operator << failed";
			return TestFail;
		}

		exposure = 100ms;
		ratio = exposure / 25ms;
		if (ratio != 4.0) {
			cerr << "utils::Duration failed ratio test";
			return TestFail;
		}

		return TestPass;
	}

	int run()
	{
		/* utils::hex() test. */
		std::ostringstream os;
		std::string ref;

		os << utils::hex(static_cast<int32_t>(0x42)) << " ";
		ref += "0x00000042 ";
		os << utils::hex(static_cast<uint32_t>(0x42)) << " ";
		ref += "0x00000042 ";
		os << utils::hex(static_cast<int64_t>(0x42)) << " ";
		ref += "0x0000000000000042 ";
		os << utils::hex(static_cast<uint64_t>(0x42)) << " ";
		ref += "0x0000000000000042 ";
		os << utils::hex(static_cast<int32_t>(0x42), 4) << " ";
		ref += "0x0042 ";
		os << utils::hex(static_cast<uint32_t>(0x42), 1) << " ";
		ref += "0x42 ";