summaryrefslogtreecommitdiff
path: root/src/qcam/assets/feathericons/rotate-cw.svg
AgeCommit message (Expand)Author
2020-02-14qcam: assets: Provide initial icon setKieran Bingham
d='n2' href='#n2'>2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2019-2023, Raspberry Pi Ltd
 *
 * Pipeline handler base class for Raspberry Pi devices
 */

#include "pipeline_base.h"

#include <chrono>

#include <linux/media-bus-format.h>
#include <linux/videodev2.h>

#include <libcamera/base/file.h>
#include <libcamera/base/utils.h>

#include <libcamera/formats.h>
#include <libcamera/logging.h>
#include <libcamera/property_ids.h>

#include "libcamera/internal/camera_lens.h"
#include "libcamera/internal/ipa_manager.h"
#include "libcamera/internal/v4l2_subdevice.h"

using namespace std::chrono_literals;

namespace libcamera {

using namespace RPi;

LOG_DEFINE_CATEGORY(RPI)

using StreamFlag = RPi::Stream::StreamFlag;

namespace {

constexpr unsigned int defaultRawBitDepth = 12;

PixelFormat mbusCodeToPixelFormat(unsigned int code,
				  BayerFormat::Packing packingReq)
{
	BayerFormat bayer = BayerFormat::fromMbusCode(code);

	ASSERT(bayer.isValid());

	bayer.packing = packingReq;
	PixelFormat pix = bayer.toPixelFormat();

	/*
	 * Not all formats (e.g. 8-bit or 16-bit Bayer formats) can have packed
	 * variants. So if the PixelFormat returns as invalid, use the non-packed
	 * conversion instead.
	 */
	if (!pix.isValid()) {
		bayer.packing = BayerFormat::Packing::None;
		pix = bayer.toPixelFormat();
	}

	return pix;
}

bool isMonoSensor(std::unique_ptr<CameraSensor> &sensor)
{
	unsigned int mbusCode = sensor->mbusCodes()[0];
	const BayerFormat &bayer = BayerFormat::fromMbusCode(mbusCode);

	return bayer.order == BayerFormat::Order::MONO;
}

const std::vector<ColorSpace> validColorSpaces = {
	ColorSpace::Sycc,
	ColorSpace::Smpte170m,
	ColorSpace::Rec709
};

std::optional<ColorSpace> findValidColorSpace(const ColorSpace &colourSpace)
{
	for (auto cs : validColorSpaces) {
		if (colourSpace.primaries == cs.primaries &&
		    colourSpace.transferFunction == cs.transferFunction)
			return cs;
	}

	return std::nullopt;
}

} /* namespace */

/*
 * Raspberry Pi drivers expect the following colour spaces:
 * - V4L2_COLORSPACE_RAW for raw streams.
 * - One of V4L2_COLORSPACE_JPEG, V4L2_COLORSPACE_SMPTE170M, V4L2_COLORSPACE_REC709 for
 *   non-raw streams. Other fields such as transfer function, YCbCr encoding and
 *   quantisation are not used.
 *
 * The libcamera colour spaces that we wish to use corresponding to these are therefore:
 * - ColorSpace::Raw for V4L2_COLORSPACE_RAW
 * - ColorSpace::Sycc for V4L2_COLORSPACE_JPEG
 * - ColorSpace::Smpte170m for V4L2_COLORSPACE_SMPTE170M
 * - ColorSpace::Rec709 for V4L2_COLORSPACE_REC709
 */
CameraConfiguration::Status RPiCameraConfiguration::validateColorSpaces([[maybe_unused]] ColorSpaceFlags flags)
{
	Status status = Valid;
	yuvColorSpace_.reset();

	for (auto cfg : config_) {
		/* First fix up raw streams to have the "raw" colour space. */
		if (PipelineHandlerBase::isRaw(cfg.pixelFormat)) {
			/* If there was no value here, that doesn't count as "adjusted". */
			if (cfg.colorSpace && cfg.colorSpace != ColorSpace::Raw)
				status = Adjusted;
			cfg.colorSpace = ColorSpace::Raw;
			continue;
		}

		/* Next we need to find our shared colour space. The first valid one will do. */
		if (cfg.colorSpace && !yuvColorSpace_)
			yuvColorSpace_ = findValidColorSpace(cfg.colorSpace.value());
	}

	/* If no colour space was given anywhere, choose sYCC. */
	if (!yuvColorSpace_)
		yuvColorSpace_ = ColorSpace::Sycc;

	/* Note the version of this that any RGB streams will have to use. */
	rgbColorSpace_ = yuvColorSpace_;
	rgbColorSpace_->ycbcrEncoding = ColorSpace::YcbcrEncoding::None;
	rgbColorSpace_->range = ColorSpace::Range::Full;

	/* Go through the streams again and force everyone to the same colour space. */
	for (auto cfg : config_) {
		if (cfg.colorSpace == ColorSpace::Raw)
			continue;

		if (PipelineHandlerBase::isYuv(cfg.pixelFormat) && cfg.colorSpace != yuvColorSpace_) {
			/* Again, no value means "not adjusted". */
			if (cfg.colorSpace)
				status = Adjusted;
			cfg.colorSpace = yuvColorSpace_;
		}
		if (PipelineHandlerBase::isRgb(cfg.pixelFormat) && cfg.colorSpace != rgbColorSpace_) {
			/* Be nice, and let the YUV version count as non-adjusted too. */
			if (cfg.colorSpace && cfg.colorSpace != yuvColorSpace_)
				status = Adjusted;
			cfg.colorSpace = rgbColorSpace_;
		}
	}

	return status;
}

CameraConfiguration::Status RPiCameraConfiguration::validate()
{
	Status status = Valid;

	if (config_.empty())
		return Invalid;

	/*
	 * Make sure that if a sensor configuration has been requested it
	 * is valid.
	 */
	if (sensorConfig && !sensorConfig->isValid()) {
		LOG(RPI, Error) << "Invalid sensor configuration request";
		return Invalid;
	}

	status = validateColorSpaces(ColorSpaceFlag::StreamsShareColorSpace);

	/*
	 * Validate the requested transform against the sensor capabilities and
	 * rotation and store the final combined transform that configure() will
	 * need to apply to the sensor to save us working it out again.
	 */
	Orientation requestedOrientation = orientation;
	combinedTransform_ = data_->sensor_->computeTransform(&orientation);
	if (orientation != requestedOrientation)
		status = Adjusted;

	rawStreams_.clear();
	outStreams_.clear();
	unsigned int rawStreamIndex = 0;
	unsigned int outStreamIndex = 0;

	for (auto &cfg : config_) {
		if (PipelineHandlerBase::isRaw(cfg.pixelFormat))
			rawStreams_.emplace_back(rawStreamIndex++, &cfg);
		else
			outStreams_.emplace_back(outStreamIndex++, &cfg);
	}

	/* Sort the streams so the highest resolution is first. */
	std::sort(rawStreams_.begin(), rawStreams_.end(),
		  [](auto &l, auto &r) { return l.cfg->size > r.cfg->size; });

	std::sort(outStreams_.begin(), outStreams_.end(),
		  [](auto &l, auto &r) { return l.cfg->size > r.cfg->size; });

	/* Compute the sensor's format then do any platform specific fixups. */
	unsigned int bitDepth;
	Size sensorSize;

	if (sensorConfig) {
		/* Use the application provided sensor configuration. */
		bitDepth = sensorConfig->bitDepth;
		sensorSize = sensorConfig->outputSize;
	} else if (!rawStreams_.empty()) {
		/* Use the RAW stream format and size. */
		BayerFormat bayerFormat = BayerFormat::fromPixelFormat(rawStreams_[0].cfg->pixelFormat);
		bitDepth = bayerFormat.bitDepth;
		sensorSize = rawStreams_[0].cfg->size;
	} else {
		bitDepth = defaultRawBitDepth;
		sensorSize = outStreams_[0].cfg->size;
	}

	sensorFormat_ = data_->findBestFormat(sensorSize, bitDepth);

	/*
	 * If a sensor configuration has been requested, it should apply
	 * without modifications.
	 */
	if (sensorConfig) {
		BayerFormat bayer = BayerFormat::fromMbusCode(sensorFormat_.code);

		if (bayer.bitDepth != sensorConfig->bitDepth ||
		    sensorFormat_.size != sensorConfig->outputSize) {
			LOG(RPI, Error) << "Invalid sensor configuration: "
					<< "bitDepth/size mismatch";
			return Invalid;
		}
	}

	/* Start with some initial generic RAW stream adjustments. */
	for (auto &raw : rawStreams_) {
		StreamConfiguration *rawStream = raw.cfg;

		/*
		 * Some sensors change their Bayer order when they are
		 * h-flipped or v-flipped, according to the transform. Adjust
		 * the RAW stream to match the computed sensor format by
		 * applying the sensor Bayer order resulting from the transform
		 * to the user request.
		 */

		BayerFormat cfgBayer = BayerFormat::fromPixelFormat(rawStream->pixelFormat);
		cfgBayer.order = data_->sensor_->bayerOrder(combinedTransform_);

		if (rawStream->pixelFormat != cfgBayer.toPixelFormat()) {
			rawStream->pixelFormat = cfgBayer.toPixelFormat();
			status = Adjusted;
		}
	}

	/* Do any platform specific fixups. */
	Status st = data_->platformValidate(this);
	if (st == Invalid)
		return Invalid;
	else if (st == Adjusted)
		status = Adjusted;

	/* Further fixups on the RAW streams. */
	for (auto &raw : rawStreams_) {
		int ret = raw.dev->tryFormat(&raw.format);
		if (ret)
			return Invalid;

		if (RPi::PipelineHandlerBase::updateStreamConfig(raw.cfg, raw.format))
			status = Adjusted;
	}

	/* Further fixups on the ISP output streams. */
	for (auto &out : outStreams_) {

		/*
		 * We want to send the associated YCbCr info through to the driver.
		 *
		 * But for RGB streams, the YCbCr info gets overwritten on the way back
		 * so we must check against what the stream cfg says, not what we actually
		 * requested (which carefully included the YCbCr info)!
		 */
		out.format.colorSpace = yuvColorSpace_;

		LOG(RPI, Debug)
			<< "Try color space " << ColorSpace::toString(out.cfg->colorSpace);

		int ret = out.dev->tryFormat(&out.format);
		if (ret)
			return Invalid;

		if (RPi::PipelineHandlerBase::updateStreamConfig(out.cfg, out.format))
			status = Adjusted;
	}

	return status;
}

bool PipelineHandlerBase::isRgb(const PixelFormat &pixFmt)
{
	const PixelFormatInfo &info = PixelFormatInfo::info(pixFmt);
	return info.colourEncoding == PixelFormatInfo::ColourEncodingRGB;
}

bool PipelineHandlerBase::isYuv(const PixelFormat &pixFmt)
{
	/* The code below would return true for raw mono streams, so weed those out first. */
	if (PipelineHandlerBase::isRaw(pixFmt))
		return false;

	const PixelFormatInfo &info = PixelFormatInfo::info(pixFmt);
	return info.colourEncoding == PixelFormatInfo::ColourEncodingYUV;
}

bool PipelineHandlerBase::isRaw(const PixelFormat &pixFmt)
{
	/* This test works for both Bayer and raw mono formats. */
	return BayerFormat::fromPixelFormat(pixFmt).isValid();
}

/*
 * Adjust a StreamConfiguration fields to match a video device format.
 * Returns true if the StreamConfiguration has been adjusted.
 */
bool PipelineHandlerBase::updateStreamConfig(StreamConfiguration *stream,
					     const V4L2DeviceFormat &format)
{
	const PixelFormat &pixFormat = format.fourcc.toPixelFormat();
	bool adjusted = false;

	if (stream->pixelFormat != pixFormat || stream->size != format.size) {
		stream->pixelFormat = pixFormat;
		stream->size = format.size;
		adjusted = true;
	}

	if (stream->colorSpace != format.colorSpace) {
		stream->colorSpace = format.colorSpace;
		adjusted = true;
		LOG(RPI, Debug)
			<< "Color space changed from "
			<< ColorSpace::toString(stream->colorSpace) << " to "
			<< ColorSpace::toString(format.colorSpace);
	}

	stream->stride = format.planes[0].bpl;
	stream->frameSize = format.planes[0].size;

	return adjusted;
}

/*
 * Populate and return a video device format using a StreamConfiguration. */
V4L2DeviceFormat PipelineHandlerBase::toV4L2DeviceFormat(const V4L2VideoDevice *dev,
							 const StreamConfiguration *stream)
{
	V4L2DeviceFormat deviceFormat;

	const PixelFormatInfo &info = PixelFormatInfo::info(stream->pixelFormat);
	deviceFormat.planesCount = info.numPlanes();
	deviceFormat.fourcc = dev->toV4L2PixelFormat(stream->pixelFormat);
	deviceFormat.size = stream->size;
	deviceFormat.planes[0].bpl = stream->stride;
	deviceFormat.colorSpace = stream->colorSpace;

	return deviceFormat;
}

V4L2DeviceFormat PipelineHandlerBase::toV4L2DeviceFormat(const V4L2VideoDevice *dev,
							 const V4L2SubdeviceFormat &format,
							 BayerFormat::Packing packingReq)
{
	unsigned int code = format.code;
	const PixelFormat pix = mbusCodeToPixelFormat(code, packingReq);
	V4L2DeviceFormat deviceFormat;

	deviceFormat.fourcc = dev->toV4L2PixelFormat(pix);
	deviceFormat.size = format.size;
	deviceFormat.colorSpace = format.colorSpace;
	return deviceFormat;
}

std::unique_ptr<CameraConfiguration>
PipelineHandlerBase::generateConfiguration(Camera *camera, Span<const StreamRole> roles)
{
	CameraData *data = cameraData(camera);
	std::unique_ptr<CameraConfiguration> config =
		std::make_unique<RPiCameraConfiguration>(data);
	V4L2SubdeviceFormat sensorFormat;
	unsigned int bufferCount;
	PixelFormat pixelFormat;
	V4L2VideoDevice::Formats fmts;
	Size size;
	std::optional<ColorSpace> colorSpace;

	if (roles.empty())
		return config;

	Size sensorSize = data->sensor_->resolution();
	for (const StreamRole role : roles) {
		switch (role) {
		case StreamRole::Raw:
			size = sensorSize;
			sensorFormat = data->findBestFormat(size, defaultRawBitDepth);
			pixelFormat = mbusCodeToPixelFormat(sensorFormat.code,
							    BayerFormat::Packing::CSI2);
			ASSERT(pixelFormat.isValid());
			colorSpace = ColorSpace::Raw;
			bufferCount = 2;
			break;

		case StreamRole::StillCapture:
			fmts = data->ispFormats();
			pixelFormat = formats::YUV420;
			/*
			 * Still image codecs usually expect the sYCC color space.
			 * Even RGB codecs will be fine as the RGB we get with the
			 * sYCC color space is the same as sRGB.
			 */
			colorSpace = ColorSpace::Sycc;
			/* Return the largest sensor resolution. */
			size = sensorSize;
			bufferCount = 1;
			break;

		case StreamRole::VideoRecording:
			/*
			 * The colour denoise algorithm requires the analysis
			 * image, produced by the second ISP output, to be in
			 * YUV420 format. Select this format as the default, to
			 * maximize chances that it will be picked by
			 * applications and enable usage of the colour denoise
			 * algorithm.
			 */
			fmts = data->ispFormats();
			pixelFormat = formats::YUV420;
			/*
			 * Choose a color space appropriate for video recording.
			 * Rec.709 will be a good default for HD resolutions.
			 */
			colorSpace = ColorSpace::Rec709;
			size = { 1920, 1080 };
			bufferCount = 4;
			break;

		case StreamRole::Viewfinder:
			fmts = data->ispFormats();
			pixelFormat = formats::XRGB8888;
			colorSpace = ColorSpace::Sycc;
			size = { 800, 600 };
			bufferCount = 4;
			break;

		default:
			LOG(RPI, Error) << "Requested stream role not supported: "
					<< role;
			return nullptr;
		}

		std::map<PixelFormat, std::vector<SizeRange>> deviceFormats;
		if (role == StreamRole::Raw) {
			/* Translate the MBUS codes to a PixelFormat. */
			for (const auto &format : data->sensorFormats_) {
				PixelFormat pf = mbusCodeToPixelFormat(format.first,
								       BayerFormat::Packing::CSI2);
				if (pf.isValid())
					deviceFormats.emplace(std::piecewise_construct, std::forward_as_tuple(pf),
							      std::forward_as_tuple(format.second.begin(), format.second.end()));
			}
		} else {
			/*
			 * Translate the V4L2PixelFormat to PixelFormat. Note that we
			 * limit the recommended largest ISP output size to match the
			 * sensor resolution.
			 */
			for (const auto &format : fmts) {
				PixelFormat pf = format.first.toPixelFormat();
				/*
				 * Some V4L2 formats translate to the same pixel format (e.g. YU12, YM12
				 * both give YUV420). We must avoid duplicating the range in this case.
				 */
				if (pf.isValid() && deviceFormats.find(pf) == deviceFormats.end()) {
					const SizeRange &ispSizes = format.second[0];
					deviceFormats[pf].emplace_back(ispSizes.min, sensorSize,
								       ispSizes.hStep, ispSizes.vStep);
				}
			}
		}

		/* Add the stream format based on the device node used for the use case. */
		StreamFormats formats(deviceFormats);
		StreamConfiguration cfg(formats);
		cfg.size = size;
		cfg.pixelFormat = pixelFormat;
		cfg.colorSpace = colorSpace;
		cfg.bufferCount = bufferCount;
		config->addConfiguration(cfg);
	}

	return config;
}

int PipelineHandlerBase::configure(Camera *camera, CameraConfiguration *config)
{
	CameraData *data = cameraData(camera);
	int ret;

	/* Start by freeing all buffers and reset the stream states. */
	data->freeBuffers();
	for (auto const stream : data->streams_)
		stream->clearFlags(StreamFlag::External);

	/*
	 * Apply the format on the sensor with any cached transform.
	 *
	 * If the application has provided a sensor configuration apply it
	 * instead of just applying a format.
	 */
	RPiCameraConfiguration *rpiConfig = static_cast<RPiCameraConfiguration *>(config);
	V4L2SubdeviceFormat *sensorFormat = &rpiConfig->sensorFormat_;

	if (rpiConfig->sensorConfig) {
		ret = data->sensor_->applyConfiguration(*rpiConfig->sensorConfig,
							rpiConfig->combinedTransform_,
							sensorFormat);
	} else {
		ret = data->sensor_->setFormat(sensorFormat,
					       rpiConfig->combinedTransform_);
	}
	if (ret)
		return ret;

	/*
	 * Platform specific internal stream configuration. This also assigns
	 * external streams which get configured below.
	 */
	data->cropParams_.clear();
	ret = data->platformConfigure(rpiConfig);
	if (ret)
		return ret;

	ipa::RPi::ConfigResult result;
	ret = data->configureIPA(config, &result);
	if (ret) {
		LOG(RPI, Error) << "Failed to configure the IPA: " << ret;
		return ret;
	}

	/*
	 * Update the ScalerCropMaximum to the correct value for this camera mode.
	 * For us, it's the same as the "analogue crop".
	 *
	 * \todo Make this property the ScalerCrop maximum value when dynamic
	 * controls are available and set it at validate() time
	 */
	data->properties_.set(properties::ScalerCropMaximum, data->sensorInfo_.analogCrop);

	/* Store the mode sensitivity for the application. */
	data->properties_.set(properties::SensorSensitivity, result.modeSensitivity);

	/* Update the controls that the Raspberry Pi IPA can handle. */
	ControlInfoMap::Map ctrlMap;
	for (auto const &c : result.controlInfo)
		ctrlMap.emplace(c.first, c.second);

	const auto cropParamsIt = data->cropParams_.find(0);
	if (cropParamsIt != data->cropParams_.end()) {
		const CameraData::CropParams &cropParams = cropParamsIt->second;
		/*
		 * Add the ScalerCrop control limits based on the current mode and
		 * the first configured stream.
		 */
		Rectangle ispMinCrop = data->scaleIspCrop(Rectangle(cropParams.ispMinCropSize));
		ctrlMap[&controls::ScalerCrop] = ControlInfo(ispMinCrop, data->sensorInfo_.analogCrop,
							     data->scaleIspCrop(cropParams.ispCrop));
		if (data->cropParams_.size() == 2) {
			/*
			 * The control map for rpi::ScalerCrops has the min value
			 * as the default crop for stream 0, max value as the default
			 * value for stream 1.
			 */
			ctrlMap[&controls::rpi::ScalerCrops] =
				ControlInfo(data->scaleIspCrop(data->cropParams_.at(0).ispCrop),
					    data->scaleIspCrop(data->cropParams_.at(1).ispCrop),
					    ctrlMap[&controls::ScalerCrop].def());
		}
	}

	data->controlInfo_ = ControlInfoMap(std::move(ctrlMap), result.controlInfo.idmap());

	/* Setup the Video Mux/Bridge entities. */
	for (auto &[device, link] : data->bridgeDevices_) {
		/*
		 * Start by disabling all the sink pad links on the devices in the
		 * cascade, with the exception of the link connecting the device.
		 */
		for (const MediaPad *p : device->entity()->pads()) {
			if (!(p->flags() & MEDIA_PAD_FL_SINK))
				continue;

			for (MediaLink *l : p->links()) {
				if (l != link)
					l->setEnabled(false);
			}
		}

		/*
		 * Next, enable the entity -> entity links, and setup the pad format.
		 *
		 * \todo Some bridge devices may chainge the media bus code, so we
		 * ought to read the source pad format and propagate it to the sink pad.
		 */
		link->setEnabled(true);
		const MediaPad *sinkPad = link->sink();
		ret = device->setFormat(sinkPad->index(), sensorFormat);
		if (ret) {
			LOG(RPI, Error) << "Failed to set format on " << device->entity()->name()
					<< " pad " << sinkPad->index()
					<< " with format  " << *sensorFormat
					<< ": " << ret;
			return ret;
		}

		LOG(RPI, Debug) << "Configured media link on device " << device->entity()->name()
				<< " on pad " << sinkPad->index();
	}

	return 0;
}

int PipelineHandlerBase::exportFrameBuffers([[maybe_unused]] Camera *camera, libcamera::Stream *stream,
					    std::vector<std::unique_ptr<FrameBuffer>> *buffers)
{
	RPi::Stream *s = static_cast<RPi::Stream *>(stream);
	unsigned int count = stream->configuration().bufferCount;
	int ret = s->dev()->exportBuffers(count, buffers);

	s->setExportedBuffers(buffers);

	return ret;
}

int PipelineHandlerBase::start(Camera *camera, const ControlList *controls)
{
	CameraData *data = cameraData(camera);
	int ret;

	/* Check if a ScalerCrop control was specified. */
	if (controls)
		data->applyScalerCrop(*controls);

	/* Start the IPA. */
	ipa::RPi::StartResult result;
	data->ipa_->start(controls ? *controls : ControlList{ controls::controls },
			  &result);

	/* Apply any gain/exposure settings that the IPA may have passed back. */
	if (!result.controls.empty())
		data->setSensorControls(result.controls);

	/* Configure the number of dropped frames required on startup. */
	data->dropFrameCount_ = data->config_.disableStartupFrameDrops
			      ? 0 : result.dropFrameCount;

	for (auto const stream : data->streams_)
		stream->resetBuffers();

	if (!data->buffersAllocated_) {
		/* Allocate buffers for internal pipeline usage. */
		ret = prepareBuffers(camera);
		if (ret) {
			LOG(RPI, Error) << "Failed to allocate buffers";
			data->freeBuffers();
			stop(camera);
			return ret;
		}
		data->buffersAllocated_ = true;
	}

	/* We need to set the dropFrameCount_ before queueing buffers. */
	ret = queueAllBuffers(camera);
	if (ret) {
		LOG(RPI, Error) << "Failed to queue buffers";
		stop(camera);
		return ret;
	}

	/*
	 * Reset the delayed controls with the gain and exposure values set by
	 * the IPA.
	 */
	data->delayedCtrls_->reset(0);
	data->state_ = CameraData::State::Idle;

	/* Enable SOF event generation. */
	data->frontendDevice()->setFrameStartEnabled(true);

	data->platformStart();

	/* Start all streams. */
	for (auto const stream : data->streams_) {
		ret = stream->dev()->streamOn();
		if (ret) {
			stop(camera);
			return ret;
		}
	}

	return 0;
}

void PipelineHandlerBase::stopDevice(Camera *camera)
{
	CameraData *data = cameraData(camera);

	data->state_ = CameraData::State::Stopped;
	data->platformStop();

	for (auto const stream : data->streams_)
		stream->dev()->streamOff();

	/* Disable SOF event generation. */
	data->frontendDevice()->setFrameStartEnabled(false);

	data->clearIncompleteRequests();

	/* Stop the IPA. */
	data->ipa_->stop();
}

void PipelineHandlerBase::releaseDevice(Camera *camera)
{
	CameraData *data = cameraData(camera);
	data->freeBuffers();
}

int PipelineHandlerBase::queueRequestDevice(Camera *camera, Request *request)
{
	CameraData *data = cameraData(camera);

	if (!data->isRunning())
		return -EINVAL;

	LOG(RPI, Debug) << "queueRequestDevice: New request sequence: "
			<< request->sequence();

	/* Push all buffers supplied in the Request to the respective streams. */
	for (auto stream : data->streams_) {
		if (!(stream->getFlags() & StreamFlag::External))
			continue;

		FrameBuffer *buffer = request->findBuffer(stream);
		if (buffer && !stream->getBufferId(buffer)) {
			/*
			 * This buffer is not recognised, so it must have been allocated
			 * outside the v4l2 device. Store it in the stream buffer list
			 * so we can track it.
			 */
			stream->setExportedBuffer(buffer);
		}

		/*
		 * If no buffer is provided by the request for this stream, we
		 * queue a nullptr to the stream to signify that it must use an
		 * internally allocated buffer for this capture request. This
		 * buffer will not be given back to the application, but is used
		 * to support the internal pipeline flow.
		 *
		 * The below queueBuffer() call will do nothing if there are not
		 * enough internal buffers allocated, but this will be handled by
		 * queuing the request for buffers in the RPiStream object.
		 */
		int ret = stream->queueBuffer(buffer);
		if (ret)
			return ret;
	}

	/* Push the request to the back of the queue. */
	data->requestQueue_.push(request);
	data->handleState();

	return 0;
}

int PipelineHandlerBase::registerCamera(std::unique_ptr<RPi::CameraData> &cameraData,
					MediaDevice *frontend, const std::string &frontendName,
					MediaDevice *backend, MediaEntity *sensorEntity)
{
	CameraData *data = cameraData.get();
	int ret;

	data->sensor_ = std::make_unique<CameraSensor>(sensorEntity);
	if (!data->sensor_)
		return -EINVAL;

	if (data->sensor_->init())
		return -EINVAL;

	/* Populate the map of sensor supported formats and sizes. */
	for (auto const mbusCode : data->sensor_->mbusCodes())
		data->sensorFormats_.emplace(mbusCode,
					     data->sensor_->sizes(mbusCode));

	/*
	 * Enumerate all the Video Mux/Bridge devices across the sensor -> Fr
	 * chain. There may be a cascade of devices in this chain!
	 */
	MediaLink *link = sensorEntity->getPadByIndex(0)->links()[0];
	data->enumerateVideoDevices(link, frontendName);

	ipa::RPi::InitResult result;
	if (data->loadIPA(&result)) {
		LOG(RPI, Error) << "Failed to load a suitable IPA library";
		return -EINVAL;
	}

	/*
	 * Setup our delayed control writer with the sensor default
	 * gain and exposure delays. Mark VBLANK for priority write.
	 */
	std::unordered_map<uint32_t, RPi::DelayedControls::ControlParams> params = {
		{ V4L2_CID_ANALOGUE_GAIN, { result.sensorConfig.gainDelay, false } },
		{ V4L2_CID_EXPOSURE, { result.sensorConfig.exposureDelay, false } },
		{ V4L2_CID_HBLANK, { result.sensorConfig.hblankDelay, false } },
		{ V4L2_CID_VBLANK, { result.sensorConfig.vblankDelay, true } }
	};
	data->delayedCtrls_ = std::make_unique<RPi::DelayedControls>(data->sensor_->device(), params);
	data->sensorMetadata_ = result.sensorConfig.sensorMetadata;

	/* Register initial controls that the Raspberry Pi IPA can handle. */
	data->controlInfo_ = std::move(result.controlInfo);

	/* Initialize the camera properties. */
	data->properties_ = data->sensor_->properties();

	/*
	 * The V4L2_CID_NOTIFY_GAINS control, if present, is used to inform the
	 * sensor of the colour gains. It is defined to be a linear gain where
	 * the default value represents a gain of exactly one.
	 */
	auto it = data->sensor_->controls().find(V4L2_CID_NOTIFY_GAINS);
	if (it != data->sensor_->controls().end())
		data->notifyGainsUnity_ = it->second.def().get<int32_t>();

	/*
	 * Set a default value for the ScalerCropMaximum property to show
	 * that we support its use, however, initialise it to zero because
	 * it's not meaningful until a camera mode has been chosen.
	 */
	data->properties_.set(properties::ScalerCropMaximum, Rectangle{});

	ret = platformRegister(cameraData, frontend, backend);
	if (ret)
		return ret;

	ret = data->loadPipelineConfiguration();
	if (ret) {
		LOG(RPI, Error) << "Unable to load pipeline configuration";
		return ret;
	}

	/* Setup the general IPA signal handlers. */
	data->frontendDevice()->dequeueTimeout.connect(data, &RPi::CameraData::cameraTimeout);
	data->frontendDevice()->frameStart.connect(data, &RPi::CameraData::frameStarted);
	data->ipa_->setDelayedControls.connect(data, &CameraData::setDelayedControls);
	data->ipa_->setLensControls.connect(data, &CameraData::setLensControls);
	data->ipa_->metadataReady.connect(data, &CameraData::metadataReady);

	return 0;
}

void PipelineHandlerBase::mapBuffers(Camera *camera, const BufferMap &buffers, unsigned int mask)
{
	CameraData *data = cameraData(camera);
	std::vector<IPABuffer> bufferIds;
	/*
	 * Link the FrameBuffers with the id (key value) in the map stored in
	 * the RPi stream object - along with an identifier mask.
	 *
	 * This will allow us to identify buffers passed between the pipeline
	 * handler and the IPA.
	 */
	for (auto const &it : buffers) {
		bufferIds.push_back(IPABuffer(mask | it.first,
					      it.second.buffer->planes()));
		data->bufferIds_.insert(mask | it.first);
	}

	data->ipa_->mapBuffers(bufferIds);
}

int PipelineHandlerBase::queueAllBuffers(Camera *camera)
{
	CameraData *data = cameraData(camera);
	int ret;

	for (auto const stream : data->streams_) {
		if (!(stream->getFlags() & StreamFlag::External)) {
			ret = stream->queueAllBuffers();
			if (ret < 0)
				return ret;
		} else {
			/*
			 * For external streams, we must queue up a set of internal
			 * buffers to handle the number of drop frames requested by
			 * the IPA. This is done by passing nullptr in queueBuffer().
			 *
			 * The below queueBuffer() call will do nothing if there
			 * are not enough internal buffers allocated, but this will
			 * be handled by queuing the request for buffers in the
			 * RPiStream object.
			 */
			unsigned int i;
			for (i = 0; i < data->dropFrameCount_; i++) {
				ret = stream->queueBuffer(nullptr);
				if (ret)
					return ret;
			}
		}
	}

	return 0;
}

double CameraData::scoreFormat(double desired, double actual) const
{
	double score = desired - actual;
	/* Smaller desired dimensions are preferred. */
	if (score < 0.0)
		score = (-score) / 8;
	/* Penalise non-exact matches. */
	if (actual != desired)
		score *= 2;

	return score;
}

V4L2SubdeviceFormat CameraData::findBestFormat(const Size &req, unsigned int bitDepth) const
{
	double bestScore = std::numeric_limits<double>::max(), score;
	V4L2SubdeviceFormat bestFormat;
	bestFormat.colorSpace = ColorSpace::Raw;

	constexpr float penaltyAr = 1500.0;
	constexpr float penaltyBitDepth = 500.0;

	/* Calculate the closest/best mode from the user requested size. */
	for (const auto &iter : sensorFormats_) {
		const unsigned int mbusCode = iter.first;
		const PixelFormat format = mbusCodeToPixelFormat(mbusCode,
								 BayerFormat::Packing::None);
		const PixelFormatInfo &info = PixelFormatInfo::info(format);

		for (const Size &size : iter.second) {
			double reqAr = static_cast<double>(req.width) / req.height;
			double fmtAr = static_cast<double>(size.width) / size.height;

			/* Score the dimensions for closeness. */
			score = scoreFormat(req.width, size.width);
			score += scoreFormat(req.height, size.height);
			score += penaltyAr * scoreFormat(reqAr, fmtAr);

			/* Add any penalties... this is not an exact science! */
			score += utils::abs_diff(info.bitsPerPixel, bitDepth) * penaltyBitDepth;

			if (score <= bestScore) {
				bestScore = score;
				bestFormat.code = mbusCode;
				bestFormat.size = size;
			}

			LOG(RPI, Debug) << "Format: " << size
					<< " fmt " << format
					<< " Score: " << score
					<< " (best " << bestScore << ")";
		}
	}

	return bestFormat;
}

void CameraData::freeBuffers()
{
	if (ipa_) {
		/*
		 * Copy the buffer ids from the unordered_set to a vector to
		 * pass to the IPA.
		 */
		std::vector<unsigned int> bufferIds(bufferIds_.begin(),
						    bufferIds_.end());
		ipa_->unmapBuffers(bufferIds);
		bufferIds_.clear();
	}

	for (auto const stream : streams_)
		stream->releaseBuffers();

	platformFreeBuffers();

	buffersAllocated_ = false;
}

/*
 * enumerateVideoDevices() iterates over the Media Controller topology, starting
 * at the sensor and finishing at the frontend. For each sensor, CameraData stores
 * a unique list of any intermediate video mux or bridge devices connected in a
 * cascade, together with the entity to entity link.
 *
 * Entity pad configuration and link enabling happens at the end of configure().
 * We first disable all pad links on each entity device in the chain, and then
 * selectively enabling the specific links to link sensor to the frontend across
 * all intermediate muxes and bridges.
 *
 * In the cascaded topology below, if Sensor1 is used, the Mux2 -> Mux1 link
 * will be disabled, and Sensor1 -> Mux1 -> Frontend links enabled. Alternatively,
 * if Sensor3 is used, the Sensor2 -> Mux2 and Sensor1 -> Mux1 links are disabled,
 * and Sensor3 -> Mux2 -> Mux1 -> Frontend links are enabled. All other links will
 * remain unchanged.
 *
 *  +----------+
 *  |     FE   |
 *  +-----^----+
 *        |
 *    +---+---+
 *    | Mux1  |<------+
 *    +--^----        |
 *       |            |
 * +-----+---+    +---+---+
 * | Sensor1 |    |  Mux2 |<--+
 * +---------+    +-^-----+   |
 *                  |         |
 *          +-------+-+   +---+-----+
 *          | Sensor2 |   | Sensor3 |
 *          +---------+   +---------+
 */
void CameraData::enumerateVideoDevices(MediaLink *link, const std::string &frontend)
{
	const MediaPad *sinkPad = link->sink();
	const MediaEntity *entity = sinkPad->entity();
	bool frontendFound = false;

	/* We only deal with Video Mux and Bridge devices in cascade. */
	if (entity->function() != MEDIA_ENT_F_VID_MUX &&
	    entity->function() != MEDIA_ENT_F_VID_IF_BRIDGE)
		return;

	/* Find the source pad for this Video Mux or Bridge device. */
	const MediaPad *sourcePad = nullptr;
	for (const MediaPad *pad : entity->pads()) {
		if (pad->flags() & MEDIA_PAD_FL_SOURCE) {
			/*
			 * We can only deal with devices that have a single source
			 * pad. If this device has multiple source pads, ignore it
			 * and this branch in the cascade.
			 */
			if (sourcePad)
				return;

			sourcePad = pad;
		}
	}

	LOG(RPI, Debug) << "Found video mux device " << entity->name()
			<< " linked to sink pad " << sinkPad->index();

	bridgeDevices_.emplace_back(std::make_unique<V4L2Subdevice>(entity), link);
	bridgeDevices_.back().first->open();

	/*
	 * Iterate through all the sink pad links down the cascade to find any
	 * other Video Mux and Bridge devices.
	 */
	for (MediaLink *l : sourcePad->links()) {
		enumerateVideoDevices(l, frontend);
		/* Once we reach the Frontend entity, we are done. */
		if (l->sink()->entity()->name() == frontend) {
			frontendFound = true;
			break;
		}
	}

	/* This identifies the end of our entity enumeration recursion. */
	if (link->source()->entity()->function() == MEDIA_ENT_F_CAM_SENSOR) {
		/*
		 * If the frontend is not at the end of this cascade, we cannot
		 * configure this topology automatically, so remove all entity
		 * references.
		 */
		if (!frontendFound) {
			LOG(RPI, Warning) << "Cannot automatically configure this MC topology!";
			bridgeDevices_.clear();
		}
	}
}

int CameraData::loadPipelineConfiguration()
{
	config_ = {
		.disableStartupFrameDrops = false,
		.cameraTimeoutValue = 0,
	};

	/* Initial configuration of the platform, in case no config file is present */
	platformPipelineConfigure({});

	char const *configFromEnv = utils::secure_getenv("LIBCAMERA_RPI_CONFIG_FILE");
	if (!configFromEnv || *configFromEnv == '\0')
		return 0;

	std::string filename = std::string(configFromEnv);
	File file(filename);

	if (!file.open(File::OpenModeFlag::ReadOnly)) {
		LOG(RPI, Warning) << "Failed to open configuration file '" << filename << "'"
				  << ", using defaults";
		return 0;
	}

	LOG(RPI, Info) << "Using configuration file '" << filename << "'";

	std::unique_ptr<YamlObject> root = YamlParser::parse(file);
	if (!root) {
		LOG(RPI, Warning) << "Failed to parse configuration file, using defaults";
		return 0;
	}

	std::optional<double> ver = (*root)["version"].get<double>();
	if (!ver || *ver != 1.0) {
		LOG(RPI, Warning) << "Unexpected configuration file version reported: "
				  << *ver;
		return 0;
	}

	const YamlObject &phConfig = (*root)["pipeline_handler"];

	config_.disableStartupFrameDrops =
		phConfig["disable_startup_frame_drops"].get<bool>(config_.disableStartupFrameDrops);

	config_.cameraTimeoutValue =
		phConfig["camera_timeout_value_ms"].get<unsigned int>(config_.cameraTimeoutValue);

	if (config_.cameraTimeoutValue) {
		/* Disable the IPA signal to control timeout and set the user requested value. */
		ipa_->setCameraTimeout.disconnect();
		frontendDevice()->setDequeueTimeout(config_.cameraTimeoutValue * 1ms);
	}

	return platformPipelineConfigure(root);
}

int CameraData::loadIPA(ipa::RPi::InitResult *result)
{
	int ret;

	ipa_ = IPAManager::createIPA<ipa::RPi::IPAProxyRPi>(pipe(), 1, 1);

	if (!ipa_)
		return -ENOENT;

	/*
	 * The configuration (tuning file) is made from the sensor name unless
	 * the environment variable overrides it.
	 */
	std::string configurationFile;
	char const *configFromEnv = utils::secure_getenv("LIBCAMERA_RPI_TUNING_FILE");
	if (!configFromEnv || *configFromEnv == '\0') {
		std::string model = sensor_->model();
		if (isMonoSensor(sensor_))
			model += "_mono";
		configurationFile = ipa_->configurationFile(model + ".json");
	} else {
		configurationFile = std::string(configFromEnv);
	}

	IPASettings settings(configurationFile, sensor_->model());
	ipa::RPi::InitParams params;

	ret = sensor_->sensorInfo(&params.sensorInfo);
	if (ret) {
		LOG(RPI, Error) << "Failed to retrieve camera sensor info";
		return ret;
	}

	params.lensPresent = !!sensor_->focusLens();
	ret = platformInitIpa(params);
	if (ret)
		return ret;

	return ipa_->init(settings, params, result);
}

int CameraData::configureIPA(const CameraConfiguration *config, ipa::RPi::ConfigResult *result)
{
	ipa::RPi::ConfigParams params;
	int ret;

	params.sensorControls = sensor_->controls();
	if (sensor_->focusLens())
		params.lensControls = sensor_->focusLens()->controls();

	ret = platformConfigureIpa(params);
	if (ret)
		return ret;

	/* We store the IPACameraSensorInfo for digital zoom calculations. */
	ret = sensor_->sensorInfo(&sensorInfo_);
	if (ret) {
		LOG(RPI, Error) << "Failed to retrieve camera sensor info";
		return ret;
	}

	/* Always send the user transform to the IPA. */
	Transform transform = config->orientation / Orientation::Rotate0;
	params.transform = static_cast<unsigned int>(transform);

	/* Ready the IPA - it must know about the sensor resolution. */
	ret = ipa_->configure(sensorInfo_, params, result);
	if (ret < 0) {
		LOG(RPI, Error) << "IPA configuration failed!";
		return -EPIPE;
	}

	if (!result->sensorControls.empty())
		setSensorControls(result->sensorControls);
	if (!result->lensControls.empty())
		setLensControls(result->lensControls);

	return 0;
}

void CameraData::metadataReady(const ControlList &metadata)
{
	if (!isRunning())
		return;

	/* Add to the Request metadata buffer what the IPA has provided. */
	/* Last thing to do is to fill up the request metadata. */
	Request *request = requestQueue_.front();
	request->metadata().merge(metadata);

	/*
	 * Inform the sensor of the latest colour gains if it has the
	 * V4L2_CID_NOTIFY_GAINS control (which means notifyGainsUnity_ is set).
	 */
	const auto &colourGains = metadata.get(libcamera::controls::ColourGains);
	if (notifyGainsUnity_ && colourGains) {
		/* The control wants linear gains in the order B, Gb, Gr, R. */
		ControlList ctrls(sensor_->controls());
		std::array<int32_t, 4> gains{
			static_cast<int32_t>((*colourGains)[1] * *notifyGainsUnity_),
			*notifyGainsUnity_,
			*notifyGainsUnity_,
			static_cast<int32_t>((*colourGains)[0] * *notifyGainsUnity_)
		};
		ctrls.set(V4L2_CID_NOTIFY_GAINS, Span<const int32_t>{ gains });

		sensor_->setControls(&ctrls);
	}
}

void CameraData::setDelayedControls(const ControlList &controls, uint32_t delayContext)
{
	if (!delayedCtrls_->push(controls, delayContext))
		LOG(RPI, Error) << "V4L2 DelayedControl set failed";
}

void CameraData::setLensControls(const ControlList &controls)
{
	CameraLens *lens = sensor_->focusLens();

	if (lens && controls.contains(V4L2_CID_FOCUS_ABSOLUTE)) {
		ControlValue const &focusValue = controls.get(V4L2_CID_FOCUS_ABSOLUTE);
		lens->setFocusPosition(focusValue.get<int32_t>());
	}
}

void CameraData::setSensorControls(ControlList &controls)
{
	/*
	 * We need to ensure that if both VBLANK and EXPOSURE are present, the
	 * former must be written ahead of, and separately from EXPOSURE to avoid
	 * V4L2 rejecting the latter. This is identical to what DelayedControls
	 * does with the priority write flag.
	 *
	 * As a consequence of the below logic, VBLANK gets set twice, and we
	 * rely on the v4l2 framework to not pass the second control set to the
	 * driver as the actual control value has not changed.
	 */
	if (controls.contains(V4L2_CID_EXPOSURE) && controls.contains(V4L2_CID_VBLANK)) {
		ControlList vblank_ctrl;

		vblank_ctrl.set(V4L2_CID_VBLANK, controls.get(V4L2_CID_VBLANK));
		sensor_->setControls(&vblank_ctrl);
	}

	sensor_->setControls(&controls);
}

Rectangle CameraData::scaleIspCrop(const Rectangle &ispCrop) const
{
	/*
	 * Scale a crop rectangle defined in the ISP's coordinates into native sensor
	 * coordinates.
	 */
	Rectangle nativeCrop = ispCrop.scaledBy(sensorInfo_.analogCrop.size(),
						sensorInfo_.outputSize);
	nativeCrop.translateBy(sensorInfo_.analogCrop.topLeft());
	return nativeCrop;
}

void CameraData::applyScalerCrop(const ControlList &controls)
{
	const auto &scalerCropRPi = controls.get<Span<const Rectangle>>(controls::rpi::ScalerCrops);
	const auto &scalerCropCore = controls.get<Rectangle>(controls::ScalerCrop);
	std::vector<Rectangle> scalerCrops;

	/*
	 * First thing to do is create a vector of crops to apply to each ISP output
	 * based on either controls::ScalerCrop or controls::rpi::ScalerCrops if
	 * present.
	 *
	 * If controls::rpi::ScalerCrops is preset, apply the given crops to the
	 * ISP output streams, indexed by the same order in which they had been
	 * configured. This is not the same as the ISP output index. Otherwise
	 * if controls::ScalerCrop is present, apply the same crop to all ISP
	 * output streams.
	 */
	for (unsigned int i = 0; i < cropParams_.size(); i++) {
		if (scalerCropRPi && i < scalerCropRPi->size())
			scalerCrops.push_back(scalerCropRPi->data()[i]);
		else if (scalerCropCore)
			scalerCrops.push_back(*scalerCropCore);
	}

	for (auto const &[i, scalerCrop] : utils::enumerate(scalerCrops)) {
		Rectangle nativeCrop = scalerCrop;

		if (!nativeCrop.width || !nativeCrop.height)
			nativeCrop = { 0, 0, 1, 1 };

		/* Create a version of the crop scaled to ISP (camera mode) pixels. */
		Rectangle ispCrop = nativeCrop.translatedBy(-sensorInfo_.analogCrop.topLeft());
		ispCrop.scaleBy(sensorInfo_.outputSize, sensorInfo_.analogCrop.size());

		/*
		 * The crop that we set must be:
		 * 1. At least as big as ispMinCropSize_, once that's been
		 *    enlarged to the same aspect ratio.
		 * 2. With the same mid-point, if possible.
		 * 3. But it can't go outside the sensor area.
		 */
		Size minSize = cropParams_.at(i).ispMinCropSize.expandedToAspectRatio(nativeCrop.size());
		Size size = ispCrop.size().expandedTo(minSize);
		ispCrop = size.centeredTo(ispCrop.center()).enclosedIn(Rectangle(sensorInfo_.outputSize));

		if (ispCrop != cropParams_.at(i).ispCrop) {
			cropParams_.at(i).ispCrop = ispCrop;
			platformSetIspCrop(cropParams_.at(i).ispIndex, ispCrop);
		}
	}
}

void CameraData::cameraTimeout()
{
	LOG(RPI, Error) << "Camera frontend has timed out!";
	LOG(RPI, Error) << "Please check that your camera sensor connector is attached securely.";
	LOG(RPI, Error) << "Alternatively, try another cable and/or sensor.";

	state_ = CameraData::State::Error;
	platformStop();

	/*
	 * To allow the application to attempt a recovery from this timeout,
	 * stop all devices streaming, and return any outstanding requests as
	 * incomplete and cancelled.
	 */
	for (auto const stream : streams_)
		stream->dev()->streamOff();

	clearIncompleteRequests();
}

void CameraData::frameStarted(uint32_t sequence)
{
	LOG(RPI, Debug) << "Frame start " << sequence;

	/* Write any controls for the next frame as soon as we can. */
	delayedCtrls_->applyControls(sequence);
}

void CameraData::clearIncompleteRequests()
{
	/*
	 * All outstanding requests (and associated buffers) must be returned
	 * back to the application.
	 */
	while (!requestQueue_.empty()) {
		Request *request = requestQueue_.front();

		for (auto &b : request->buffers()) {
			FrameBuffer *buffer = b.second;
			/*
			 * Has the buffer already been handed back to the
			 * request? If not, do so now.
			 */
			if (buffer->request()) {
				buffer->_d()->cancel();
				pipe()->completeBuffer(request, buffer);
			}
		}

		pipe()->completeRequest(request);
		requestQueue_.pop();
	}
}