/* SPDX-License-Identifier: LGPL-2.1-or-later */ /* * Copyright (C) 2020, Google Inc. * * ipu3.cpp - IPU3 Image Processing Algorithms */ #include <stdint.h> #include <sys/mman.h> #include <linux/intel-ipu3.h> #include <linux/v4l2-controls.h> #include <libcamera/buffer.h> #include <libcamera/control_ids.h> #include <libcamera/ipa/ipa_interface.h> #include <libcamera/ipa/ipa_module_info.h> #include <libcamera/ipa/ipu3_ipa_interface.h> #include <libcamera/request.h> #include "libcamera/internal/buffer.h" #include "libcamera/internal/log.h" #include "ipu3_agc.h" #include "ipu3_awb.h" static constexpr uint32_t kMaxCellWidthPerSet = 160; static constexpr uint32_t kMaxCellHeightPerSet = 56; namespace libcamera { LOG_DEFINE_CATEGORY(IPAIPU3) namespace ipa::ipu3 { class IPAIPU3 : public IPAIPU3Interface { public: int init([[maybe_unused]] const IPASettings &settings) override { return 0; } int start() override; void stop() override {} int configure(const IPAConfigInfo &configInfo) override; void mapBuffers(const std::vector<IPABuffer> &buffers) override; void unmapBuffers(const std::vector<unsigned int> &ids) override; void processEvent(const IPU3Event &event) override; private: void processControls(unsigned int frame, const ControlList &controls); void fillParams(unsigned int frame, ipu3_uapi_params *params); void parseStatistics(unsigned int frame, int64_t frameTimestamp, const ipu3_uapi_stats_3a *stats); void setControls(unsigned int frame); void calculateBdsGrid(const Size &bdsOutputSize); std::map<unsigned int, MappedFrameBuffer> buffers_; ControlInfoMap ctrls_; IPACameraSensorInfo sensorInfo_; /* Camera sensor controls. */ uint32_t defVBlank_; uint32_t exposure_; uint32_t minExposure_; uint32_t maxExposure_; uint32_t gain_; uint32_t minGain_; uint32_t maxGain_; /* Interface to the AWB algorithm */ std::unique_ptr<IPU3Awb> awbAlgo_; /* Interface to the AEC/AGC algorithm */ std::unique_ptr<IPU3Agc> agcAlgo_; /* Local parameter storage */ struct ipu3_uapi_params params_; struct ipu3_uapi_grid_config bdsGrid_; }; int IPAIPU3::start() { setControls(0); return 0; } /** * This method calculates a grid for the AWB algorithm in the IPU3 firmware. * Its input is the BDS output size calculated in the ImgU. * It is limited for now to the simplest method: find the lesser error * with the width/height and respective log2 width/height of the cells. * * \todo The frame is divided into cells which can be 8x8 => 128x128. * As a smaller cell improves the algorithm precision, adapting the * x_start and y_start parameters of the grid would provoke a loss of * some pixels but would also result in more accurate algorithms. */ void IPAIPU3::calculateBdsGrid(const Size &bdsOutputSize) { uint32_t minError = std::numeric_limits<uint32_t>::max(); Size best; Size bestLog2; bdsGrid_ = {}; for (uint32_t widthShift = 3; widthShift <= 7; ++widthShift) { uint32_t width = std::min(kMaxCellWidthPerSet, bdsOutputSize.width >> widthShift); width = width << widthShift; for (uint32_t heightShift = 3; heightShift <= 7; ++heightShift) { int32_t height = std::min(kMaxCellHeightPerSet, bdsOutputSize.height >> heightShift); height = height << heightShift; uint32_t error = std::abs(static_cast<int>(width - bdsOutputSize.width)) + std::abs(static_cast<int>(height - bdsOutputSize.height)); if (error > minError) continue; minError = error; best.width = width; best.height = height; bestLog2.width = widthShift; bestLog2.height = heightShift; } } bdsGrid_.width = best.width >> bestLog2.width; bdsGrid_.block_width_log2 = bestLog2.width; bdsGrid_.height = best.height >> bestLog2.height; bdsGrid_.block_height_log2 = bestLog2.height; LOG(IPAIPU3, Debug) << "Best grid found is: (" << (int)bdsGrid_.width << " << " << (int)bdsGrid_.block_width_log2 << ") x (" << (int)bdsGrid_.height << " << " << (int)bdsGrid_.block_height_log2 << ")"; } int IPAIPU3::configure(const IPAConfigInfo &configInfo) { if (configInfo.entityControls.empty()) { LOG(IPAIPU3, Error) << "No controls provided"; return -ENODATA; } sensorInfo_ = configInfo.sensorInfo; ctrls_ = configInfo.entityControls.at(0); const auto itExp = ctrls_.find(V4L2_CID_EXPOSURE); if (itExp == ctrls_.end()) { LOG(IPAIPU3, Error) << "Can't find exposure control"; return -EINVAL; } const auto itGain = ctrls_.find(V4L2_CID_ANALOGUE_GAIN); if (itGain == ctrls_.end()) { LOG(IPAIPU3, Error) << "Can't find gain control"; return -EINVAL; } const auto itVBlank = ctrls_.find(V4L2_CID_VBLANK); if (itVBlank == ctrls_.end()) { LOG(IPAIPU3, Error) << "Can't find VBLANK control"; return -EINVAL; } minExposure_ = std::max(itExp->second.min().get<int32_t>(), 1); maxExposure_ = itExp->second.max().get<int32_t>(); exposure_ = minExposure_; minGain_ = std::max(itGain->second.min().get<int32_t>(), 1); maxGain_ = itGain->second.max().get<int32_t>(); gain_ = minGain_; defVBlank_ = itVBlank->second.def().get<int32_t>(); params_ = {}; calculateBdsGrid(configInfo.bdsOutputSize); awbAlgo_ = std::make_unique<IPU3Awb>(); awbAlgo_->initialise(params_, configInfo.bdsOutputSize, bdsGrid_); agcAlgo_ = std::make_unique<IPU3Agc>(); agcAlgo_->initialise(bdsGrid_, sensorInfo_); return 0; } void IPAIPU3::mapBuffers(const std::vector<IPABuffer> &buffers) { for (const IPABuffer &buffer : buffers) { const FrameBuffer fb(buffer.planes); buffers_.emplace(buffer.id, MappedFrameBuffer(&fb, PROT_READ | PROT_WRITE)); } } void IPAIPU3::unmapBuffers(const std::vector<unsigned int> &ids) { for (unsigned int id : ids) { auto it = buffers_.find(id); if (it == buffers_.end()) continue; buffers_.erase(it); } } void IPAIPU3::processEvent(const IPU3Event &event) { switch (event.op) { case EventProcessControls: { processControls(event.frame, event.controls); break; } case EventStatReady: { auto it = buffers_.find(event.bufferId); if (it == buffers_.end()) { LOG(IPAIPU3, Error) << "Could not find stats buffer!"; return; } Span<uint8_t> mem = it->second.maps()[0]; const ipu3_uapi_stats_3a *stats = reinterpret_cast<ipu3_uapi_stats_3a *>(mem.data()); parseStatistics(event.frame, event.frameTimestamp, stats); break; } case EventFillParams: { auto it = buffers_.find(event.bufferId); if (it == buffers_.end()) { LOG(IPAIPU3, Error) << "Could not find param buffer!"; return; } Span<uint8_t> mem = it->second.maps()[0]; ipu3_uapi_params *params = reinterpret_cast<ipu3_uapi_params *>(mem.data()); fillParams(event.frame, params); break; } default: LOG(IPAIPU3, Error) << "Unknown event " << event.op; break; } } void IPAIPU3::processControls([[maybe_unused]] unsigned int frame, [[maybe_unused]] const ControlList &controls) { /* \todo Start processing for 'frame' based on 'controls'. */ } void IPAIPU3::fillParams(unsigned int frame, ipu3_uapi_params *params) { if (agcAlgo_->updateControls()) awbAlgo_->updateWbParameters(params_, agcAlgo_->gamma()); *params = params_; IPU3Action op; op.op = ActionParamFilled; queueFrameAction.emit(frame, op); } void IPAIPU3::parseStatistics(unsigned int frame, [[maybe_unused]] int64_t frameTimestamp, [[maybe_unused]] const ipu3_uapi_stats_3a *stats) { ControlList ctrls(controls::controls); agcAlgo_->process(stats, exposure_, gain_); awbAlgo_->calculateWBGains(stats); if (agcAlgo_->updateControls()) setControls(frame); /* \todo Use VBlank value calculated from each frame exposure. */ int64_t frameDuration = sensorInfo_.lineLength * (defVBlank_ + sensorInfo_.outputSize.height) / (sensorInfo_.pixelRate / 1e6); ctrls.set(controls::FrameDuration, frameDuration); IPU3Action op; op.op = ActionMetadataReady; op.controls = ctrls; queueFrameAction.emit(frame, op); } void IPAIPU3::setControls(unsigned int frame) { IPU3Action op; op.op = ActionSetSensorControls; ControlList ctrls(ctrls_); ctrls.set(V4L2_CID_EXPOSURE, static_cast<int32_t>(exposure_)); ctrls.set(V4L2_CID_ANALOGUE_GAIN, static_cast<int32_t>(gain_)); op.controls = ctrls; queueFrameAction.emit(frame, op); } } /* namespace ipa::ipu3 */ /* * External IPA module interface */ extern "C" { const struct IPAModuleInfo ipaModuleInfo = { IPA_MODULE_API_VERSION, 1, "PipelineHandlerIPU3", "ipu3", }; IPAInterface *ipaCreate() { return new ipa::ipu3::IPAIPU3(); } } } /* namespace libcamera */