1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2019, Google Inc.
*
* geometry.cpp - Geometry-related structures
*/
#include <libcamera/geometry.h>
#include <sstream>
#include <stdint.h>
#include <libcamera/base/log.h>
/**
* \file geometry.h
* \brief Data structures related to geometric objects
*/
namespace libcamera {
/**
* \class Point
* \brief Describe a point in two-dimensional space
*
* The Point structure defines a point in two-dimensional space with integer
* precision. The coordinates of a Point may be negative as well as positive.
*/
/**
* \fn Point::Point()
* \brief Construct a Point with x and y set to 0
*/
/**
* \fn Point::Point(int xpos, int ypos)
* \brief Construct a Point at given \a xpos and \a ypos values
* \param[in] xpos The x-coordinate
* \param[in] ypos The y-coordinate
*/
/**
* \var Point::x
* \brief The x-coordinate of the Point
*/
/**
* \var Point::y
* \brief The y-coordinate of the Point
*/
/**
* \brief Assemble and return a string describing the point
* \return A string describing the point
*/
const std::string Point::toString() const
{
std::stringstream ss;
ss << "(" << x << "," << y << ")";
return ss.str();
}
/**
* \fn Point Point::operator-() const
* \brief Negate a Point by negating both its x and y coordinates
* \return The negated point
*/
/**
* \brief Compare points for equality
* \return True if the two points are equal, false otherwise
*/
bool operator==(const Point &lhs, const Point &rhs)
{
return lhs.x == rhs.x && lhs.y == rhs.y;
}
/**
* \fn bool operator!=(const Point &lhs, const Point &rhs)
* \brief Compare points for inequality
* \return True if the two points are not equal, false otherwise
*/
/**
* \struct Size
* \brief Describe a two-dimensional size
*
* The Size structure defines a two-dimensional size with integer precision.
*/
/**
* \fn Size::Size()
* \brief Construct a Size with width and height set to 0
*/
/**
* \fn Size::Size(unsigned int width, unsigned int height)
* \brief Construct a Size with given \a width and \a height
* \param[in] width The Size width
* \param[in] height The Size height
*/
/**
* \var Size::width
* \brief The Size width
*/
/**
* \var Size::height
* \brief The Size height
*/
/**
* \fn bool Size::isNull() const
* \brief Check if the size is null
* \return True if both the width and height are 0, or false otherwise
*/
/**
* \brief Assemble and return a string describing the size
* \return A string describing the size
*/
const std::string Size::toString() const
{
return std::to_string(width) + "x" + std::to_string(height);
}
/**
* \fn Size::alignDownTo(unsigned int hAlignment, unsigned int vAlignment)
* \brief Align the size down horizontally and vertically in place
* \param[in] hAlignment Horizontal alignment
* \param[in] vAlignment Vertical alignment
*
* This functions rounds the width and height down to the nearest multiple of
* \a hAlignment and \a vAlignment respectively.
*
* \return A reference to this object
*/
/**
* \fn Size::alignUpTo(unsigned int hAlignment, unsigned int vAlignment)
* \brief Align the size up horizontally and vertically in place
* \param[in] hAlignment Horizontal alignment
* \param[in] vAlignment Vertical alignment
*
* This functions rounds the width and height up to the nearest multiple of
* \a hAlignment and \a vAlignment respectively.
*
* \return A reference to this object
*/
/**
* \fn Size::boundTo(const Size &bound)
* \brief Bound the size to \a bound in place
* \param[in] bound The maximum size
*
* This function sets the width and height to the minimum of this size and the
* \a bound size.
*
* \return A reference to this object
*/
/**
* \fn Size::expandTo(const Size &expand)
* \brief Expand the size to \a expand
* \param[in] expand The minimum size
*
* This function sets the width and height to the maximum of this size and the
* \a expand size.
*
* \return A reference to this object
*/
/**
* \fn Size::alignedDownTo(unsigned int hAlignment, unsigned int vAlignment)
* \brief Align the size down horizontally and vertically
* \param[in] hAlignment Horizontal alignment
* \param[in] vAlignment Vertical alignment
* \return A Size whose width and height are equal to the width and height of
* this size rounded down to the nearest multiple of \a hAlignment and
* \a vAlignment respectively
*/
/**
* \fn Size::alignedUpTo(unsigned int hAlignment, unsigned int vAlignment)
* \brief Align the size up horizontally and vertically
* \param[in] hAlignment Horizontal alignment
* \param[in] vAlignment Vertical alignment
* \return A Size whose width and height are equal to the width and height of
* this size rounded up to the nearest multiple of \a hAlignment and
* \a vAlignment respectively
*/
/**
* \fn Size::boundedTo(const Size &bound)
* \brief Bound the size to \a bound
* \param[in] bound The maximum size
* \return A Size whose width and height are the minimum of the width and
* height of this size and the \a bound size
*/
/**
* \fn Size::expandedTo(const Size &expand)
* \brief Expand the size to \a expand
* \param[in] expand The minimum size
* \return A Size whose width and height are the maximum of the width and
* height of this size and the \a expand size
*/
/**
* \brief Bound the size down to match the aspect ratio given by \a ratio
* \param[in] ratio The size whose aspect ratio must be matched
*
* The behaviour of this function is undefined if either the width or the
* height of the \a ratio is zero.
*
* \return A Size whose width and height are equal to the width and height
* of this Size aligned down to the aspect ratio of \a ratio
*/
Size Size::boundedToAspectRatio(const Size &ratio) const
{
ASSERT(ratio.width && ratio.height);
uint64_t ratio1 = static_cast<uint64_t>(width) *
static_cast<uint64_t>(ratio.height);
uint64_t ratio2 = static_cast<uint64_t>(ratio.width) *
static_cast<uint64_t>(height);
if (ratio1 > ratio2)
return { static_cast<unsigned int>(ratio2 / ratio.height), height };
else
return { width, static_cast<unsigned int>(ratio1 / ratio.width) };
}
/**
* \brief Expand the size to match the aspect ratio given by \a ratio
* \param[in] ratio The size whose aspect ratio must be matched
*
* The behaviour of this function is undefined if either the width or the
* height of the \a ratio is zero.
*
* \return A Size whose width and height are equal to the width and height
* of this Size expanded up to the aspect ratio of \a ratio
*/
Size Size::expandedToAspectRatio(const Size &ratio) const
{
ASSERT(ratio.width && ratio.height);
uint64_t ratio1 = static_cast<uint64_t>(width) *
static_cast<uint64_t>(ratio.height);
uint64_t ratio2 = static_cast<uint64_t>(ratio.width) *
static_cast<uint64_t>(height);
if (ratio1 < ratio2)
return { static_cast<unsigned int>(ratio2 / ratio.height), height };
else
return { width, static_cast<unsigned int>(ratio1 / ratio.width) };
}
/**
* \brief Center a rectangle of this size at a given Point
* \param[in] center The center point the Rectangle is to have
*
* A Rectangle of this object's size is positioned so that its center
* is at the given Point.
*
* \return A Rectangle of this size, centered at the given Point.
*/
Rectangle Size::centeredTo(const Point ¢er) const
{
int x = center.x - width / 2;
int y = center.y - height / 2;
return { x, y, width, height };
}
/**
* \brief Scale size up by the given factor
* \param[in] factor The factor
* \return The scaled Size
*/
Size Size::operator*(float factor) const
{
return Size(width * factor, height * factor);
}
/**
* \brief Scale size down by the given factor
* \param[in] factor The factor
* \return The scaled Size
*/
Size Size::operator/(float factor) const
{
return Size(width / factor, height / factor);
}
/**
* \brief Scale this size up by the given factor in place
* \param[in] factor The factor
* \return A reference to this object
*/
Size &Size::operator*=(float factor)
{
width *= factor;
height *= factor;
return *this;
}
/**
* \brief Scale this size down by the given factor in place
* \param[in] factor The factor
* \return A reference to this object
*/
Size &Size::operator/=(float factor)
{
width /= factor;
height /= factor;
return *this;
}
/**
* \brief Compare sizes for equality
* \return True if the two sizes are equal, false otherwise
*/
bool operator==(const Size &lhs, const Size &rhs)
{
return lhs.width == rhs.width && lhs.height == rhs.height;
}
/**
* \brief Compare sizes for smaller than order
*
* Sizes are compared on three criteria, in the following order.
*
* - A size with smaller width and smaller height is smaller.
* - A size with smaller area is smaller.
* - A size with smaller width is smaller.
*
* \return True if \a lhs is smaller than \a rhs, false otherwise
*/
bool operator<(const Size &lhs, const Size &rhs)
{
if (lhs.width < rhs.width && lhs.height < rhs.height)
return true;
else if (lhs.width >= rhs.width && lhs.height >= rhs.height)
return false;
uint64_t larea = static_cast<uint64_t>(lhs.width) *
static_cast<uint64_t>(lhs.height);
uint64_t rarea = static_cast<uint64_t>(rhs.width) *
static_cast<uint64_t>(rhs.height);
if (larea < rarea)
return true;
else if (larea > rarea)
return false;
return lhs.width < rhs.width;
}
/**
* \fn bool operator!=(const Size &lhs, const Size &rhs)
* \brief Compare sizes for inequality
* \return True if the two sizes are not equal, false otherwise
*/
/**
* \fn bool operator<=(const Size &lhs, const Size &rhs)
* \brief Compare sizes for smaller than or equal to order
* \return True if \a lhs is smaller than or equal to \a rhs, false otherwise
* \sa bool operator<(const Size &lhs, const Size &rhs)
*/
/**
* \fn bool operator>(const Size &lhs, const Size &rhs)
* \brief Compare sizes for greater than order
* \return True if \a lhs is greater than \a rhs, false otherwise
* \sa bool operator<(const Size &lhs, const Size &rhs)
*/
/**
* \fn bool operator>=(const Size &lhs, const Size &rhs)
* \brief Compare sizes for greater than or equal to order
* \return True if \a lhs is greater than or equal to \a rhs, false otherwise
* \sa bool operator<(const Size &lhs, const Size &rhs)
*/
/**
* \struct SizeRange
* \brief Describe a range of sizes
*
* A SizeRange describes a range of sizes included in the [min, max] interval
* for both the width and the height. If the minimum and maximum sizes are
* identical it represents a single size.
*
* Size ranges may further limit the valid sizes through steps in the horizontal
* and vertical direction. The step values represent the increase in pixels
* between two valid width or height values, starting from the minimum. Valid
* sizes within the range are thus expressed as
*
* width = min.width + hStep * x
* height = min.height + vStep * y
*
* Where
*
* width <= max.width
* height < max.height
*
* Note that the step values are not equivalent to alignments, as the minimum
* width or height may not be a multiple of the corresponding step.
*
* The step values may be zero when the range describes only minimum and
* maximum sizes without implying that all, or any, intermediate size is valid.
* SizeRange instances the describe a single size have both set values set to 1.
*/
/**
* \fn SizeRange::SizeRange()
* \brief Construct a size range initialized to 0
*/
/**
* \fn SizeRange::SizeRange(const Size &size)
* \brief Construct a size range representing a single size
* \param[in] size The size
*/
/**
* \fn SizeRange::SizeRange(const Size &minSize, const Size &maxSize)
* \brief Construct a size range with specified min and max, and steps of 1
* \param[in] minSize The minimum size
* \param[in] maxSize The maximum size
*/
/**
* \fn SizeRange::SizeRange(const Size &minSize, const Size &maxSize,
* unsigned int hstep, unsigned int vstep)
* \brief Construct a size range with specified min, max and step
* \param[in] minSize The minimum size
* \param[in] maxSize The maximum size
* \param[in] hstep The horizontal step
* \param[in] vstep The vertical step
*/
/**
* \var SizeRange::min
* \brief The minimum size
*/
/**
* \var SizeRange::max
* \brief The maximum size
*/
/**
* \var SizeRange::hStep
* \brief The horizontal step
*/
/**
* \var SizeRange::vStep
* \brief The vertical step
*/
/**
* \brief Test if a size is contained in the range
* \param[in] size Size to check
* \return True if \a size is contained in the range
*/
bool SizeRange::contains(const Size &size) const
{
if (size.width < min.width || size.width > max.width ||
size.height < min.height || size.height > max.height ||
(hStep && (size.width - min.width) % hStep) ||
(vStep && (size.height - min.height) % vStep))
return false;
return true;
}
/**
* \brief Assemble and return a string describing the size range
* \return A string describing the SizeRange
*/
std::string SizeRange::toString() const
{
std::stringstream ss;
ss << "(" << min.toString() << ")-(" << max.toString() << ")/(+"
<< hStep << ",+" << vStep << ")";
return ss.str();
}
/**
* \brief Compare size ranges for equality
* \return True if the two size ranges are equal, false otherwise
*/
bool operator==(const SizeRange &lhs, const SizeRange &rhs)
{
return lhs.min == rhs.min && lhs.max == rhs.max;
}
/**
* \fn bool operator!=(const SizeRange &lhs, const SizeRange &rhs)
* \brief Compare size ranges for inequality
* \return True if the two size ranges are not equal, false otherwise
*/
/**
* \struct Rectangle
* \brief Describe a rectangle's position and dimensions
*
* Rectangles are used to identify an area of an image. They are specified by
* the coordinates of top-left corner and their horizontal and vertical size.
*
* The measure unit of the rectangle coordinates and size, as well as the
* reference point from which the Rectangle::x and Rectangle::y displacements
* refers to, are defined by the context were rectangle is used.
*/
/**
* \fn Rectangle::Rectangle()
* \brief Construct a Rectangle with all coordinates set to 0
*/
/**
* \fn Rectangle::Rectangle(int x, int y, const Size &size)
* \brief Construct a Rectangle with the given position and size
* \param[in] x The horizontal coordinate of the top-left corner
* \param[in] y The vertical coordinate of the top-left corner
* \param[in] size The size
*/
/**
* \fn Rectangle::Rectangle(int x, int y, unsigned int width, unsigned int height)
* \brief Construct a Rectangle with the given position and size
* \param[in] x The horizontal coordinate of the top-left corner
* \param[in] y The vertical coordinate of the top-left corner
* \param[in] width The width
* \param[in] height The height
*/
/**
* \fn Rectangle::Rectangle(const Size &size)
* \brief Construct a Rectangle of \a size with its top left corner located
* at (0,0)
* \param[in] size The desired Rectangle size
*/
/**
* \var Rectangle::x
* \brief The horizontal coordinate of the rectangle's top-left corner
*/
/**
* \var Rectangle::y
* \brief The vertical coordinate of the rectangle's top-left corner
*/
/**
* \var Rectangle::width
* \brief The distance between the left and right sides
*/
/**
* \var Rectangle::height
* \brief The distance between the top and bottom sides
*/
/**
* \fn bool Rectangle::isNull() const
* \brief Check if the rectangle is null
* \return True if both the width and height are 0, or false otherwise
*/
/**
* \brief Assemble and return a string describing the rectangle
* \return A string describing the Rectangle
*/
const std::string Rectangle::toString() const
{
std::stringstream ss;
ss << "(" << x << "x" << y << ")/" << width << "x" << height;
return ss.str();
}
/**
* \brief Retrieve the center point of this rectangle
* \return The center Point
*/
Point Rectangle::center() const
{
return { x + static_cast<int>(width / 2), y + static_cast<int>(height / 2) };
}
/**
* \fn Size Rectangle::size() const
* \brief Retrieve the size of this rectangle
* \return The Rectangle size
*/
/**
* \fn Point Rectangle::topLeft() const
* \brief Retrieve the coordinates of the top left corner of this Rectangle
* \return The Rectangle's top left corner
*/
/**
* \brief Apply a non-uniform rational scaling in place to this Rectangle
* \param[in] numerator The numerators of the x and y scaling factors
* \param[in] denominator The denominators of the x and y scaling factors
*
* A non-uniform scaling is applied in place such the resulting x
* coordinates are multiplied by numerator.width / denominator.width,
* and similarly for the y coordinates (using height in place of width).
*
* \return A reference to this object
*/
Rectangle &Rectangle::scaleBy(const Size &numerator, const Size &denominator)
{
x = static_cast<int64_t>(x) * numerator.width / denominator.width;
y = static_cast<int64_t>(y) * numerator.height / denominator.height;
width = static_cast<uint64_t>(width) * numerator.width / denominator.width;
height = static_cast<uint64_t>(height) * numerator.height / denominator.height;
return *this;
}
/**
* \brief Translate this Rectangle in place by the given Point
* \param[in] point The amount to translate the Rectangle by
*
* The Rectangle is translated in the x-direction by the point's x coordinate
* and in the y-direction by the point's y coordinate.
*
* \return A reference to this object
*/
Rectangle &Rectangle::translateBy(const Point &point)
{
x += point.x;
y += point.y;
return *this;
}
/**
* \brief Calculate the intersection of this Rectangle with another
* \param[in] bound The Rectangle that is intersected with this Rectangle
*
* This method calculates the standard intersection of two rectangles. If the
* rectangles do not overlap in either the x or y direction, then the size
* of that dimension in the result (its width or height) is set to zero. Even
* when one dimension is set to zero, note that the other dimension may still
* have a positive value if there was some overlap.
*
* \return A Rectangle that is the intersection of the input rectangles
*/
Rectangle Rectangle::boundedTo(const Rectangle &bound) const
{
int topLeftX = std::max(x, bound.x);
int topLeftY = std::max(y, bound.y);
int bottomRightX = std::min<int>(x + width, bound.x + bound.width);
int bottomRightY = std::min<int>(y + height, bound.y + bound.height);
unsigned int newWidth = std::max(bottomRightX - topLeftX, 0);
unsigned int newHeight = std::max(bottomRightY - topLeftY, 0);
return { topLeftX, topLeftY, newWidth, newHeight };
}
/**
* \brief Enclose a Rectangle so as not to exceed another Rectangle
* \param[in] boundary The limit that the returned Rectangle will not exceed
*
* The Rectangle is modified so that it does not exceed the given \a boundary.
* This process involves translating the Rectangle if any of its edges
* lie beyond \a boundary, so that those edges then lie along the boundary
* instead.
*
* If either width or height are larger than \a boundary, then the returned
* Rectangle is clipped to be no larger. But other than this, the
* Rectangle is not clipped or reduced in size, merely translated.
*
* Note that this is not a conventional Rectangle intersection function
* which is provided by boundedTo().
*
* \return A Rectangle that does not extend beyond a boundary Rectangle
*/
Rectangle Rectangle::enclosedIn(const Rectangle &boundary) const
{
/* We can't be bigger than the boundary rectangle. */
Rectangle result = boundedTo(Rectangle{ x, y, boundary.size() });
result.x = std::clamp<int>(result.x, boundary.x,
boundary.x + boundary.width - result.width);
result.y = std::clamp<int>(result.y, boundary.y,
boundary.y + boundary.height - result.height);
return result;
}
/**
* \brief Apply a non-uniform rational scaling to this Rectangle
* \param[in] numerator The numerators of the x and y scaling factors
* \param[in] denominator The denominators of the x and y scaling factors
*
* A non-uniform scaling is applied such the resulting x
* coordinates are multiplied by numerator.width / denominator.width,
* and similarly for the y coordinates (using height in place of width).
*
* \return The non-uniformly scaled Rectangle
*/
Rectangle Rectangle::scaledBy(const Size &numerator, const Size &denominator) const
{
int scaledX = static_cast<int64_t>(x) * numerator.width / denominator.width;
int scaledY = static_cast<int64_t>(y) * numerator.height / denominator.height;
unsigned int scaledWidth = static_cast<uint64_t>(width) * numerator.width / denominator.width;
unsigned int scaledHeight = static_cast<uint64_t>(height) * numerator.height / denominator.height;
return { scaledX, scaledY, scaledWidth, scaledHeight };
}
/**
* \brief Translate a Rectangle by the given amounts
* \param[in] point The amount to translate the Rectangle by
*
* The Rectangle is translated in the x-direction by the point's x coordinate
* and in the y-direction by the point's y coordinate.
*
* \return The translated Rectangle
*/
Rectangle Rectangle::translatedBy(const Point &point) const
{
return { x + point.x, y + point.y, width, height };
}
/**
* \brief Compare rectangles for equality
* \return True if the two rectangles are equal, false otherwise
*/
bool operator==(const Rectangle &lhs, const Rectangle &rhs)
{
return lhs.x == rhs.x && lhs.y == rhs.y &&
lhs.width == rhs.width && lhs.height == rhs.height;
}
/**
* \fn bool operator!=(const Rectangle &lhs, const Rectangle &rhs)
* \brief Compare rectangles for inequality
* \return True if the two rectangles are not equal, false otherwise
*/
} /* namespace libcamera */
|