summaryrefslogtreecommitdiff
path: root/test/v4l2_videodevice/v4l2_videodevice_test.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'test/v4l2_videodevice/v4l2_videodevice_test.cpp')
0 files changed, 0 insertions, 0 deletions
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
# SPDX-License-Identifier: GPL-2.0-or-later
# Copyright (C) 2022, Tomi Valkeinen <tomi.valkeinen@ideasonboard.com>
#
# Debayering code from PiCamera documentation

from numpy.lib.stride_tricks import as_strided
import libcamera as libcam
import libcamera.utils
import numpy as np


def demosaic(data, r0, g0, g1, b0):
    # Separate the components from the Bayer data to RGB planes

    rgb = np.zeros(data.shape + (3,), dtype=data.dtype)
    rgb[r0[1]::2, r0[0]::2, 0] = data[r0[1]::2, r0[0]::2]  # Red
    rgb[g0[1]::2, g0[0]::2, 1] = data[g0[1]::2, g0[0]::2]  # Green
    rgb[g1[1]::2, g1[0]::2, 1] = data[g1[1]::2, g1[0]::2]  # Green
    rgb[b0[1]::2, b0[0]::2, 2] = data[b0[1]::2, b0[0]::2]  # Blue

    # Below we present a fairly naive de-mosaic method that simply
    # calculates the weighted average of a pixel based on the pixels
    # surrounding it. The weighting is provided by a byte representation of
    # the Bayer filter which we construct first:

    bayer = np.zeros(rgb.shape, dtype=np.uint8)
    bayer[r0[1]::2, r0[0]::2, 0] = 1  # Red
    bayer[g0[1]::2, g0[0]::2, 1] = 1  # Green
    bayer[g1[1]::2, g1[0]::2, 1] = 1  # Green
    bayer[b0[1]::2, b0[0]::2, 2] = 1  # Blue

    # Allocate an array to hold our output with the same shape as the input
    # data. After this we define the size of window that will be used to
    # calculate each weighted average (3x3). Then we pad out the rgb and
    # bayer arrays, adding blank pixels at their edges to compensate for the
    # size of the window when calculating averages for edge pixels.

    output = np.empty(rgb.shape, dtype=rgb.dtype)
    window = (3, 3)
    borders = (window[0] - 1, window[1] - 1)
    border = (borders[0] // 2, borders[1] // 2)

    rgb = np.pad(rgb, [
        (border[0], border[0]),
        (border[1], border[1]),
        (0, 0),
    ], 'constant')
    bayer = np.pad(bayer, [
        (border[0], border[0]),
        (border[1], border[1]),
        (0, 0),
    ], 'constant')

    # For each plane in the RGB data, we use a nifty numpy trick
    # (as_strided) to construct a view over the plane of 3x3 matrices. We do
    # the same for the bayer array, then use Einstein summation on each
    # (np.sum is simpler, but copies the data so it's slower), and divide
    # the results to get our weighted average:

    for plane in range(3):
        p = rgb[..., plane]
        b = bayer[..., plane]
        pview = as_strided(p, shape=(
            p.shape[0] - borders[0],
            p.shape[1] - borders[1]) + window, strides=p.strides * 2)
        bview = as_strided(b, shape=(
            b.shape[0] - borders[0],
            b.shape[1] - borders[1]) + window, strides=b.strides * 2)
        psum = np.einsum('ijkl->ij', pview)
        bsum = np.einsum('ijkl->ij', bview)
        output[..., plane] = psum // bsum

    return output


def to_rgb(fmt, size, data):
    w = size.width
    h = size.height

    if fmt == libcam.formats.YUYV:
        # YUV422
        yuyv = data.reshape((h, w // 2 * 4))

        # YUV444
        yuv = np.empty((h, w, 3), dtype=np.uint8)
        yuv[:, :, 0] = yuyv[:, 0::2]                    # Y
        yuv[:, :, 1] = yuyv[:, 1::4].repeat(2, axis=1)  # U
        yuv[:, :, 2] = yuyv[:, 3::4].repeat(2, axis=1)  # V

        m = np.array([
            [1.0, 1.0, 1.0],
            [-0.000007154783816076815, -0.3441331386566162, 1.7720025777816772],
            [1.4019975662231445, -0.7141380310058594, 0.00001542569043522235]
        ])

        rgb = np.dot(yuv, m)
        rgb[:, :, 0] -= 179.45477266423404
        rgb[:, :, 1] += 135.45870971679688
        rgb[:, :, 2] -= 226.8183044444304
        rgb = rgb.astype(np.uint8)

    elif fmt == libcam.formats.RGB888:
        rgb = data.reshape((h, w, 3))
        rgb[:, :, [0, 1, 2]] = rgb[:, :, [2, 1, 0]]

    elif fmt == libcam.formats.BGR888:
        rgb = data.reshape((h, w, 3))

    elif fmt in [libcam.formats.ARGB8888, libcam.formats.XRGB8888]:
        rgb = data.reshape((h, w, 4))
        rgb = np.flip(rgb, axis=2)
        # drop alpha component
        rgb = np.delete(rgb, np.s_[0::4], axis=2)

    elif str(fmt).startswith('S'):
        fmt = str(fmt)
        bayer_pattern = fmt[1:5]
        bitspp = int(fmt[5:])

        # \todo shifting leaves the lowest bits 0
        if bitspp == 8:
            data = data.reshape((h, w))
            data = data.astype(np.uint16) << 8
        elif bitspp in [10, 12]:
            data = data.view(np.uint16)
            data = data.reshape((h, w))
            data = data << (16 - bitspp)
        else:
            raise Exception('Bad bitspp:' + str(bitspp))

        idx = bayer_pattern.find('R')
        assert(idx != -1)
        r0 = (idx % 2, idx // 2)

        idx = bayer_pattern.find('G')
        assert(idx != -1)
        g0 = (idx % 2, idx // 2)

        idx = bayer_pattern.find('G', idx + 1)
        assert(idx != -1)
        g1 = (idx % 2, idx // 2)

        idx = bayer_pattern.find('B')
        assert(idx != -1)
        b0 = (idx % 2, idx // 2)

        rgb = demosaic(data, r0, g0, g1, b0)
        rgb = (rgb >> 8).astype(np.uint8)

    else:
        rgb = None

    return rgb


# A naive format conversion to 24-bit RGB
def mfb_to_rgb(mfb: libcamera.utils.MappedFrameBuffer, cfg: libcam.StreamConfiguration):
    data = np.array(mfb.planes[0], dtype=np.uint8)
    rgb = to_rgb(cfg.pixel_format, cfg.size, data)
    return rgb