summaryrefslogtreecommitdiff
path: root/src/qcam/assets/feathericons/upload.svg
diff options
context:
space:
mode:
Diffstat (limited to 'src/qcam/assets/feathericons/upload.svg')
0 files changed, 0 insertions, 0 deletions
f='#n48'>48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
#
# ctt_ccm.py - camera tuning tool for CCM (colour correction matrix)

from ctt_image_load import *
from ctt_awb import get_alsc_patches


"""
takes 8-bit macbeth chart values, degammas and returns 16 bit
"""
def degamma(x):
    x = x / ((2**8)-1)
    x = np.where(x < 0.04045, x/12.92, ((x+0.055)/1.055)**2.4)
    x = x * ((2**16)-1)
    return x


"""
FInds colour correction matrices for list of images
"""
def ccm(Cam, cal_cr_list, cal_cb_list):
    imgs = Cam.imgs
    """
    standard macbeth chart colour values
    """
    m_rgb = np.array([  # these are in sRGB
        [116, 81, 67],    # dark skin
        [199, 147, 129],  # light skin
        [91, 122, 156],   # blue sky
        [90, 108, 64],    # foliage
        [130, 128, 176],  # blue flower
        [92, 190, 172],   # bluish green
        [224, 124, 47],   # orange
        [68, 91, 170],     # purplish blue
        [198, 82, 97],    # moderate red
        [94, 58, 106],    # purple
        [159, 189, 63],   # yellow green
        [230, 162, 39],   # orange yellow
        [35, 63, 147],    # blue
        [67, 149, 74],    # green
        [180, 49, 57],    # red
        [238, 198, 20],   # yellow
        [193, 84, 151],   # magenta
        [0, 136, 170],    # cyan (goes out of gamut)
        [245, 245, 243],  # white 9.5
        [200, 202, 202],  # neutral 8
        [161, 163, 163],  # neutral 6.5
        [121, 121, 122],  # neutral 5
        [82, 84, 86],     # neutral 3.5
        [49, 49, 51]      # black 2
    ])

    """
    convert reference colours from srgb to rgb
    """
    m_srgb = degamma(m_rgb)
    """
    reorder reference values to match how patches are ordered
    """
    m_srgb = np.array([m_srgb[i::6] for i in range(6)]).reshape((24, 3))

    """
    reformat alsc correction tables or set colour_cals to None if alsc is
    deactivated
    """
    if cal_cr_list is None:
        colour_cals = None
    else:
        colour_cals = {}
        for cr, cb in zip(cal_cr_list, cal_cb_list):
            cr_tab = cr['table']
            cb_tab = cb['table']
            """
            normalise tables so min value is 1
            """
            cr_tab = cr_tab/np.min(cr_tab)
            cb_tab = cb_tab/np.min(cb_tab)
            colour_cals[cr['ct']] = [cr_tab, cb_tab]

    """
    for each image, perform awb and alsc corrections.
    Then calculate the colour correction matrix for that image, recording the
    ccm and the colour tempertaure.
    """
    ccm_tab = {}
    for Img in imgs:
        Cam.log += '\nProcessing image: ' + Img.name
        """
        get macbeth patches with alsc applied if alsc enabled.
        Note: if alsc is disabled then colour_cals will be set to None and no
        the function will simply return the macbeth patches
        """
        r, b, g = get_alsc_patches(Img, colour_cals, grey=False)
        """
        do awb
        Note: awb is done by measuring the macbeth chart in the image, rather
        than from the awb calibration. This is done so the awb will be perfect
        and the ccm matrices will be more accurate.
        """
        r_greys, b_greys, g_greys = r[3::4], b[3::4], g[3::4]
        r_g = np.mean(r_greys/g_greys)
        b_g = np.mean(b_greys/g_greys)
        r = r / r_g
        b = b / b_g

        """
        normalise brightness wrt reference macbeth colours and then average
        each channel for each patch
        """
        gain = np.mean(m_srgb)/np.mean((r, g, b))
        Cam.log += '\nGain with respect to standard colours: {:.3f}'.format(gain)