summaryrefslogtreecommitdiff
path: root/src/cam/meson.build
AgeCommit message (Expand)Author
2019-05-25cam: capture: Break out capture to a new classNiklas Söderlund
2019-05-23meson: Create and use a dependency for libcamera and its headersLaurent Pinchart
2019-04-18Install the cam and qcam utilitiesLaurent Pinchart
2019-02-06cam: Add BufferWriter helperNiklas Söderlund
2019-01-25cam: Add event loopLaurent Pinchart
2019-01-22cam: Extract option parser to separate fileLaurent Pinchart
2019-01-22cam: add utility to control camerasNiklas Söderlund
3'>13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2021, Ideas On Board
 *
 * ipu3_awb.cpp - AWB control algorithm
 */
#include "ipu3_awb.h"

#include <cmath>
#include <numeric>
#include <unordered_map>

#include "libcamera/internal/log.h"

namespace libcamera {

namespace ipa::ipu3 {

LOG_DEFINE_CATEGORY(IPU3Awb)

static constexpr uint32_t kMinZonesCounted = 16;
static constexpr uint32_t kMinGreenLevelInZone = 32;

/**
 * \struct IspStatsRegion
 * \brief RGB statistics for a given region
 *
 * The IspStatsRegion structure is intended to abstract the ISP specific
 * statistics and use an agnostic algorithm to compute AWB.
 *
 * \var IspStatsRegion::counted
 * \brief Number of pixels used to calculate the sums
 *
 * \var IspStatsRegion::uncounted
 * \brief Remaining number of pixels in the region
 *
 * \var IspStatsRegion::rSum
 * \brief Sum of the red values in the region
 *
 * \var IspStatsRegion::gSum
 * \brief Sum of the green values in the region
 *
 * \var IspStatsRegion::bSum
 * \brief Sum of the blue values in the region
 */

/**
 * \struct AwbStatus
 * \brief AWB parameters calculated
 *
 * The AwbStatus structure is intended to store the AWB
 * parameters calculated by the algorithm
 *
 * \var AwbStatus::temperatureK
 * \brief Color temperature calculated
 *
 * \var AwbStatus::redGain
 * \brief Gain calculated for the red channel
 *
 * \var AwbStatus::greenGain
 * \brief Gain calculated for the green channel
 *
 * \var AwbStatus::blueGain
 * \brief Gain calculated for the blue channel
 */

/**
 * \struct Ipu3AwbCell
 * \brief Memory layout for each cell in AWB metadata
 *
 * The Ipu3AwbCell structure is used to get individual values
 * such as red average or saturation ratio in a particular cell.
 *
 * \var Ipu3AwbCell::greenRedAvg
 * \brief Green average for red lines in the cell
 *
 * \var Ipu3AwbCell::redAvg
 * \brief Red average in the cell
 *
 * \var Ipu3AwbCell::blueAvg
 * \brief blue average in the cell
 *
 * \var Ipu3AwbCell::greenBlueAvg
 * \brief Green average for blue lines
 *
 * \var Ipu3AwbCell::satRatio
 * \brief Saturation ratio in the cell
 *
 * \var Ipu3AwbCell::padding
 * \brief array of unused bytes for padding
 */

/* Default settings for Bayer noise reduction replicated from the Kernel */
static const struct ipu3_uapi_bnr_static_config imguCssBnrDefaults = {
	.wb_gains = { 16, 16, 16, 16 },
	.wb_gains_thr = { 255, 255, 255, 255 },
	.thr_coeffs = { 1700, 0, 31, 31, 0, 16 },
	.thr_ctrl_shd = { 26, 26, 26, 26 },
	.opt_center{ -648, 0, -366, 0 },
	.lut = {
		{ 17, 23, 28, 32, 36, 39, 42, 45,
		  48, 51, 53, 55, 58, 60, 62, 64,
		  66, 68, 70, 72, 73, 75, 77, 78,
		  80, 82, 83, 85, 86, 88, 89, 90 } },
	.bp_ctrl = { 20, 0, 1, 40, 0, 6, 0, 6, 0 },
	.dn_detect_ctrl{ 9, 3, 4, 0, 8, 0, 1, 1, 1, 1, 0 },
	.column_size = 1296,
	.opt_center_sqr = { 419904, 133956 },
};

/* Default settings for Auto White Balance replicated from the Kernel*/
static const struct ipu3_uapi_awb_config_s imguCssAwbDefaults = {
	.rgbs_thr_gr = 8191,
	.rgbs_thr_r = 8191,
	.rgbs_thr_gb = 8191,
	.rgbs_thr_b = 8191 | IPU3_UAPI_AWB_RGBS_THR_B_EN | IPU3_UAPI_AWB_RGBS_THR_B_INCL_SAT,
	.grid = {
		.width = 160,
		.height = 36,
		.block_width_log2 = 3,
		.block_height_log2 = 4,
		.height_per_slice = 1, /* Overridden by kernel. */
		.x_start = 0,
		.y_start = 0,
		.x_end = 0,
		.y_end = 0,
	},
};

/* Default color correction matrix defined as an identity matrix */
static const struct ipu3_uapi_ccm_mat_config imguCssCcmDefault = {
	8191, 0, 0, 0,
	0, 8191, 0, 0,
	0, 0, 8191, 0
};

IPU3Awb::IPU3Awb()
	: Algorithm()
{
	asyncResults_.blueGain = 1.0;
	asyncResults_.greenGain = 1.0;
	asyncResults_.redGain = 1.0;
	asyncResults_.temperatureK = 4500;
}

IPU3Awb::~IPU3Awb()
{
}

void IPU3Awb::initialise(ipu3_uapi_params &params, const Size &bdsOutputSize, struct ipu3_uapi_grid_config &bdsGrid)
{
	params.use.acc_awb = 1;
	params.acc_param.awb.config = imguCssAwbDefaults;

	awbGrid_ = bdsGrid;
	params.acc_param.awb.config.grid = awbGrid_;

	params.use.acc_bnr = 1;
	params.acc_param.bnr = imguCssBnrDefaults;
	/**
	 * Optical center is column (respectively row) startminus X (respectively Y) center.
	 * For the moment use BDS as a first approximation, but it should
	 * be calculated based on Shading (SHD) parameters.
	 */
	params.acc_param.bnr.column_size = bdsOutputSize.width;
	params.acc_param.bnr.opt_center.x_reset = awbGrid_.x_start - (bdsOutputSize.width / 2);
	params.acc_param.bnr.opt_center.y_reset = awbGrid_.y_start - (bdsOutputSize.height / 2);
	params.acc_param.bnr.opt_center_sqr.x_sqr_reset = params.acc_param.bnr.opt_center.x_reset
							* params.acc_param.bnr.opt_center.x_reset;
	params.acc_param.bnr.opt_center_sqr.y_sqr_reset = params.acc_param.bnr.opt_center.y_reset
							* params.acc_param.bnr.opt_center.y_reset;

	params.use.acc_ccm = 1;
	params.acc_param.ccm = imguCssCcmDefault;

	params.use.acc_gamma = 1;
	params.acc_param.gamma.gc_ctrl.enable = 1;

	zones_.reserve(kAwbStatsSizeX * kAwbStatsSizeY);
}

/**
 * The function estimates the correlated color temperature using
 * from RGB color space input.
 * In physics and color science, the Planckian locus or black body locus is
 * the path or locus that the color of an incandescent black body would take
 * in a particular chromaticity space as the blackbody temperature changes.
 *
 * If a narrow range of color temperatures is considered (those encapsulating
 * daylight being the most practical case) one can approximate the Planckian
 * locus in order to calculate the CCT in terms of chromaticity coordinates.
 *
 * More detailed information can be found in:
 * https://en.wikipedia.org/wiki/Color_temperature#Approximation
 */
uint32_t IPU3Awb::estimateCCT(double red, double green, double blue)
{
	/* Convert the RGB values to CIE tristimulus values (XYZ) */
	double X = (-0.14282) * (red) + (1.54924) * (green) + (-0.95641) * (blue);
	double Y = (-0.32466) * (red) + (1.57837) * (green) + (-0.73191) * (blue);
	double Z = (-0.68202) * (red) + (0.77073) * (green) + (0.56332) * (blue);

	/* Calculate the normalized chromaticity values */
	double x = X / (X + Y + Z);
	double y = Y / (X + Y + Z);

	/* Calculate CCT */
	double n = (x - 0.3320) / (0.1858 - y);
	return 449 * n * n * n + 3525 * n * n + 6823.3 * n + 5520.33;
}

/* Generate an RGB vector with the average values for each region */
void IPU3Awb::generateZones(std::vector<RGB> &zones)
{
	for (unsigned int i = 0; i < kAwbStatsSizeX * kAwbStatsSizeY; i++) {
		RGB zone;
		double counted = awbStats_[i].counted;
		if (counted >= kMinZonesCounted) {
			zone.G = awbStats_[i].gSum / counted;
			if (zone.G >= kMinGreenLevelInZone) {
				zone.R = awbStats_[i].rSum / counted;
				zone.B = awbStats_[i].bSum / counted;
				zones.push_back(zone);
			}
		}
	}
}

/* Translate the IPU3 statistics into the default statistics region array */
void IPU3Awb::generateAwbStats(const ipu3_uapi_stats_3a *stats)
{
	uint32_t regionWidth = round(awbGrid_.width / static_cast<double>(kAwbStatsSizeX));
	uint32_t regionHeight = round(awbGrid_.height / static_cast<double>(kAwbStatsSizeY));

	/*
	 * Generate a (kAwbStatsSizeX x kAwbStatsSizeY) array from the IPU3 grid which is
	 * (awbGrid_.width x awbGrid_.height).
	 */
	for (unsigned int j = 0; j < kAwbStatsSizeY * regionHeight; j++) {
		for (unsigned int i = 0; i < kAwbStatsSizeX * regionWidth; i++) {
			uint32_t cellPosition = j * awbGrid_.width + i;
			uint32_t cellX = (cellPosition / regionWidth) % kAwbStatsSizeX;
			uint32_t cellY = ((cellPosition / awbGrid_.width) / regionHeight) % kAwbStatsSizeY;

			uint32_t awbRegionPosition = cellY * kAwbStatsSizeX + cellX;
			cellPosition *= 8;

			/* Cast the initial IPU3 structure to simplify the reading */
			Ipu3AwbCell *currentCell = reinterpret_cast<Ipu3AwbCell *>(const_cast<uint8_t *>(&stats->awb_raw_buffer.meta_data[cellPosition]));
			if (currentCell->satRatio == 0) {
				/* The cell is not saturated, use the current cell */
				awbStats_[awbRegionPosition].counted++;
				uint32_t greenValue = currentCell->greenRedAvg + currentCell->greenBlueAvg;
				awbStats_[awbRegionPosition].gSum += greenValue / 2;
				awbStats_[awbRegionPosition].rSum += currentCell->redAvg;
				awbStats_[awbRegionPosition].bSum += currentCell->blueAvg;
			}
		}
	}
}

void IPU3Awb::clearAwbStats()
{
	for (unsigned int i = 0; i < kAwbStatsSizeX * kAwbStatsSizeY; i++) {
		awbStats_[i].bSum = 0;
		awbStats_[i].rSum = 0;
		awbStats_[i].gSum = 0;
		awbStats_[i].counted = 0;
		awbStats_[i].uncounted = 0;
	}
}

void IPU3Awb::awbGreyWorld()
{
	LOG(IPU3Awb, Debug) << "Grey world AWB";
	/*
	 * Make a separate list of the derivatives for each of red and blue, so
	 * that we can sort them to exclude the extreme gains. We could
	 * consider some variations, such as normalising all the zones first, or
	 * doing an L2 average etc.
	 */
	std::vector<RGB> &redDerivative(zones_);
	std::vector<RGB> blueDerivative(redDerivative);
	std::sort(redDerivative.begin(), redDerivative.end(),
		  [](RGB const &a, RGB const &b) {
			  return a.G * b.R < b.G * a.R;
		  });
	std::sort(blueDerivative.begin(), blueDerivative.end(),
		  [](RGB const &a, RGB const &b) {
			  return a.G * b.B < b.G * a.B;
		  });

	/* Average the middle half of the values. */
	int discard = redDerivative.size() / 4;

	RGB sumRed(0, 0, 0);
	RGB sumBlue(0, 0, 0);
	for (auto ri = redDerivative.begin() + discard,
		  bi = blueDerivative.begin() + discard;
	     ri != redDerivative.end() - discard; ri++, bi++)
		sumRed += *ri, sumBlue += *bi;

	double redGain = sumRed.G / (sumRed.R + 1),
	       blueGain = sumBlue.G / (sumBlue.B + 1);

	/* Color temperature is not relevant in Grey world but still useful to estimate it :-) */
	asyncResults_.temperatureK = estimateCCT(sumRed.R, sumRed.G, sumBlue.B);
	asyncResults_.redGain = redGain;
	asyncResults_.greenGain = 1.0;
	asyncResults_.blueGain = blueGain;
}

void IPU3Awb::calculateWBGains(const ipu3_uapi_stats_3a *stats)
{
	ASSERT(stats->stats_3a_status.awb_en);
	zones_.clear();
	clearAwbStats();
	generateAwbStats(stats);
	generateZones(zones_);
	LOG(IPU3Awb, Debug) << "Valid zones: " << zones_.size();