summaryrefslogtreecommitdiff
path: root/utils/ipc/tools/diagnosis
AgeCommit message (Expand)Author
2020-11-11utils: ipc: import mojoPaul Elder
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2021, Red Hat
 *
 * af.cpp - IPU3 auto focus algorithm
 */

#include "af.h"

#include <algorithm>
#include <chrono>
#include <cmath>
#include <fcntl.h>
#include <numeric>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

#include <linux/videodev2.h>

#include <libcamera/base/log.h>

#include <libcamera/ipa/core_ipa_interface.h>

#include "libipa/histogram.h"

/**
 * \file af.h
 */

/*
 * Static variables from ChromiumOS Intel Camera HAL and ia_imaging library:
 * - https://chromium.googlesource.com/chromiumos/platform/arc-camera/+/master/hal/intel/psl/ipu3/statsConverter/ipu3-stats.h
 * - https://chromium.googlesource.com/chromiumos/platform/camera/+/refs/heads/main/hal/intel/ipu3/include/ia_imaging/af_public.h
 */

/** The minimum horizontal grid dimension. */
static constexpr uint8_t kAfMinGridWidth = 16;
/** The minimum vertical grid dimension. */
static constexpr uint8_t kAfMinGridHeight = 16;
/** The maximum horizontal grid dimension. */
static constexpr uint8_t kAfMaxGridWidth = 32;
/** The maximum vertical grid dimension. */
static constexpr uint8_t kAfMaxGridHeight = 24;
/** The minimum value of Log2 of the width of the grid cell. */
static constexpr uint16_t kAfMinGridBlockWidth = 4;
/** The minimum value of Log2 of the height of the grid cell. */
static constexpr uint16_t kAfMinGridBlockHeight = 3;
/** The maximum value of Log2 of the width of the grid cell. */
static constexpr uint16_t kAfMaxGridBlockWidth = 6;
/** The maximum value of Log2 of the height of the grid cell. */
static constexpr uint16_t kAfMaxGridBlockHeight = 6;
/** The number of blocks in vertical axis per slice. */
static constexpr uint16_t kAfDefaultHeightPerSlice = 2;

namespace libcamera {

using namespace std::literals::chrono_literals;

namespace ipa::ipu3::algorithms {

LOG_DEFINE_CATEGORY(IPU3Af)

/**
 * Maximum focus steps of the VCM control
 * \todo should be obtained from the VCM driver
 */
static constexpr uint32_t kMaxFocusSteps = 1023;

/* Minimum focus step for searching appropriate focus */
static constexpr uint32_t kCoarseSearchStep = 30;
static constexpr uint32_t kFineSearchStep = 1;

/* Max ratio of variance change, 0.0 < kMaxChange < 1.0 */
static constexpr double kMaxChange = 0.5;

/* The numbers of frame to be ignored, before performing focus scan. */
static constexpr uint32_t kIgnoreFrame = 10;

/* Fine scan range 0 < kFineRange < 1 */
static constexpr double kFineRange = 0.05;

/* Settings for IPU3 AF filter */
static struct ipu3_uapi_af_filter_config afFilterConfigDefault = {
	.y1_coeff_0 = { 0, 1, 3, 7 },
	.y1_coeff_1 = { 11, 13, 1, 2 },
	.y1_coeff_2 = { 8, 19, 34, 242 },
	.y1_sign_vec = 0x7fdffbfe,
	.y2_coeff_0 = { 0, 1, 6, 6 },
	.y2_coeff_1 = { 13, 25, 3, 0 },
	.y2_coeff_2 = { 25, 3, 177, 254 },
	.y2_sign_vec = 0x4e53ca72,
	.y_calc = { 8, 8, 8, 8 },
	.nf = { 0, 9, 0, 9, 0 },
};

/**
 * \class Af
 * \brief An auto-focus algorithm based on IPU3 statistics
 *
 * This algorithm is used to determine the position of the lens to make a
 * focused image. The IPU3 AF processing block computes the statistics that
 * are composed by two types of filtered value and stores in a AF buffer.
 * Typically, for a clear image, it has a relatively higher contrast than a
 * blurred one. Therefore, if an image with the highest contrast can be
 * found through the scan, the position of the len indicates to a clearest
 * image.
 */
Af::Af()
	: focus_(0), bestFocus_(0), currentVariance_(0.0), previousVariance_(0.0),
	  coarseCompleted_(false), fineCompleted_(false)
{
}

/**
 * \copydoc libcamera::ipa::Algorithm::prepare
 */
void Af::prepare(IPAContext &context, ipu3_uapi_params *params)
{
	const struct ipu3_uapi_grid_config &grid = context.configuration.af.afGrid;
	params->acc_param.af.grid_cfg = grid;
	params->acc_param.af.filter_config = afFilterConfigDefault;

	/* Enable AF processing block */
	params->use.acc_af = 1;
}

/**
 * \brief Configure the Af given a configInfo
 * \param[in] context The shared IPA context
 * \param[in] configInfo The IPA configuration data
 * \return 0 on success, a negative error code otherwise
 */
int Af::configure(IPAContext &context, const IPAConfigInfo &configInfo)
{
	struct ipu3_uapi_grid_config &grid = context.configuration.af.afGrid;
	grid.width = kAfMinGridWidth;
	grid.height = kAfMinGridHeight;
	grid.block_width_log2 = kAfMinGridBlockWidth;
	grid.block_height_log2 = kAfMinGridBlockHeight;

	/*
	 * \todo - while this clamping code is effectively a no-op, it satisfies
	 * the compiler that the constant definitions of the hardware limits
	 * are used, and paves the way to support dynamic grid sizing in the
	 * future. While the block_{width,height}_log2 remain assigned to the
	 * minimum, this code should be optimized out by the compiler.
	 */
	grid.width = std::clamp(grid.width, kAfMinGridWidth, kAfMaxGridWidth);
	grid.height = std::clamp(grid.height, kAfMinGridHeight, kAfMaxGridHeight);

	grid.block_width_log2 = std::clamp(grid.block_width_log2,
					   kAfMinGridBlockWidth,
					   kAfMaxGridBlockWidth);

	grid.block_height_log2 = std::clamp(grid.block_height_log2,
					    kAfMinGridBlockHeight,
					    kAfMaxGridBlockHeight);

	grid.height_per_slice = kAfDefaultHeightPerSlice;

	/* Position the AF grid in the center of the BDS output. */
	Rectangle bds(configInfo.bdsOutputSize);
	Size gridSize(grid.width << grid.block_width_log2,
		      grid.height << grid.block_height_log2);

	/*
	 * \todo - Support request metadata
	 * - Set the ROI based on any input controls in the request
	 * - Return the AF ROI as metadata in the Request
	 */
	Rectangle roi = gridSize.centeredTo(bds.center());
	Point start = roi.topLeft();

	/* x_start and y_start should be even */
	grid.x_start = utils::alignDown(start.x, 2);
	grid.y_start = utils::alignDown(start.y, 2);
	grid.y_start |= IPU3_UAPI_GRID_Y_START_EN;

	/* Initial max focus step */
	maxStep_ = kMaxFocusSteps;

	/* Initial frame ignore counter */
	afIgnoreFrameReset();

	/* Initial focus value */
	context.activeState.af.focus = 0;
	/* Maximum variance of the AF statistics */
	context.activeState.af.maxVariance = 0;
	/* The stable AF value flag. if it is true, the AF should be in a stable state. */
	context.activeState.af.stable = false;

	return 0;
}

/**
 * \brief AF coarse scan
 * \param[in] context The shared IPA context
 *
 * Find a near focused image using a coarse step. The step is determined by
 * kCoarseSearchStep.
 */
void Af::afCoarseScan(IPAContext &context)
{
	if (coarseCompleted_)
		return;

	if (afNeedIgnoreFrame())
		return;

	if (afScan(context, kCoarseSearchStep)) {
		coarseCompleted_ = true;
		context.activeState.af.maxVariance = 0;
		focus_ = context.activeState.af.focus -
			 (context.activeState.af.focus * kFineRange);
		context.activeState.af.focus = focus_;
		previousVariance_ = 0;
		maxStep_ = std::clamp(focus_ + static_cast<uint32_t>((focus_ * kFineRange)),
				      0U, kMaxFocusSteps);
	}
}

/**
 * \brief AF fine scan
 * \param[in] context The shared IPA context
 *
 * Find an optimum lens position with moving 1 step for each search.
 */
void Af::afFineScan(IPAContext &context)
{
	if (!coarseCompleted_)
		return;

	if (afNeedIgnoreFrame())
		return;

	if (afScan(context, kFineSearchStep)) {
		context.activeState.af.stable = true;
		fineCompleted_ = true;
	}
}

/**
 * \brief AF reset
 * \param[in] context The shared IPA context
 *
 * Reset all the parameters to start over the AF process.
 */
void Af::afReset(IPAContext &context)
{
	if (afNeedIgnoreFrame())
		return;

	context.activeState.af.maxVariance = 0;
	context.activeState.af.focus = 0;
	focus_ = 0;
	context.activeState.af.stable = false;
	ignoreCounter_ = kIgnoreFrame;
	previousVariance_ = 0.0;
	coarseCompleted_ = false;
	fineCompleted_ = false;
	maxStep_ = kMaxFocusSteps;
}

/**
 * \brief AF variance comparison.
 * \param[in] context The IPA context
 * \param[in] min_step The VCM movement step.
 *
 * We always pick the largest variance to replace the previous one. The image
 * with a larger variance also indicates it is a clearer image than previous
 * one. If we find a negative derivative, we return immediately.
 *
 * \return True, if it finds a AF value.
 */
bool Af::afScan(IPAContext &context, int min_step)
{
	if (focus_ > maxStep_) {
		/* If reach the max step, move lens to the position. */
		context.activeState.af.focus = bestFocus_;
		return true;
	} else {
		/*
		 * Find the maximum of the variance by estimating its
		 * derivative. If the direction changes, it means we have
		 * passed a maximum one step before.
		 */
		if ((currentVariance_ - context.activeState.af.maxVariance) >=
		    -(context.activeState.af.maxVariance * 0.1)) {
			/*
			 * Positive and zero derivative:
			 * The variance is still increasing. The focus could be
			 * increased for the next comparison. Also, the max variance
			 * and previous focus value are updated.
			 */
			bestFocus_ = focus_;
			focus_ += min_step;
			context.activeState.af.focus = focus_;
			context.activeState.af.maxVariance = currentVariance_;
		} else {
			/*
			 * Negative derivative:
			 * The variance starts to decrease which means the maximum
			 * variance is found. Set focus step to previous good one
			 * then return immediately.
			 */
			context.activeState.af.focus = bestFocus_;
			return true;
		}
	}

	previousVariance_ = currentVariance_;
	LOG(IPU3Af, Debug) << " Previous step is "
			   << bestFocus_
			   << " Current step is "
			   << focus_;
	return false;
}

/**
 * \brief Determine the frame to be ignored.
 * \return Return True if the frame should be ignored, false otherwise
 */
bool Af::afNeedIgnoreFrame()
{
	if (ignoreCounter_ == 0)
		return false;
	else
		ignoreCounter_--;
	return true;
}

/**
 * \brief Reset frame ignore counter.
 */
void Af::afIgnoreFrameReset()
{
	ignoreCounter_ = kIgnoreFrame;
}

/**
 * \brief Estimate variance
 * \param[in] y_items The AF filter data set from the IPU3 statistics buffer
 * \param[in] isY1 Selects between filter Y1 or Y2 to calculate the variance
 *
 * Calculate the mean of the data set provided by \a y_item, and then calculate
 * the variance of that data set from the mean.
 *
 * The operation can work on one of two sets of values contained within the
 * y_item data set supplied by the IPU3. The two data sets are the results of
 * both the Y1 and Y2 filters which are used to support coarse (Y1) and fine
 * (Y2) calculations of the contrast.
 *
 * \return The variance of the values in the data set \a y_item selected by \a isY1
 */
double Af::afEstimateVariance(Span<const y_table_item_t> y_items, bool isY1)
{
	uint32_t total = 0;
	double mean;
	double var_sum = 0;

	for (auto y : y_items)
		total += isY1 ? y.y1_avg : y.y2_avg;

	mean = total / y_items.size();

	for (auto y : y_items) {
		double avg = isY1 ? y.y1_avg : y.y2_avg;
		var_sum += pow(avg - mean, 2);
	}

	return var_sum / y_items.size();
}

/**
 * \brief Determine out-of-focus situation.
 * \param[in] context The IPA context.
 *
 * Out-of-focus means that the variance change rate for a focused and a new
 * variance is greater than a threshold.
 *
 * \return True if the variance threshold is crossed indicating lost focus,
 * false otherwise
 */
bool Af::afIsOutOfFocus(IPAContext &context)
{
	const uint32_t diff_var = std::abs(currentVariance_ -
					   context.activeState.af.maxVariance);
	const double var_ratio = diff_var / context.activeState.af.maxVariance;

	LOG(IPU3Af, Debug) << "Variance change rate: "
			   << var_ratio
			   << " Current VCM step: "
			   << context.activeState.af.focus;

	if (var_ratio > kMaxChange)
		return true;
	else
		return false;
}

/**
 * \brief Determine the max contrast image and lens position.
 * \param[in] context The IPA context.
 * \param[in] frameContext The current frame context
 * \param[in] stats The statistics buffer of IPU3.
 *
 * Ideally, a clear image also has a relatively higher contrast. So, every
 * image for each focus step should be tested to find an optimal focus step.
 *
 * The Hill Climbing Algorithm[1] is used to find the maximum variance of the
 * AF statistics which is the AF output of IPU3. The focus step is increased
 * then the variance of the AF statistics are estimated. If it finds the
 * negative derivative we have just passed the peak, and we infer that the best
 * focus is found.
 *
 * [1] Hill Climbing Algorithm, https://en.wikipedia.org/wiki/Hill_climbing
 */
void Af::process(IPAContext &context, [[maybe_unused]] IPAFrameContext &frameContext,
		 const ipu3_uapi_stats_3a *stats)
{
	/* Evaluate the AF buffer length */
	uint32_t afRawBufferLen = context.configuration.af.afGrid.width *
				  context.configuration.af.afGrid.height;

	ASSERT(afRawBufferLen < IPU3_UAPI_AF_Y_TABLE_MAX_SIZE);

	Span<const y_table_item_t> y_items(reinterpret_cast<const y_table_item_t *>(&stats->af_raw_buffer.y_table),
					   afRawBufferLen);

	/*
	 * Calculate the mean and the variance of AF statistics for a given grid.
	 * For coarse: y1 are used.
	 * For fine: y2 results are used.
	 */
	currentVariance_ = afEstimateVariance(y_items, !coarseCompleted_);

	if (!context.activeState.af.stable) {
		afCoarseScan(context);
		afFineScan(context);
	} else {
		if (afIsOutOfFocus(context))
			afReset(context);
		else
			afIgnoreFrameReset();
	}
}

REGISTER_IPA_ALGORITHM(Af, "Af")

} /* namespace ipa::ipu3::algorithms */

} /* namespace libcamera */