summaryrefslogtreecommitdiff
path: root/src/qcam/assets/feathericons/wifi-off.svg
diff options
context:
space:
mode:
Diffstat (limited to 'src/qcam/assets/feathericons/wifi-off.svg')
0 files changed, 0 insertions, 0 deletions
n5' href='#n5'>5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2020, Google Inc.
 *
 * ipu3.cpp - IPU3 Image Processing Algorithms
 */

#include <algorithm>
#include <array>
#include <cmath>
#include <limits>
#include <map>
#include <memory>
#include <stdint.h>
#include <utility>
#include <vector>

#include <linux/intel-ipu3.h>
#include <linux/v4l2-controls.h>

#include <libcamera/base/log.h>
#include <libcamera/base/utils.h>

#include <libcamera/control_ids.h>
#include <libcamera/framebuffer.h>
#include <libcamera/ipa/ipa_interface.h>
#include <libcamera/ipa/ipa_module_info.h>
#include <libcamera/ipa/ipu3_ipa_interface.h>
#include <libcamera/request.h>

#include "libcamera/internal/mapped_framebuffer.h"

#include "algorithms/agc.h"
#include "algorithms/algorithm.h"
#include "algorithms/awb.h"
#include "algorithms/blc.h"
#include "algorithms/tone_mapping.h"
#include "libipa/camera_sensor_helper.h"

/* Minimum grid width, expressed as a number of cells */
static constexpr uint32_t kMinGridWidth = 16;
/* Maximum grid width, expressed as a number of cells */
static constexpr uint32_t kMaxGridWidth = 80;
/* Minimum grid height, expressed as a number of cells */
static constexpr uint32_t kMinGridHeight = 16;
/* Maximum grid height, expressed as a number of cells */
static constexpr uint32_t kMaxGridHeight = 60;
/* log2 of the minimum grid cell width and height, in pixels */
static constexpr uint32_t kMinCellSizeLog2 = 3;
/* log2 of the maximum grid cell width and height, in pixels */
static constexpr uint32_t kMaxCellSizeLog2 = 6;

namespace libcamera {

LOG_DEFINE_CATEGORY(IPAIPU3)

using namespace std::literals::chrono_literals;

namespace ipa::ipu3 {

/**
 * \brief The IPU3 IPA implementation
 *
 * The IPU3 Pipeline defines an IPU3-specific interface for communication
 * between the PipelineHandler and the IPA module.
 *
 * We extend the IPAIPU3Interface to implement our algorithms and handle events
 * from the IPU3 PipelineHandler to satisfy requests from the application.
 *
 * At initialisation time, a CameraSensorHelper is instantiated to support
 * camera-specific calculations, while the default controls are computed, and
 * the algorithms are constructed and placed in an ordered list.
 *
 * The IPU3 ImgU operates with a grid layout to divide the overall frame into
 * rectangular cells of pixels. When the IPA is configured, we determine the
 * best grid for the statistics based on the pipeline handler Bayer Down Scaler
 * output size.
 *
 * Two main events are then handled to operate the IPU3 ImgU by populating its
 * parameter buffer, and adapting the settings of the sensor attached to the
 * IPU3 CIO2 through sensor-specific V4L2 controls.
 *
 * When the event \a EventFillParams occurs we populate the ImgU parameter
 * buffer with settings to configure the device in preparation for handling the
 * frame queued in the Request.
 *
 * When the frame has completed processing, the ImgU will generate a statistics
 * buffer which is given to the IPA as part of the \a EventStatReady event. At
 * this event we run the algorithms to parse the statistics and cache any
 * results for the next \a EventFillParams event.
 *
 * The individual algorithms are split into modular components that are called
 * iteratively to allow them to process statistics from the ImgU in a defined
 * order.
 *
 * The current implementation supports three core algorithms:
 * - Automatic white balance (AWB)
 * - Automatic gain and exposure control (AGC)
 * - Black level correction (BLC)
 * - Tone mapping (Gamma)
 *
 * AWB is implemented using a Greyworld algorithm, and calculates the red and
 * blue gains to apply to generate a neutral grey frame overall.
 *
 * AGC is handled by calculating a histogram of the green channel to estimate an
 * analogue gain and shutter time which will provide a well exposed frame. A
 * low-pass IIR filter is used to smooth the changes to the sensor to reduce
 * perceivable steps.
 *
 * The tone mapping algorithm provides a gamma correction table to improve the
 * contrast of the scene.
 *
 * The black level compensation algorithm subtracts a hardcoded black level from
 * all pixels.
 *
 * The IPU3 ImgU has further processing blocks to support image quality
 * improvements through bayer and temporal noise reductions, however those are
 * not supported in the current implementation, and will use default settings as
 * provided by the kernel driver.
 *
 * Demosaicing is operating with the default parameters and could be further
 * optimised to provide improved sharpening coefficients, checker artifact
 * removal, and false color correction.
 *
 * Additional image enhancements can be made by providing lens and
 * sensor-specific tuning to adapt for Black Level compensation (BLC), Lens
 * shading correction (SHD) and Color correction (CCM).
 */
class IPAIPU3 : public IPAIPU3Interface
{
public:
	int init(const IPASettings &settings,
		 const IPACameraSensorInfo &sensorInfo,
		 const ControlInfoMap &sensorControls,
		 ControlInfoMap *ipaControls) override;

	int start() override;
	void stop() override;

	int configure(const IPAConfigInfo &configInfo,
		      ControlInfoMap *ipaControls) override;

	void mapBuffers(const std::vector<IPABuffer> &buffers) override;
	void unmapBuffers(const std::vector<unsigned int> &ids) override;
	void processEvent(const IPU3Event &event) override;

private:
	void updateControls(const IPACameraSensorInfo &sensorInfo,
			    const ControlInfoMap &sensorControls,
			    ControlInfoMap *ipaControls);
	void updateSessionConfiguration(const ControlInfoMap &sensorControls);
	void processControls(unsigned int frame, const ControlList &controls);
	void fillParams(unsigned int frame, ipu3_uapi_params *params);
	void parseStatistics(unsigned int frame,
			     int64_t frameTimestamp,
			     const ipu3_uapi_stats_3a *stats);

	void setControls(unsigned int frame);
	void calculateBdsGrid(const Size &bdsOutputSize);

	std::map<unsigned int, MappedFrameBuffer> buffers_;

	ControlInfoMap ctrls_;

	IPACameraSensorInfo sensorInfo_;

	/* Camera sensor controls. */
	uint32_t defVBlank_;
	uint32_t exposure_;
	uint32_t minExposure_;
	uint32_t maxExposure_;
	uint32_t gain_;
	uint32_t minGain_;
	uint32_t maxGain_;

	utils::Duration lineDuration_;

	/* Interface to the Camera Helper */
	std::unique_ptr<CameraSensorHelper> camHelper_;

	/* Maintain the algorithms used by the IPA */
	std::list<std::unique_ptr<ipa::ipu3::Algorithm>> algorithms_;

	/* Local parameter storage */
	struct IPAContext context_;
};

/**
 * \brief Compute IPASessionConfiguration using the sensor information and the
 * sensor V4L2 controls
 */
void IPAIPU3::updateSessionConfiguration(const ControlInfoMap &sensorControls)
{
	const ControlInfo &v4l2Exposure = sensorControls.find(V4L2_CID_EXPOSURE)->second;
	int32_t minExposure = v4l2Exposure.min().get<int32_t>();
	int32_t maxExposure = v4l2Exposure.max().get<int32_t>();

	const ControlInfo &v4l2Gain = sensorControls.find(V4L2_CID_ANALOGUE_GAIN)->second;
	int32_t minGain = v4l2Gain.min().get<int32_t>();
	int32_t maxGain = v4l2Gain.max().get<int32_t>();

	/*
	 * When the AGC computes the new exposure values for a frame, it needs
	 * to know the limits for shutter speed and analogue gain.
	 * As it depends on the sensor, update it with the controls.
	 *
	 * \todo take VBLANK into account for maximum shutter speed
	 */
	context_.configuration.agc.minShutterSpeed = minExposure * lineDuration_;
	context_.configuration.agc.maxShutterSpeed = maxExposure * lineDuration_;
	context_.configuration.agc.minAnalogueGain = camHelper_->gain(minGain);
	context_.configuration.agc.maxAnalogueGain = camHelper_->gain(maxGain);
}

/**
 * \brief Compute camera controls using the sensor information and the sensor
 * V4L2 controls
 *
 * Some of the camera controls are computed by the pipeline handler, some others
 * by the IPA module which is in charge of handling, for example, the exposure
 * time and the frame duration.
 *
 * This function computes:
 * - controls::ExposureTime
 * - controls::FrameDurationLimits
 */
void IPAIPU3::updateControls(const IPACameraSensorInfo &sensorInfo,
			     const ControlInfoMap &sensorControls,
			     ControlInfoMap *ipaControls)
{
	ControlInfoMap::Map controls{};

	/*
	 * Compute exposure time limits by using line length and pixel rate
	 * converted to microseconds. Use the V4L2_CID_EXPOSURE control to get
	 * exposure min, max and default and convert it from lines to
	 * microseconds.
	 */
	const ControlInfo &v4l2Exposure = sensorControls.find(V4L2_CID_EXPOSURE)->second;
	int32_t minExposure = v4l2Exposure.min().get<int32_t>() * lineDuration_.get<std::micro>();
	int32_t maxExposure = v4l2Exposure.max().get<int32_t>() * lineDuration_.get<std::micro>();
	int32_t defExposure = v4l2Exposure.def().get<int32_t>() * lineDuration_.get<std::micro>();
	controls[&controls::ExposureTime] = ControlInfo(minExposure, maxExposure,
							defExposure);

	/*
	 * Compute the frame duration limits.
	 *
	 * The frame length is computed assuming a fixed line length combined
	 * with the vertical frame sizes.
	 */
	const ControlInfo &v4l2HBlank = sensorControls.find(V4L2_CID_HBLANK)->second;
	uint32_t hblank = v4l2HBlank.def().get<int32_t>();
	uint32_t lineLength = sensorInfo.outputSize.width + hblank;

	const ControlInfo &v4l2VBlank = sensorControls.find(V4L2_CID_VBLANK)->second;
	std::array<uint32_t, 3> frameHeights{
		v4l2VBlank.min().get<int32_t>() + sensorInfo.outputSize.height,
		v4l2VBlank.max().get<int32_t>() + sensorInfo.outputSize.height,
		v4l2VBlank.def().get<int32_t>() + sensorInfo.outputSize.height,
	};

	std::array<int64_t, 3> frameDurations;
	for (unsigned int i = 0; i < frameHeights.size(); ++i) {
		uint64_t frameSize = lineLength * frameHeights[i];
		frameDurations[i] = frameSize / (sensorInfo.pixelRate / 1000000U);
	}

	controls[&controls::FrameDurationLimits] = ControlInfo(frameDurations[0],
							       frameDurations[1],
							       frameDurations[2]);

	*ipaControls = ControlInfoMap(std::move(controls), controls::controls);
}

/**
 * \brief Initialize the IPA module and its controls
 *
 * This function receives the camera sensor information from the pipeline
 * handler, computes the limits of the controls it handles and returns
 * them in the \a ipaControls output parameter.
 */
int IPAIPU3::init(const IPASettings &settings,
		  const IPACameraSensorInfo &sensorInfo,
		  const ControlInfoMap &sensorControls,
		  ControlInfoMap *ipaControls)
{
	camHelper_ = CameraSensorHelperFactory::create(settings.sensorModel);
	if (camHelper_ == nullptr) {
		LOG(IPAIPU3, Error)
			<< "Failed to create camera sensor helper for "
			<< settings.sensorModel;
		return -ENODEV;
	}

	/* Construct our Algorithms */
	algorithms_.push_back(std::make_unique<algorithms::Agc>());
	algorithms_.push_back(std::make_unique<algorithms::Awb>());
	algorithms_.push_back(std::make_unique<algorithms::BlackLevelCorrection>());
	algorithms_.push_back(std::make_unique<algorithms::ToneMapping>());

	/* Initialize controls. */
	updateControls(sensorInfo, sensorControls, ipaControls);

	return 0;
}

/**
 * \brief Perform any processing required before the first frame
 */
int IPAIPU3::start()
{
	/*
	 * Set the sensors V4L2 controls before the first frame to ensure that
	 * we have an expected and known configuration from the start.
	 */
	setControls(0);

	return 0;
}

/**
 * \brief Ensure that all processing has completed
 */
void IPAIPU3::stop()
{
}

/**
 * \brief Calculate a grid for the AWB statistics
 *
 * This function calculates a grid for the AWB algorithm in the IPU3 firmware.
 * Its input is the BDS output size calculated in the ImgU.
 * It is limited for now to the simplest method: find the lesser error
 * with the width/height and respective log2 width/height of the cells.
 *
 * \todo The frame is divided into cells which can be 8x8 => 64x64.
 * As a smaller cell improves the algorithm precision, adapting the
 * x_start and y_start parameters of the grid would provoke a loss of
 * some pixels but would also result in more accurate algorithms.
 */
void IPAIPU3::calculateBdsGrid(const Size &bdsOutputSize)
{
	Size best;
	Size bestLog2;

	/* Set the BDS output size in the IPAConfiguration structure */
	context_.configuration.grid.bdsOutputSize = bdsOutputSize;

	uint32_t minError = std::numeric_limits<uint32_t>::max();
	for (uint32_t shift = kMinCellSizeLog2; shift <= kMaxCellSizeLog2; ++shift) {
		uint32_t width = std::clamp(bdsOutputSize.width >> shift,
					    kMinGridWidth,
					    kMaxGridWidth);

		width = width << shift;
		uint32_t error = utils::abs_diff(width, bdsOutputSize.width);
		if (error >= minError)
			continue;

		minError = error;
		best.width = width;
		bestLog2.width = shift;
	}

	minError = std::numeric_limits<uint32_t>::max();
	for (uint32_t shift = kMinCellSizeLog2; shift <= kMaxCellSizeLog2; ++shift) {
		uint32_t height = std::clamp(bdsOutputSize.height >> shift,
					     kMinGridHeight,
					     kMaxGridHeight);

		height = height << shift;
		uint32_t error = utils::abs_diff(height, bdsOutputSize.height);
		if (error >= minError)
			continue;

		minError = error;
		best.height = height;
		bestLog2.height = shift;
	}

	struct ipu3_uapi_grid_config &bdsGrid = context_.configuration.grid.bdsGrid;
	bdsGrid.x_start = 0;
	bdsGrid.y_start = 0;
	bdsGrid.width = best.width >> bestLog2.width;
	bdsGrid.block_width_log2 = bestLog2.width;
	bdsGrid.height = best.height >> bestLog2.height;
	bdsGrid.block_height_log2 = bestLog2.height;

	/* The ImgU pads the lines to a multiple of 4 cells. */
	context_.configuration.grid.stride = utils::alignUp(bdsGrid.width, 4);

	LOG(IPAIPU3, Debug) << "Best grid found is: ("
			    << (int)bdsGrid.width << " << " << (int)bdsGrid.block_width_log2 << ") x ("
			    << (int)bdsGrid.height << " << " << (int)bdsGrid.block_height_log2 << ")";
}

/**
 * \brief Configure the IPU3 IPA
 * \param[in] configInfo The IPA configuration data, received from the pipeline
 * handler
 * \param[in] ipaControls The IPA controls to update
 *
 * Calculate the best grid for the statistics based on the pipeline handler BDS
 * output, and parse the minimum and maximum exposure and analogue gain control
 * values.
 *
 * \todo Document what the BDS is, ideally in a block diagram of the ImgU.
 *
 * All algorithm modules are called to allow them to prepare the
 * \a IPASessionConfiguration structure for the \a IPAContext.
 */
int IPAIPU3::configure(const IPAConfigInfo &configInfo,
		       ControlInfoMap *ipaControls)
{
	if (configInfo.sensorControls.empty()) {
		LOG(IPAIPU3, Error) << "No sensor controls provided";
		return -ENODATA;
	}

	sensorInfo_ = configInfo.sensorInfo;

	/*
	 * Compute the sensor V4L2 controls to be used by the algorithms and
	 * to be set on the sensor.
	 */
	ctrls_ = configInfo.sensorControls;

	const auto itExp = ctrls_.find(V4L2_CID_EXPOSURE);
	if (itExp == ctrls_.end()) {
		LOG(IPAIPU3, Error) << "Can't find exposure control";
		return -EINVAL;
	}

	const auto itGain = ctrls_.find(V4L2_CID_ANALOGUE_GAIN);
	if (itGain == ctrls_.end()) {
		LOG(IPAIPU3, Error) << "Can't find gain control";
		return -EINVAL;
	}

	const auto itVBlank = ctrls_.find(V4L2_CID_VBLANK);
	if (itVBlank == ctrls_.end()) {
		LOG(IPAIPU3, Error) << "Can't find VBLANK control";
		return -EINVAL;
	}

	minExposure_ = itExp->second.min().get<int32_t>();
	maxExposure_ = itExp->second.max().get<int32_t>();
	exposure_ = minExposure_;

	minGain_ = itGain->second.min().get<int32_t>();
	maxGain_ = itGain->second.max().get<int32_t>();
	gain_ = minGain_;

	defVBlank_ = itVBlank->second.def().get<int32_t>();

	/* Clean context at configuration */
	context_ = {};

	calculateBdsGrid(configInfo.bdsOutputSize);

	lineDuration_ = sensorInfo_.lineLength * 1.0s / sensorInfo_.pixelRate;

	/* Update the camera controls using the new sensor settings. */
	updateControls(sensorInfo_, ctrls_, ipaControls);

	/* Update the IPASessionConfiguration using the sensor settings. */
	updateSessionConfiguration(ctrls_);

	for (auto const &algo : algorithms_) {
		int ret = algo->configure(context_, configInfo);
		if (ret)
			return ret;
	}

	return 0;
}

/**
 * \brief Map the parameters and stats buffers allocated in the pipeline handler
 * \param[in] buffers The buffers to map
 */
void IPAIPU3::mapBuffers(const std::vector<IPABuffer> &buffers)
{
	for (const IPABuffer &buffer : buffers) {
		const FrameBuffer fb(buffer.planes);
		buffers_.emplace(buffer.id,
				 MappedFrameBuffer(&fb, MappedFrameBuffer::MapFlag::ReadWrite));
	}
}

/**
 * \brief Unmap the parameters and stats buffers
 * \param[in] ids The IDs of the buffers to unmap
 */
void IPAIPU3::unmapBuffers(const std::vector<unsigned int> &ids)
{
	for (unsigned int id : ids) {
		auto it = buffers_.find(id);
		if (it == buffers_.end())
			continue;

		buffers_.erase(it);
	}
}

/**
 * \brief Process an event generated by the pipeline handler
 * \param[in] event The event sent from pipeline handler
 *
 * The expected event handling over the lifetime of a Request has
 * the following sequence:
 *
 *   - EventProcessControls : Handle controls from a new Request
 *   - EventFillParams : Prepare the ISP to process the Request
 *   - EventStatReady : Process statistics after ISP completion
 */
void IPAIPU3::processEvent(const IPU3Event &event)
{
	switch (event.op) {
	case EventProcessControls: {
		processControls(event.frame, event.controls);
		break;
	}
	case EventFillParams: {
		auto it = buffers_.find(event.bufferId);
		if (it == buffers_.end()) {
			LOG(IPAIPU3, Error) << "Could not find param buffer!";
			return;
		}

		Span<uint8_t> mem = it->second.planes()[0];
		ipu3_uapi_params *params =
			reinterpret_cast<ipu3_uapi_params *>(mem.data());

		fillParams(event.frame, params);
		break;
	}
	case EventStatReady: {
		auto it = buffers_.find(event.bufferId);
		if (it == buffers_.end()) {
			LOG(IPAIPU3, Error) << "Could not find stats buffer!";
			return;
		}

		Span<uint8_t> mem = it->second.planes()[0];
		const ipu3_uapi_stats_3a *stats =
			reinterpret_cast<ipu3_uapi_stats_3a *>(mem.data());

		context_.frameContext.sensor.exposure = event.sensorControls.get(V4L2_CID_EXPOSURE).get<int32_t>();
		context_.frameContext.sensor.gain = camHelper_->gain(event.sensorControls.get(V4L2_CID_ANALOGUE_GAIN).get<int32_t>());

		parseStatistics(event.frame, event.frameTimestamp, stats);
		break;
	}
	default:
		LOG(IPAIPU3, Error) << "Unknown event " << event.op;
		break;
	}
}

/**
 * \brief Process a control list for a request from the application
 * \param[in] frame The number of the frame which will be processed next
 * \param[in] controls The controls for the \a frame
 *
 * Parse the request to handle any IPA-managed controls that were set from the
 * application such as manual sensor settings.
 */
void IPAIPU3::processControls([[maybe_unused]] unsigned int frame,
			      [[maybe_unused]] const ControlList &controls)
{
	/* \todo Start processing for 'frame' based on 'controls'. */
}

/**
 * \brief Fill the ImgU parameter buffer for the next frame
 * \param[in] frame The number of the latest frame processed
 * \param[out] params The parameter buffer to fill
 *
 * Algorithms are expected to fill the IPU3 parameter buffer for the next
 * frame given their most recent processing of the ImgU statistics.
 */
void IPAIPU3::fillParams(unsigned int frame, ipu3_uapi_params *params)
{
	/*
	 * The incoming params buffer may contain uninitialised data, or the
	 * parameters of previously queued frames. Clearing the entire buffer
	 * may be an expensive operation, and the kernel will only read from
	 * structures which have their associated use-flag set.
	 *
	 * It is the responsibility of the algorithms to set the use flags
	 * accordingly for any data structure they update during prepare().
	 */
	params->use = {};

	for (auto const &algo : algorithms_)
		algo->prepare(context_, params);

	IPU3Action op;
	op.op = ActionParamFilled;

	queueFrameAction.emit(frame, op);
}

/**
 * \brief Process the statistics generated by the ImgU
 * \param[in] frame The number of the latest frame processed
 * \param[in] frameTimestamp The current frame timestamp
 * \param[in] stats The IPU3 statistics and ISP results
 *
 * Parse the most recently processed image statistics from the ImgU. The
 * statistics are passed to each algorithm module to run their calculations and
 * update their state accordingly.
 */
void IPAIPU3::parseStatistics(unsigned int frame,
			      [[maybe_unused]] int64_t frameTimestamp,
			      const ipu3_uapi_stats_3a *stats)
{
	ControlList ctrls(controls::controls);

	for (auto const &algo : algorithms_)
		algo->process(context_, stats);

	setControls(frame);

	/* \todo Use VBlank value calculated from each frame exposure. */
	int64_t frameDuration = (defVBlank_ + sensorInfo_.outputSize.height) * lineDuration_.get<std::micro>();
	ctrls.set(controls::FrameDuration, frameDuration);

	ctrls.set(controls::AnalogueGain, context_.frameContext.sensor.gain);

	ctrls.set(controls::ColourTemperature, context_.frameContext.awb.temperatureK);

	ctrls.set(controls::ExposureTime, context_.frameContext.sensor.exposure * lineDuration_.get<std::micro>());

	/*
	 * \todo The Metadata provides a path to getting extended data
	 * out to the application. Further data such as a simplifed Histogram
	 * might have value to be exposed, however such data may be
	 * difficult to report in a generically parsable way and we
	 * likely want to avoid putting platform specific metadata in.
	 */

	IPU3Action op;
	op.op = ActionMetadataReady;
	op.controls = ctrls;

	queueFrameAction.emit(frame, op);
}

/**
 * \brief Handle sensor controls for a given \a frame number
 * \param[in] frame The frame on which the sensor controls should be set
 *
 * Send the desired sensor control values to the pipeline handler to request
 * that they are applied on the camera sensor.
 */
void IPAIPU3::setControls(unsigned int frame)
{
	IPU3Action op;
	op.op = ActionSetSensorControls;

	exposure_ = context_.frameContext.agc.exposure;
	gain_ = camHelper_->gainCode(context_.frameContext.agc.gain);

	ControlList ctrls(ctrls_);
	ctrls.set(V4L2_CID_EXPOSURE, static_cast<int32_t>(exposure_));
	ctrls.set(V4L2_CID_ANALOGUE_GAIN, static_cast<int32_t>(gain_));
	op.sensorControls = ctrls;

	queueFrameAction.emit(frame, op);
}

} /* namespace ipa::ipu3 */

/**
 * \brief External IPA module interface
 *
 * The IPAModuleInfo is required to match an IPA module construction against the
 * intented pipeline handler with the module. The API and pipeline handler
 * versions must match the corresponding IPA interface and pipeline handler.
 *
 * \sa struct IPAModuleInfo
 */
extern "C" {
const struct IPAModuleInfo ipaModuleInfo = {
	IPA_MODULE_API_VERSION,
	1,
	"PipelineHandlerIPU3",
	"ipu3",
};

/**
 * \brief Create an instance of the IPA interface
 *
 * This function is the entry point of the IPA module. It is called by the IPA
 * manager to create an instance of the IPA interface for each camera. When
 * matched against with a pipeline handler, the IPAManager will construct an IPA
 * instance for each associated Camera.
 */
IPAInterface *ipaCreate()
{
	return new ipa::ipu3::IPAIPU3();
}
}

} /* namespace libcamera */