/* SPDX-License-Identifier: BSD-2-Clause */ /* * Copyright (C) 2019, Raspberry Pi Ltd * * histogram calculations */ #include "histogram.h" #include <cmath> #include <libcamera/base/log.h> /** * \file histogram.h * \brief Class to represent Histograms and manipulate them */ namespace libcamera { namespace ipa { /** * \class Histogram * \brief The base class for creating histograms * * This class stores a cumulative frequency histogram, which is a mapping that * counts the cumulative number of observations in all of the bins up to the * specified bin. It can be used to find quantiles and averages between quantiles. */ /** * \fn Histogram::Histogram() * \brief Construct an empty Histogram * * This empty constructor exists largely to allow Histograms to be embedded in * other classes which may be created before the contents of the Histogram are * known. */ /** * \brief Create a cumulative histogram * \param[in] data A (non-cumulative) histogram */ Histogram::Histogram(Span<const uint32_t> data) { cumulative_.resize(data.size() + 1); cumulative_[0] = 0; for (const auto &[i, value] : utils::enumerate(data)) cumulative_[i + 1] = cumulative_[i] + value; } /** * \fn Histogram::Histogram(Span<const uint32_t> data, Transform transform) * \brief Create a cumulative histogram * \param[in] data A (non-cumulative) histogram * \param[in] transform The transformation function to apply to every bin */ /** * \fn Histogram::bins() * \brief Retrieve the number of bins currently used by the Histogram * \return Number of bins */ /** * \fn Histogram::total() * \brief Retrieve the total number of values in the data set * \return Number of values */ /** * \brief Cumulative frequency up to a (fractional) point in a bin * \param[in] bin The bin up to which to cumulate * * With F(p) the cumulative frequency of the histogram, the value is 0 at * the bottom of the histogram, and the maximum is the number of bins. * The pixels are spread evenly throughout the “bin” in which they lie, so that * F(p) is a continuous (monotonically increasing) function. * * \return The cumulative frequency from 0 up to the specified bin */ uint64_t Histogram::cumulativeFrequency(double bin) const { if (bin <= 0) return 0; else if (bin >= bins()) return total(); int b = static_cast<int32_t>(bin); return cumulative_[b] + (bin - b) * (cumulative_[b + 1] - cumulative_[b]); } /** * \brief Return the (fractional) bin of the point through the histogram * \param[in] q the desired point (0 <= q <= 1) * \param[in] first low limit (default is 0) * \param[in] last high limit (default is UINT_MAX) * * A quantile gives us the point p = Q(q) in the range such that a proportion * q of the pixels lie below p. A familiar quantile is Q(0.5) which is the median * of a distribution. * * \return The fractional bin of the point */ double Histogram::quantile(double q, uint32_t first, uint32_t last) const { if (last == UINT_MAX) last = cumulative_.size() - 2; ASSERT(first <= last); uint64_t item = q * total(); /* Binary search to find the right bin */ while (first < last) { int middle = (first + last) / 2; /* Is it between first and middle ? */ if (cumulative_[middle + 1] > item) last = middle; else first = middle + 1; } ASSERT(item >= cumulative_[first] && item <= cumulative_[last + 1]); double frac; if (cumulative_[first + 1] == cumulative_[first]) frac = 0; else frac = (item - cumulative_[first]) / (cumulative_[first + 1] - cumulative_[first]); return first + frac; } /** * \brief Calculate the mean between two quantiles * \param[in] lowQuantile low Quantile * \param[in] highQuantile high Quantile * * Quantiles are not ideal for metering as they suffer several limitations. * Instead, a concept is introduced here: inter-quantile mean. * It returns the mean of all pixels between lowQuantile and highQuantile. * * \return The mean histogram bin value between the two quantiles */ double Histogram::interQuantileMean(double lowQuantile, double highQuantile) const { ASSERT(highQuantile > lowQuantile); /* Proportion of pixels which lies below lowQuantile */ double lowPoint = quantile(lowQuantile); /* Proportion of pixels which lies below highQuantile */ double highPoint = quantile(highQuantile, static_cast<uint32_t>(lowPoint)); double sumBinFreq = 0, cumulFreq = 0; for (double p_next = floor(lowPoint) + 1.0; p_next <= ceil(highPoint); lowPoint = p_next, p_next += 1.0) { int bin = floor(lowPoint); double freq = (cumulative_[bin + 1] - cumulative_[bin]) * (std::min(p_next, highPoint) - lowPoint); /* Accumulate weighted bin */ sumBinFreq += bin * freq; /* Accumulate weights */ cumulFreq += freq; } /* add 0.5 to give an average for bin mid-points */ return sumBinFreq / cumulFreq + 0.5; } } /* namespace ipa */ } /* namespace libcamera */