diff options
Diffstat (limited to 'src/libcamera/pipeline/rpi/common/pipeline_base.cpp')
-rw-r--r-- | src/libcamera/pipeline/rpi/common/pipeline_base.cpp | 1480 |
1 files changed, 1480 insertions, 0 deletions
diff --git a/src/libcamera/pipeline/rpi/common/pipeline_base.cpp b/src/libcamera/pipeline/rpi/common/pipeline_base.cpp new file mode 100644 index 00000000..69c67acd --- /dev/null +++ b/src/libcamera/pipeline/rpi/common/pipeline_base.cpp @@ -0,0 +1,1480 @@ +/* SPDX-License-Identifier: LGPL-2.1-or-later */ +/* + * Copyright (C) 2019-2023, Raspberry Pi Ltd + * + * pipeline_base.cpp - Pipeline handler base class for Raspberry Pi devices + */ + +#include "pipeline_base.h" + +#include <chrono> + +#include <linux/media-bus-format.h> +#include <linux/videodev2.h> + +#include <libcamera/base/file.h> +#include <libcamera/base/utils.h> + +#include <libcamera/formats.h> +#include <libcamera/logging.h> +#include <libcamera/property_ids.h> + +#include "libcamera/internal/camera_lens.h" +#include "libcamera/internal/ipa_manager.h" +#include "libcamera/internal/v4l2_subdevice.h" + +using namespace std::chrono_literals; + +namespace libcamera { + +using namespace RPi; + +LOG_DEFINE_CATEGORY(RPI) + +namespace { + +constexpr unsigned int defaultRawBitDepth = 12; + +bool isRaw(const PixelFormat &pixFmt) +{ + /* This test works for both Bayer and raw mono formats. */ + return BayerFormat::fromPixelFormat(pixFmt).isValid(); +} + +PixelFormat mbusCodeToPixelFormat(unsigned int mbus_code, + BayerFormat::Packing packingReq) +{ + BayerFormat bayer = BayerFormat::fromMbusCode(mbus_code); + + ASSERT(bayer.isValid()); + + bayer.packing = packingReq; + PixelFormat pix = bayer.toPixelFormat(); + + /* + * Not all formats (e.g. 8-bit or 16-bit Bayer formats) can have packed + * variants. So if the PixelFormat returns as invalid, use the non-packed + * conversion instead. + */ + if (!pix.isValid()) { + bayer.packing = BayerFormat::Packing::None; + pix = bayer.toPixelFormat(); + } + + return pix; +} + +SensorFormats populateSensorFormats(std::unique_ptr<CameraSensor> &sensor) +{ + SensorFormats formats; + + for (auto const mbusCode : sensor->mbusCodes()) + formats.emplace(mbusCode, sensor->sizes(mbusCode)); + + return formats; +} + +bool isMonoSensor(std::unique_ptr<CameraSensor> &sensor) +{ + unsigned int mbusCode = sensor->mbusCodes()[0]; + const BayerFormat &bayer = BayerFormat::fromMbusCode(mbusCode); + + return bayer.order == BayerFormat::Order::MONO; +} + +double scoreFormat(double desired, double actual) +{ + double score = desired - actual; + /* Smaller desired dimensions are preferred. */ + if (score < 0.0) + score = (-score) / 8; + /* Penalise non-exact matches. */ + if (actual != desired) + score *= 2; + + return score; +} + +V4L2SubdeviceFormat findBestFormat(const SensorFormats &formatsMap, const Size &req, unsigned int bitDepth) +{ + double bestScore = std::numeric_limits<double>::max(), score; + V4L2SubdeviceFormat bestFormat; + bestFormat.colorSpace = ColorSpace::Raw; + + constexpr float penaltyAr = 1500.0; + constexpr float penaltyBitDepth = 500.0; + + /* Calculate the closest/best mode from the user requested size. */ + for (const auto &iter : formatsMap) { + const unsigned int mbusCode = iter.first; + const PixelFormat format = mbusCodeToPixelFormat(mbusCode, + BayerFormat::Packing::None); + const PixelFormatInfo &info = PixelFormatInfo::info(format); + + for (const Size &size : iter.second) { + double reqAr = static_cast<double>(req.width) / req.height; + double fmtAr = static_cast<double>(size.width) / size.height; + + /* Score the dimensions for closeness. */ + score = scoreFormat(req.width, size.width); + score += scoreFormat(req.height, size.height); + score += penaltyAr * scoreFormat(reqAr, fmtAr); + + /* Add any penalties... this is not an exact science! */ + score += utils::abs_diff(info.bitsPerPixel, bitDepth) * penaltyBitDepth; + + if (score <= bestScore) { + bestScore = score; + bestFormat.mbus_code = mbusCode; + bestFormat.size = size; + } + + LOG(RPI, Debug) << "Format: " << size + << " fmt " << format + << " Score: " << score + << " (best " << bestScore << ")"; + } + } + + return bestFormat; +} + +const std::vector<ColorSpace> validColorSpaces = { + ColorSpace::Sycc, + ColorSpace::Smpte170m, + ColorSpace::Rec709 +}; + +std::optional<ColorSpace> findValidColorSpace(const ColorSpace &colourSpace) +{ + for (auto cs : validColorSpaces) { + if (colourSpace.primaries == cs.primaries && + colourSpace.transferFunction == cs.transferFunction) + return cs; + } + + return std::nullopt; +} + +bool isRgb(const PixelFormat &pixFmt) +{ + const PixelFormatInfo &info = PixelFormatInfo::info(pixFmt); + return info.colourEncoding == PixelFormatInfo::ColourEncodingRGB; +} + +bool isYuv(const PixelFormat &pixFmt) +{ + /* The code below would return true for raw mono streams, so weed those out first. */ + if (isRaw(pixFmt)) + return false; + + const PixelFormatInfo &info = PixelFormatInfo::info(pixFmt); + return info.colourEncoding == PixelFormatInfo::ColourEncodingYUV; +} + +} /* namespace */ + +/* + * Raspberry Pi drivers expect the following colour spaces: + * - V4L2_COLORSPACE_RAW for raw streams. + * - One of V4L2_COLORSPACE_JPEG, V4L2_COLORSPACE_SMPTE170M, V4L2_COLORSPACE_REC709 for + * non-raw streams. Other fields such as transfer function, YCbCr encoding and + * quantisation are not used. + * + * The libcamera colour spaces that we wish to use corresponding to these are therefore: + * - ColorSpace::Raw for V4L2_COLORSPACE_RAW + * - ColorSpace::Sycc for V4L2_COLORSPACE_JPEG + * - ColorSpace::Smpte170m for V4L2_COLORSPACE_SMPTE170M + * - ColorSpace::Rec709 for V4L2_COLORSPACE_REC709 + */ +CameraConfiguration::Status RPiCameraConfiguration::validateColorSpaces([[maybe_unused]] ColorSpaceFlags flags) +{ + Status status = Valid; + yuvColorSpace_.reset(); + + for (auto cfg : config_) { + /* First fix up raw streams to have the "raw" colour space. */ + if (isRaw(cfg.pixelFormat)) { + /* If there was no value here, that doesn't count as "adjusted". */ + if (cfg.colorSpace && cfg.colorSpace != ColorSpace::Raw) + status = Adjusted; + cfg.colorSpace = ColorSpace::Raw; + continue; + } + + /* Next we need to find our shared colour space. The first valid one will do. */ + if (cfg.colorSpace && !yuvColorSpace_) + yuvColorSpace_ = findValidColorSpace(cfg.colorSpace.value()); + } + + /* If no colour space was given anywhere, choose sYCC. */ + if (!yuvColorSpace_) + yuvColorSpace_ = ColorSpace::Sycc; + + /* Note the version of this that any RGB streams will have to use. */ + rgbColorSpace_ = yuvColorSpace_; + rgbColorSpace_->ycbcrEncoding = ColorSpace::YcbcrEncoding::None; + rgbColorSpace_->range = ColorSpace::Range::Full; + + /* Go through the streams again and force everyone to the same colour space. */ + for (auto cfg : config_) { + if (cfg.colorSpace == ColorSpace::Raw) + continue; + + if (isYuv(cfg.pixelFormat) && cfg.colorSpace != yuvColorSpace_) { + /* Again, no value means "not adjusted". */ + if (cfg.colorSpace) + status = Adjusted; + cfg.colorSpace = yuvColorSpace_; + } + if (isRgb(cfg.pixelFormat) && cfg.colorSpace != rgbColorSpace_) { + /* Be nice, and let the YUV version count as non-adjusted too. */ + if (cfg.colorSpace && cfg.colorSpace != yuvColorSpace_) + status = Adjusted; + cfg.colorSpace = rgbColorSpace_; + } + } + + return status; +} + +CameraConfiguration::Status RPiCameraConfiguration::validate() +{ + Status status = Valid; + + if (config_.empty()) + return Invalid; + + status = validateColorSpaces(ColorSpaceFlag::StreamsShareColorSpace); + + /* + * Validate the requested transform against the sensor capabilities and + * rotation and store the final combined transform that configure() will + * need to apply to the sensor to save us working it out again. + */ + Transform requestedTransform = transform; + combinedTransform_ = data_->sensor_->validateTransform(&transform); + if (transform != requestedTransform) + status = Adjusted; + + std::vector<CameraData::StreamParams> rawStreams, outStreams; + for (const auto &[index, cfg] : utils::enumerate(config_)) { + if (isRaw(cfg.pixelFormat)) + rawStreams.emplace_back(index, &cfg); + else + outStreams.emplace_back(index, &cfg); + } + + /* Sort the streams so the highest resolution is first. */ + std::sort(rawStreams.begin(), rawStreams.end(), + [](auto &l, auto &r) { return l.cfg->size > r.cfg->size; }); + + std::sort(outStreams.begin(), outStreams.end(), + [](auto &l, auto &r) { return l.cfg->size > r.cfg->size; }); + + /* Do any platform specific fixups. */ + status = data_->platformValidate(rawStreams, outStreams); + if (status == Invalid) + return Invalid; + + /* Further fixups on the RAW streams. */ + for (auto &raw : rawStreams) { + StreamConfiguration &cfg = config_.at(raw.index); + V4L2DeviceFormat rawFormat; + + const PixelFormatInfo &info = PixelFormatInfo::info(cfg.pixelFormat); + unsigned int bitDepth = info.isValid() ? info.bitsPerPixel : defaultRawBitDepth; + V4L2SubdeviceFormat sensorFormat = findBestFormat(data_->sensorFormats_, cfg.size, bitDepth); + + rawFormat.size = sensorFormat.size; + rawFormat.fourcc = raw.dev->toV4L2PixelFormat(cfg.pixelFormat); + + int ret = raw.dev->tryFormat(&rawFormat); + if (ret) + return Invalid; + /* + * Some sensors change their Bayer order when they are h-flipped + * or v-flipped, according to the transform. If this one does, we + * must advertise the transformed Bayer order in the raw stream. + * Note how we must fetch the "native" (i.e. untransformed) Bayer + * order, because the sensor may currently be flipped! + */ + V4L2PixelFormat fourcc = rawFormat.fourcc; + if (data_->flipsAlterBayerOrder_) { + BayerFormat bayer = BayerFormat::fromV4L2PixelFormat(fourcc); + bayer.order = data_->nativeBayerOrder_; + bayer = bayer.transform(combinedTransform_); + fourcc = bayer.toV4L2PixelFormat(); + } + + PixelFormat inputPixFormat = fourcc.toPixelFormat(); + if (raw.cfg->size != rawFormat.size || raw.cfg->pixelFormat != inputPixFormat) { + raw.cfg->size = rawFormat.size; + raw.cfg->pixelFormat = inputPixFormat; + status = Adjusted; + } + + raw.cfg->stride = rawFormat.planes[0].bpl; + raw.cfg->frameSize = rawFormat.planes[0].size; + } + + /* Further fixups on the ISP output streams. */ + for (auto &out : outStreams) { + StreamConfiguration &cfg = config_.at(out.index); + PixelFormat &cfgPixFmt = cfg.pixelFormat; + V4L2VideoDevice::Formats fmts = out.dev->formats(); + + if (fmts.find(out.dev->toV4L2PixelFormat(cfgPixFmt)) == fmts.end()) { + /* If we cannot find a native format, use a default one. */ + cfgPixFmt = formats::NV12; + status = Adjusted; + } + + V4L2DeviceFormat format; + format.fourcc = out.dev->toV4L2PixelFormat(cfg.pixelFormat); + format.size = cfg.size; + /* We want to send the associated YCbCr info through to the driver. */ + format.colorSpace = yuvColorSpace_; + + LOG(RPI, Debug) + << "Try color space " << ColorSpace::toString(cfg.colorSpace); + + int ret = out.dev->tryFormat(&format); + if (ret) + return Invalid; + + /* + * But for RGB streams, the YCbCr info gets overwritten on the way back + * so we must check against what the stream cfg says, not what we actually + * requested (which carefully included the YCbCr info)! + */ + if (cfg.colorSpace != format.colorSpace) { + status = Adjusted; + LOG(RPI, Debug) + << "Color space changed from " + << ColorSpace::toString(cfg.colorSpace) << " to " + << ColorSpace::toString(format.colorSpace); + } + + cfg.colorSpace = format.colorSpace; + cfg.stride = format.planes[0].bpl; + cfg.frameSize = format.planes[0].size; + } + + return status; +} + +V4L2DeviceFormat PipelineHandlerBase::toV4L2DeviceFormat(const V4L2VideoDevice *dev, + const V4L2SubdeviceFormat &format, + BayerFormat::Packing packingReq) +{ + unsigned int mbus_code = format.mbus_code; + const PixelFormat pix = mbusCodeToPixelFormat(mbus_code, packingReq); + V4L2DeviceFormat deviceFormat; + + deviceFormat.fourcc = dev->toV4L2PixelFormat(pix); + deviceFormat.size = format.size; + deviceFormat.colorSpace = format.colorSpace; + return deviceFormat; +} + +std::unique_ptr<CameraConfiguration> +PipelineHandlerBase::generateConfiguration(Camera *camera, const StreamRoles &roles) +{ + CameraData *data = cameraData(camera); + std::unique_ptr<CameraConfiguration> config = + std::make_unique<RPiCameraConfiguration>(data); + V4L2SubdeviceFormat sensorFormat; + unsigned int bufferCount; + PixelFormat pixelFormat; + V4L2VideoDevice::Formats fmts; + Size size; + std::optional<ColorSpace> colorSpace; + + if (roles.empty()) + return config; + + Size sensorSize = data->sensor_->resolution(); + for (const StreamRole role : roles) { + switch (role) { + case StreamRole::Raw: + size = sensorSize; + sensorFormat = findBestFormat(data->sensorFormats_, size, defaultRawBitDepth); + pixelFormat = mbusCodeToPixelFormat(sensorFormat.mbus_code, + BayerFormat::Packing::CSI2); + ASSERT(pixelFormat.isValid()); + colorSpace = ColorSpace::Raw; + bufferCount = 2; + break; + + case StreamRole::StillCapture: + fmts = data->ispFormats(); + pixelFormat = formats::NV12; + /* + * Still image codecs usually expect the sYCC color space. + * Even RGB codecs will be fine as the RGB we get with the + * sYCC color space is the same as sRGB. + */ + colorSpace = ColorSpace::Sycc; + /* Return the largest sensor resolution. */ + size = sensorSize; + bufferCount = 1; + break; + + case StreamRole::VideoRecording: + /* + * The colour denoise algorithm requires the analysis + * image, produced by the second ISP output, to be in + * YUV420 format. Select this format as the default, to + * maximize chances that it will be picked by + * applications and enable usage of the colour denoise + * algorithm. + */ + fmts = data->ispFormats(); + pixelFormat = formats::YUV420; + /* + * Choose a color space appropriate for video recording. + * Rec.709 will be a good default for HD resolutions. + */ + colorSpace = ColorSpace::Rec709; + size = { 1920, 1080 }; + bufferCount = 4; + break; + + case StreamRole::Viewfinder: + fmts = data->ispFormats(); + pixelFormat = formats::ARGB8888; + colorSpace = ColorSpace::Sycc; + size = { 800, 600 }; + bufferCount = 4; + break; + + default: + LOG(RPI, Error) << "Requested stream role not supported: " + << role; + return nullptr; + } + + std::map<PixelFormat, std::vector<SizeRange>> deviceFormats; + if (role == StreamRole::Raw) { + /* Translate the MBUS codes to a PixelFormat. */ + for (const auto &format : data->sensorFormats_) { + PixelFormat pf = mbusCodeToPixelFormat(format.first, + BayerFormat::Packing::CSI2); + if (pf.isValid()) + deviceFormats.emplace(std::piecewise_construct, std::forward_as_tuple(pf), + std::forward_as_tuple(format.second.begin(), format.second.end())); + } + } else { + /* + * Translate the V4L2PixelFormat to PixelFormat. Note that we + * limit the recommended largest ISP output size to match the + * sensor resolution. + */ + for (const auto &format : fmts) { + PixelFormat pf = format.first.toPixelFormat(); + if (pf.isValid()) { + const SizeRange &ispSizes = format.second[0]; + deviceFormats[pf].emplace_back(ispSizes.min, sensorSize, + ispSizes.hStep, ispSizes.vStep); + } + } + } + + /* Add the stream format based on the device node used for the use case. */ + StreamFormats formats(deviceFormats); + StreamConfiguration cfg(formats); + cfg.size = size; + cfg.pixelFormat = pixelFormat; + cfg.colorSpace = colorSpace; + cfg.bufferCount = bufferCount; + config->addConfiguration(cfg); + } + + config->validate(); + + return config; +} + +int PipelineHandlerBase::configure(Camera *camera, CameraConfiguration *config) +{ + CameraData *data = cameraData(camera); + int ret; + + /* Start by freeing all buffers and reset the stream states. */ + data->freeBuffers(); + for (auto const stream : data->streams_) + stream->setExternal(false); + + std::vector<CameraData::StreamParams> rawStreams, ispStreams; + std::optional<BayerFormat::Packing> packing; + unsigned int bitDepth = defaultRawBitDepth; + + for (unsigned i = 0; i < config->size(); i++) { + StreamConfiguration *cfg = &config->at(i); + + if (isRaw(cfg->pixelFormat)) + rawStreams.emplace_back(i, cfg); + else + ispStreams.emplace_back(i, cfg); + } + + /* Sort the streams so the highest resolution is first. */ + std::sort(rawStreams.begin(), rawStreams.end(), + [](auto &l, auto &r) { return l.cfg->size > r.cfg->size; }); + + std::sort(ispStreams.begin(), ispStreams.end(), + [](auto &l, auto &r) { return l.cfg->size > r.cfg->size; }); + + /* + * Calculate the best sensor mode we can use based on the user's request, + * and apply it to the sensor with the cached tranform, if any. + * + * If we have been given a RAW stream, use that size for setting up the sensor. + */ + if (!rawStreams.empty()) { + BayerFormat bayerFormat = BayerFormat::fromPixelFormat(rawStreams[0].cfg->pixelFormat); + /* Replace the user requested packing/bit-depth. */ + packing = bayerFormat.packing; + bitDepth = bayerFormat.bitDepth; + } + + V4L2SubdeviceFormat sensorFormat = findBestFormat(data->sensorFormats_, + rawStreams.empty() ? ispStreams[0].cfg->size + : rawStreams[0].cfg->size, + bitDepth); + /* Apply any cached transform. */ + const RPiCameraConfiguration *rpiConfig = static_cast<const RPiCameraConfiguration *>(config); + + /* Then apply the format on the sensor. */ + ret = data->sensor_->setFormat(&sensorFormat, rpiConfig->combinedTransform_); + if (ret) + return ret; + + /* + * Platform specific internal stream configuration. This also assigns + * external streams which get configured below. + */ + ret = data->platformConfigure(sensorFormat, packing, rawStreams, ispStreams); + if (ret) + return ret; + + ipa::RPi::ConfigResult result; + ret = data->configureIPA(config, &result); + if (ret) { + LOG(RPI, Error) << "Failed to configure the IPA: " << ret; + return ret; + } + + /* + * Set the scaler crop to the value we are using (scaled to native sensor + * coordinates). + */ + data->scalerCrop_ = data->scaleIspCrop(data->ispCrop_); + + /* + * Update the ScalerCropMaximum to the correct value for this camera mode. + * For us, it's the same as the "analogue crop". + * + * \todo Make this property the ScalerCrop maximum value when dynamic + * controls are available and set it at validate() time + */ + data->properties_.set(properties::ScalerCropMaximum, data->sensorInfo_.analogCrop); + + /* Store the mode sensitivity for the application. */ + data->properties_.set(properties::SensorSensitivity, result.modeSensitivity); + + /* Update the controls that the Raspberry Pi IPA can handle. */ + ControlInfoMap::Map ctrlMap; + for (auto const &c : result.controlInfo) + ctrlMap.emplace(c.first, c.second); + + /* Add the ScalerCrop control limits based on the current mode. */ + Rectangle ispMinCrop = data->scaleIspCrop(Rectangle(data->ispMinCropSize_)); + ctrlMap[&controls::ScalerCrop] = ControlInfo(ispMinCrop, data->sensorInfo_.analogCrop, data->scalerCrop_); + + data->controlInfo_ = ControlInfoMap(std::move(ctrlMap), result.controlInfo.idmap()); + + /* Setup the Video Mux/Bridge entities. */ + for (auto &[device, link] : data->bridgeDevices_) { + /* + * Start by disabling all the sink pad links on the devices in the + * cascade, with the exception of the link connecting the device. + */ + for (const MediaPad *p : device->entity()->pads()) { + if (!(p->flags() & MEDIA_PAD_FL_SINK)) + continue; + + for (MediaLink *l : p->links()) { + if (l != link) + l->setEnabled(false); + } + } + + /* + * Next, enable the entity -> entity links, and setup the pad format. + * + * \todo Some bridge devices may chainge the media bus code, so we + * ought to read the source pad format and propagate it to the sink pad. + */ + link->setEnabled(true); + const MediaPad *sinkPad = link->sink(); + ret = device->setFormat(sinkPad->index(), &sensorFormat); + if (ret) { + LOG(RPI, Error) << "Failed to set format on " << device->entity()->name() + << " pad " << sinkPad->index() + << " with format " << sensorFormat + << ": " << ret; + return ret; + } + + LOG(RPI, Debug) << "Configured media link on device " << device->entity()->name() + << " on pad " << sinkPad->index(); + } + + return 0; +} + +int PipelineHandlerBase::exportFrameBuffers([[maybe_unused]] Camera *camera, libcamera::Stream *stream, + std::vector<std::unique_ptr<FrameBuffer>> *buffers) +{ + RPi::Stream *s = static_cast<RPi::Stream *>(stream); + unsigned int count = stream->configuration().bufferCount; + int ret = s->dev()->exportBuffers(count, buffers); + + s->setExportedBuffers(buffers); + + return ret; +} + +int PipelineHandlerBase::start(Camera *camera, const ControlList *controls) +{ + CameraData *data = cameraData(camera); + int ret; + + /* Check if a ScalerCrop control was specified. */ + if (controls) + data->applyScalerCrop(*controls); + + /* Start the IPA. */ + ipa::RPi::StartResult result; + data->ipa_->start(controls ? *controls : ControlList{ controls::controls }, + &result); + + /* Apply any gain/exposure settings that the IPA may have passed back. */ + if (!result.controls.empty()) + data->setSensorControls(result.controls); + + /* Configure the number of dropped frames required on startup. */ + data->dropFrameCount_ = data->config_.disableStartupFrameDrops + ? 0 : result.dropFrameCount; + + for (auto const stream : data->streams_) + stream->resetBuffers(); + + if (!data->buffersAllocated_) { + /* Allocate buffers for internal pipeline usage. */ + ret = prepareBuffers(camera); + if (ret) { + LOG(RPI, Error) << "Failed to allocate buffers"; + data->freeBuffers(); + stop(camera); + return ret; + } + data->buffersAllocated_ = true; + } + + /* We need to set the dropFrameCount_ before queueing buffers. */ + ret = queueAllBuffers(camera); + if (ret) { + LOG(RPI, Error) << "Failed to queue buffers"; + stop(camera); + return ret; + } + + /* + * Reset the delayed controls with the gain and exposure values set by + * the IPA. + */ + data->delayedCtrls_->reset(0); + data->state_ = CameraData::State::Idle; + + /* Enable SOF event generation. */ + data->frontendDevice()->setFrameStartEnabled(true); + + data->platformStart(); + + /* Start all streams. */ + for (auto const stream : data->streams_) { + ret = stream->dev()->streamOn(); + if (ret) { + stop(camera); + return ret; + } + } + + return 0; +} + +void PipelineHandlerBase::stopDevice(Camera *camera) +{ + CameraData *data = cameraData(camera); + + data->state_ = CameraData::State::Stopped; + data->platformStop(); + + for (auto const stream : data->streams_) + stream->dev()->streamOff(); + + /* Disable SOF event generation. */ + data->frontendDevice()->setFrameStartEnabled(false); + + data->clearIncompleteRequests(); + + /* Stop the IPA. */ + data->ipa_->stop(); +} + +void PipelineHandlerBase::releaseDevice(Camera *camera) +{ + CameraData *data = cameraData(camera); + data->freeBuffers(); +} + +int PipelineHandlerBase::queueRequestDevice(Camera *camera, Request *request) +{ + CameraData *data = cameraData(camera); + + if (!data->isRunning()) + return -EINVAL; + + LOG(RPI, Debug) << "queueRequestDevice: New request."; + + /* Push all buffers supplied in the Request to the respective streams. */ + for (auto stream : data->streams_) { + if (!stream->isExternal()) + continue; + + FrameBuffer *buffer = request->findBuffer(stream); + if (buffer && !stream->getBufferId(buffer)) { + /* + * This buffer is not recognised, so it must have been allocated + * outside the v4l2 device. Store it in the stream buffer list + * so we can track it. + */ + stream->setExternalBuffer(buffer); + } + + /* + * If no buffer is provided by the request for this stream, we + * queue a nullptr to the stream to signify that it must use an + * internally allocated buffer for this capture request. This + * buffer will not be given back to the application, but is used + * to support the internal pipeline flow. + * + * The below queueBuffer() call will do nothing if there are not + * enough internal buffers allocated, but this will be handled by + * queuing the request for buffers in the RPiStream object. + */ + int ret = stream->queueBuffer(buffer); + if (ret) + return ret; + } + + /* Push the request to the back of the queue. */ + data->requestQueue_.push(request); + data->handleState(); + + return 0; +} + +int PipelineHandlerBase::registerCamera(std::unique_ptr<RPi::CameraData> &cameraData, + MediaDevice *frontend, const std::string &frontendName, + MediaDevice *backend, MediaEntity *sensorEntity) +{ + CameraData *data = cameraData.get(); + int ret; + + data->sensor_ = std::make_unique<CameraSensor>(sensorEntity); + if (!data->sensor_) + return -EINVAL; + + if (data->sensor_->init()) + return -EINVAL; + + data->sensorFormats_ = populateSensorFormats(data->sensor_); + + /* + * Enumerate all the Video Mux/Bridge devices across the sensor -> Fr + * chain. There may be a cascade of devices in this chain! + */ + MediaLink *link = sensorEntity->getPadByIndex(0)->links()[0]; + data->enumerateVideoDevices(link, frontendName); + + ipa::RPi::InitResult result; + if (data->loadIPA(&result)) { + LOG(RPI, Error) << "Failed to load a suitable IPA library"; + return -EINVAL; + } + + /* + * Setup our delayed control writer with the sensor default + * gain and exposure delays. Mark VBLANK for priority write. + */ + std::unordered_map<uint32_t, RPi::DelayedControls::ControlParams> params = { + { V4L2_CID_ANALOGUE_GAIN, { result.sensorConfig.gainDelay, false } }, + { V4L2_CID_EXPOSURE, { result.sensorConfig.exposureDelay, false } }, + { V4L2_CID_HBLANK, { result.sensorConfig.hblankDelay, false } }, + { V4L2_CID_VBLANK, { result.sensorConfig.vblankDelay, true } } + }; + data->delayedCtrls_ = std::make_unique<RPi::DelayedControls>(data->sensor_->device(), params); + data->sensorMetadata_ = result.sensorConfig.sensorMetadata; + + /* Register initial controls that the Raspberry Pi IPA can handle. */ + data->controlInfo_ = std::move(result.controlInfo); + + /* Initialize the camera properties. */ + data->properties_ = data->sensor_->properties(); + + /* + * The V4L2_CID_NOTIFY_GAINS control, if present, is used to inform the + * sensor of the colour gains. It is defined to be a linear gain where + * the default value represents a gain of exactly one. + */ + auto it = data->sensor_->controls().find(V4L2_CID_NOTIFY_GAINS); + if (it != data->sensor_->controls().end()) + data->notifyGainsUnity_ = it->second.def().get<int32_t>(); + + /* + * Set a default value for the ScalerCropMaximum property to show + * that we support its use, however, initialise it to zero because + * it's not meaningful until a camera mode has been chosen. + */ + data->properties_.set(properties::ScalerCropMaximum, Rectangle{}); + + /* + * We cache two things about the sensor in relation to transforms + * (meaning horizontal and vertical flips): if they affect the Bayer + * ordering, and what the "native" Bayer order is, when no transforms + * are applied. + * + * If flips are supported verify if they affect the Bayer ordering + * and what the "native" Bayer order is, when no transforms are + * applied. + * + * We note that the sensor's cached list of supported formats is + * already in the "native" order, with any flips having been undone. + */ + const V4L2Subdevice *sensor = data->sensor_->device(); + const struct v4l2_query_ext_ctrl *hflipCtrl = sensor->controlInfo(V4L2_CID_HFLIP); + if (hflipCtrl) { + /* We assume it will support vflips too... */ + data->flipsAlterBayerOrder_ = hflipCtrl->flags & V4L2_CTRL_FLAG_MODIFY_LAYOUT; + } + + /* Look for a valid Bayer format. */ + BayerFormat bayerFormat; + for (const auto &iter : data->sensorFormats_) { + bayerFormat = BayerFormat::fromMbusCode(iter.first); + if (bayerFormat.isValid()) + break; + } + + if (!bayerFormat.isValid()) { + LOG(RPI, Error) << "No Bayer format found"; + return -EINVAL; + } + data->nativeBayerOrder_ = bayerFormat.order; + + ret = data->loadPipelineConfiguration(); + if (ret) { + LOG(RPI, Error) << "Unable to load pipeline configuration"; + return ret; + } + + ret = platformRegister(cameraData, frontend, backend); + if (ret) + return ret; + + /* Setup the general IPA signal handlers. */ + data->frontendDevice()->dequeueTimeout.connect(data, &RPi::CameraData::cameraTimeout); + data->frontendDevice()->frameStart.connect(data, &RPi::CameraData::frameStarted); + data->ipa_->setDelayedControls.connect(data, &CameraData::setDelayedControls); + data->ipa_->setLensControls.connect(data, &CameraData::setLensControls); + data->ipa_->metadataReady.connect(data, &CameraData::metadataReady); + + return 0; +} + +void PipelineHandlerBase::mapBuffers(Camera *camera, const BufferMap &buffers, unsigned int mask) +{ + CameraData *data = cameraData(camera); + std::vector<IPABuffer> bufferIds; + /* + * Link the FrameBuffers with the id (key value) in the map stored in + * the RPi stream object - along with an identifier mask. + * + * This will allow us to identify buffers passed between the pipeline + * handler and the IPA. + */ + for (auto const &it : buffers) { + bufferIds.push_back(IPABuffer(mask | it.first, + it.second->planes())); + data->bufferIds_.insert(mask | it.first); + } + + data->ipa_->mapBuffers(bufferIds); +} + +int PipelineHandlerBase::queueAllBuffers(Camera *camera) +{ + CameraData *data = cameraData(camera); + int ret; + + for (auto const stream : data->streams_) { + if (!stream->isExternal()) { + ret = stream->queueAllBuffers(); + if (ret < 0) + return ret; + } else { + /* + * For external streams, we must queue up a set of internal + * buffers to handle the number of drop frames requested by + * the IPA. This is done by passing nullptr in queueBuffer(). + * + * The below queueBuffer() call will do nothing if there + * are not enough internal buffers allocated, but this will + * be handled by queuing the request for buffers in the + * RPiStream object. + */ + unsigned int i; + for (i = 0; i < data->dropFrameCount_; i++) { + ret = stream->queueBuffer(nullptr); + if (ret) + return ret; + } + } + } + + return 0; +} + +void CameraData::freeBuffers() +{ + if (ipa_) { + /* + * Copy the buffer ids from the unordered_set to a vector to + * pass to the IPA. + */ + std::vector<unsigned int> bufferIds(bufferIds_.begin(), + bufferIds_.end()); + ipa_->unmapBuffers(bufferIds); + bufferIds_.clear(); + } + + for (auto const stream : streams_) + stream->releaseBuffers(); + + platformFreeBuffers(); + + buffersAllocated_ = false; +} + +/* + * enumerateVideoDevices() iterates over the Media Controller topology, starting + * at the sensor and finishing at the frontend. For each sensor, CameraData stores + * a unique list of any intermediate video mux or bridge devices connected in a + * cascade, together with the entity to entity link. + * + * Entity pad configuration and link enabling happens at the end of configure(). + * We first disable all pad links on each entity device in the chain, and then + * selectively enabling the specific links to link sensor to the frontend across + * all intermediate muxes and bridges. + * + * In the cascaded topology below, if Sensor1 is used, the Mux2 -> Mux1 link + * will be disabled, and Sensor1 -> Mux1 -> Frontend links enabled. Alternatively, + * if Sensor3 is used, the Sensor2 -> Mux2 and Sensor1 -> Mux1 links are disabled, + * and Sensor3 -> Mux2 -> Mux1 -> Frontend links are enabled. All other links will + * remain unchanged. + * + * +----------+ + * | FE | + * +-----^----+ + * | + * +---+---+ + * | Mux1 |<------+ + * +--^---- | + * | | + * +-----+---+ +---+---+ + * | Sensor1 | | Mux2 |<--+ + * +---------+ +-^-----+ | + * | | + * +-------+-+ +---+-----+ + * | Sensor2 | | Sensor3 | + * +---------+ +---------+ + */ +void CameraData::enumerateVideoDevices(MediaLink *link, const std::string &frontend) +{ + const MediaPad *sinkPad = link->sink(); + const MediaEntity *entity = sinkPad->entity(); + bool frontendFound = false; + + /* We only deal with Video Mux and Bridge devices in cascade. */ + if (entity->function() != MEDIA_ENT_F_VID_MUX && + entity->function() != MEDIA_ENT_F_VID_IF_BRIDGE) + return; + + /* Find the source pad for this Video Mux or Bridge device. */ + const MediaPad *sourcePad = nullptr; + for (const MediaPad *pad : entity->pads()) { + if (pad->flags() & MEDIA_PAD_FL_SOURCE) { + /* + * We can only deal with devices that have a single source + * pad. If this device has multiple source pads, ignore it + * and this branch in the cascade. + */ + if (sourcePad) + return; + + sourcePad = pad; + } + } + + LOG(RPI, Debug) << "Found video mux device " << entity->name() + << " linked to sink pad " << sinkPad->index(); + + bridgeDevices_.emplace_back(std::make_unique<V4L2Subdevice>(entity), link); + bridgeDevices_.back().first->open(); + + /* + * Iterate through all the sink pad links down the cascade to find any + * other Video Mux and Bridge devices. + */ + for (MediaLink *l : sourcePad->links()) { + enumerateVideoDevices(l, frontend); + /* Once we reach the Frontend entity, we are done. */ + if (l->sink()->entity()->name() == frontend) { + frontendFound = true; + break; + } + } + + /* This identifies the end of our entity enumeration recursion. */ + if (link->source()->entity()->function() == MEDIA_ENT_F_CAM_SENSOR) { + /* + * If the frontend is not at the end of this cascade, we cannot + * configure this topology automatically, so remove all entity + * references. + */ + if (!frontendFound) { + LOG(RPI, Warning) << "Cannot automatically configure this MC topology!"; + bridgeDevices_.clear(); + } + } +} + +int CameraData::loadPipelineConfiguration() +{ + config_ = { + .disableStartupFrameDrops = false, + .cameraTimeoutValue = 0, + }; + + /* Initial configuration of the platform, in case no config file is present */ + platformPipelineConfigure({}); + + char const *configFromEnv = utils::secure_getenv("LIBCAMERA_RPI_CONFIG_FILE"); + if (!configFromEnv || *configFromEnv == '\0') + return 0; + + std::string filename = std::string(configFromEnv); + File file(filename); + + if (!file.open(File::OpenModeFlag::ReadOnly)) { + LOG(RPI, Error) << "Failed to open configuration file '" << filename << "'"; + return -EIO; + } + + LOG(RPI, Info) << "Using configuration file '" << filename << "'"; + + std::unique_ptr<YamlObject> root = YamlParser::parse(file); + if (!root) { + LOG(RPI, Warning) << "Failed to parse configuration file, using defaults"; + return 0; + } + + std::optional<double> ver = (*root)["version"].get<double>(); + if (!ver || *ver != 1.0) { + LOG(RPI, Error) << "Unexpected configuration file version reported"; + return -EINVAL; + } + + const YamlObject &phConfig = (*root)["pipeline_handler"]; + + config_.disableStartupFrameDrops = + phConfig["disable_startup_frame_drops"].get<bool>(config_.disableStartupFrameDrops); + + config_.cameraTimeoutValue = + phConfig["camera_timeout_value_ms"].get<unsigned int>(config_.cameraTimeoutValue); + + if (config_.cameraTimeoutValue) { + /* Disable the IPA signal to control timeout and set the user requested value. */ + ipa_->setCameraTimeout.disconnect(); + frontendDevice()->setDequeueTimeout(config_.cameraTimeoutValue * 1ms); + } + + return platformPipelineConfigure(root); +} + +int CameraData::loadIPA(ipa::RPi::InitResult *result) +{ + ipa_ = IPAManager::createIPA<ipa::RPi::IPAProxyRPi>(pipe(), 1, 1); + + if (!ipa_) + return -ENOENT; + + /* + * The configuration (tuning file) is made from the sensor name unless + * the environment variable overrides it. + */ + std::string configurationFile; + char const *configFromEnv = utils::secure_getenv("LIBCAMERA_RPI_TUNING_FILE"); + if (!configFromEnv || *configFromEnv == '\0') { + std::string model = sensor_->model(); + if (isMonoSensor(sensor_)) + model += "_mono"; + configurationFile = ipa_->configurationFile(model + ".json"); + } else { + configurationFile = std::string(configFromEnv); + } + + IPASettings settings(configurationFile, sensor_->model()); + ipa::RPi::InitParams params; + + params.lensPresent = !!sensor_->focusLens(); + int ret = platformInitIpa(params); + if (ret) + return ret; + + return ipa_->init(settings, params, result); +} + +int CameraData::configureIPA(const CameraConfiguration *config, ipa::RPi::ConfigResult *result) +{ + std::map<unsigned int, ControlInfoMap> entityControls; + ipa::RPi::ConfigParams params; + int ret; + + params.sensorControls = sensor_->controls(); + if (sensor_->focusLens()) + params.lensControls = sensor_->focusLens()->controls(); + + ret = platformConfigureIpa(params); + if (ret) + return ret; + + /* We store the IPACameraSensorInfo for digital zoom calculations. */ + ret = sensor_->sensorInfo(&sensorInfo_); + if (ret) { + LOG(RPI, Error) << "Failed to retrieve camera sensor info"; + return ret; + } + + /* Always send the user transform to the IPA. */ + params.transform = static_cast<unsigned int>(config->transform); + + /* Ready the IPA - it must know about the sensor resolution. */ + ret = ipa_->configure(sensorInfo_, params, result); + if (ret < 0) { + LOG(RPI, Error) << "IPA configuration failed!"; + return -EPIPE; + } + + if (!result->controls.empty()) + setSensorControls(result->controls); + + return 0; +} + +void CameraData::metadataReady(const ControlList &metadata) +{ + if (!isRunning()) + return; + + /* Add to the Request metadata buffer what the IPA has provided. */ + /* Last thing to do is to fill up the request metadata. */ + Request *request = requestQueue_.front(); + request->metadata().merge(metadata); + + /* + * Inform the sensor of the latest colour gains if it has the + * V4L2_CID_NOTIFY_GAINS control (which means notifyGainsUnity_ is set). + */ + const auto &colourGains = metadata.get(libcamera::controls::ColourGains); + if (notifyGainsUnity_ && colourGains) { + /* The control wants linear gains in the order B, Gb, Gr, R. */ + ControlList ctrls(sensor_->controls()); + std::array<int32_t, 4> gains{ + static_cast<int32_t>((*colourGains)[1] * *notifyGainsUnity_), + *notifyGainsUnity_, + *notifyGainsUnity_, + static_cast<int32_t>((*colourGains)[0] * *notifyGainsUnity_) + }; + ctrls.set(V4L2_CID_NOTIFY_GAINS, Span<const int32_t>{ gains }); + + sensor_->setControls(&ctrls); + } +} + +void CameraData::setDelayedControls(const ControlList &controls, uint32_t delayContext) +{ + if (!delayedCtrls_->push(controls, delayContext)) + LOG(RPI, Error) << "V4L2 DelayedControl set failed"; +} + +void CameraData::setLensControls(const ControlList &controls) +{ + CameraLens *lens = sensor_->focusLens(); + + if (lens && controls.contains(V4L2_CID_FOCUS_ABSOLUTE)) { + ControlValue const &focusValue = controls.get(V4L2_CID_FOCUS_ABSOLUTE); + lens->setFocusPosition(focusValue.get<int32_t>()); + } +} + +void CameraData::setSensorControls(ControlList &controls) +{ + /* + * We need to ensure that if both VBLANK and EXPOSURE are present, the + * former must be written ahead of, and separately from EXPOSURE to avoid + * V4L2 rejecting the latter. This is identical to what DelayedControls + * does with the priority write flag. + * + * As a consequence of the below logic, VBLANK gets set twice, and we + * rely on the v4l2 framework to not pass the second control set to the + * driver as the actual control value has not changed. + */ + if (controls.contains(V4L2_CID_EXPOSURE) && controls.contains(V4L2_CID_VBLANK)) { + ControlList vblank_ctrl; + + vblank_ctrl.set(V4L2_CID_VBLANK, controls.get(V4L2_CID_VBLANK)); + sensor_->setControls(&vblank_ctrl); + } + + sensor_->setControls(&controls); +} + +Rectangle CameraData::scaleIspCrop(const Rectangle &ispCrop) const +{ + /* + * Scale a crop rectangle defined in the ISP's coordinates into native sensor + * coordinates. + */ + Rectangle nativeCrop = ispCrop.scaledBy(sensorInfo_.analogCrop.size(), + sensorInfo_.outputSize); + nativeCrop.translateBy(sensorInfo_.analogCrop.topLeft()); + return nativeCrop; +} + +void CameraData::applyScalerCrop(const ControlList &controls) +{ + const auto &scalerCrop = controls.get<Rectangle>(controls::ScalerCrop); + if (scalerCrop) { + Rectangle nativeCrop = *scalerCrop; + + if (!nativeCrop.width || !nativeCrop.height) + nativeCrop = { 0, 0, 1, 1 }; + + /* Create a version of the crop scaled to ISP (camera mode) pixels. */ + Rectangle ispCrop = nativeCrop.translatedBy(-sensorInfo_.analogCrop.topLeft()); + ispCrop.scaleBy(sensorInfo_.outputSize, sensorInfo_.analogCrop.size()); + + /* + * The crop that we set must be: + * 1. At least as big as ispMinCropSize_, once that's been + * enlarged to the same aspect ratio. + * 2. With the same mid-point, if possible. + * 3. But it can't go outside the sensor area. + */ + Size minSize = ispMinCropSize_.expandedToAspectRatio(nativeCrop.size()); + Size size = ispCrop.size().expandedTo(minSize); + ispCrop = size.centeredTo(ispCrop.center()).enclosedIn(Rectangle(sensorInfo_.outputSize)); + + if (ispCrop != ispCrop_) { + ispCrop_ = ispCrop; + platformSetIspCrop(); + + /* + * Also update the ScalerCrop in the metadata with what we actually + * used. But we must first rescale that from ISP (camera mode) pixels + * back into sensor native pixels. + */ + scalerCrop_ = scaleIspCrop(ispCrop_); + } + } +} + +void CameraData::cameraTimeout() +{ + LOG(RPI, Error) << "Camera frontend has timed out!"; + LOG(RPI, Error) << "Please check that your camera sensor connector is attached securely."; + LOG(RPI, Error) << "Alternatively, try another cable and/or sensor."; + + state_ = CameraData::State::Error; + platformStop(); + + /* + * To allow the application to attempt a recovery from this timeout, + * stop all devices streaming, and return any outstanding requests as + * incomplete and cancelled. + */ + for (auto const stream : streams_) + stream->dev()->streamOff(); + + clearIncompleteRequests(); +} + +void CameraData::frameStarted(uint32_t sequence) +{ + LOG(RPI, Debug) << "Frame start " << sequence; + + /* Write any controls for the next frame as soon as we can. */ + delayedCtrls_->applyControls(sequence); +} + +void CameraData::clearIncompleteRequests() +{ + /* + * All outstanding requests (and associated buffers) must be returned + * back to the application. + */ + while (!requestQueue_.empty()) { + Request *request = requestQueue_.front(); + + for (auto &b : request->buffers()) { + FrameBuffer *buffer = b.second; + /* + * Has the buffer already been handed back to the + * request? If not, do so now. + */ + if (buffer->request()) { + buffer->_d()->cancel(); + pipe()->completeBuffer(request, buffer); + } + } + + pipe()->completeRequest(request); + requestQueue_.pop(); + } +} + +void CameraData::handleStreamBuffer(FrameBuffer *buffer, RPi::Stream *stream) +{ + /* + * It is possible to be here without a pending request, so check + * that we actually have one to action, otherwise we just return + * buffer back to the stream. + */ + Request *request = requestQueue_.empty() ? nullptr : requestQueue_.front(); + if (!dropFrameCount_ && request && request->findBuffer(stream) == buffer) { + /* + * Check if this is an externally provided buffer, and if + * so, we must stop tracking it in the pipeline handler. + */ + handleExternalBuffer(buffer, stream); + /* + * Tag the buffer as completed, returning it to the + * application. + */ + pipe()->completeBuffer(request, buffer); + } else { + /* + * This buffer was not part of the Request (which happens if an + * internal buffer was used for an external stream, or + * unconditionally for internal streams), or there is no pending + * request, so we can recycle it. + */ + stream->returnBuffer(buffer); + } +} + +void CameraData::handleState() +{ + switch (state_) { + case State::Stopped: + case State::Busy: + case State::Error: + break; + + case State::IpaComplete: + /* If the request is completed, we will switch to Idle state. */ + checkRequestCompleted(); + /* + * No break here, we want to try running the pipeline again. + * The fallthrough clause below suppresses compiler warnings. + */ + [[fallthrough]]; + + case State::Idle: + tryRunPipeline(); + break; + } +} + +void CameraData::handleExternalBuffer(FrameBuffer *buffer, RPi::Stream *stream) +{ + unsigned int id = stream->getBufferId(buffer); + + if (!(id & MaskExternalBuffer)) + return; + + /* Stop the Stream object from tracking the buffer. */ + stream->removeExternalBuffer(buffer); +} + +void CameraData::checkRequestCompleted() +{ + bool requestCompleted = false; + /* + * If we are dropping this frame, do not touch the request, simply + * change the state to IDLE when ready. + */ + if (!dropFrameCount_) { + Request *request = requestQueue_.front(); + if (request->hasPendingBuffers()) + return; + + /* Must wait for metadata to be filled in before completing. */ + if (state_ != State::IpaComplete) + return; + + pipe()->completeRequest(request); + requestQueue_.pop(); + requestCompleted = true; + } + + /* + * Make sure we have three outputs completed in the case of a dropped + * frame. + */ + if (state_ == State::IpaComplete && + ((ispOutputCount_ == ispOutputTotal_ && dropFrameCount_) || + requestCompleted)) { + state_ = State::Idle; + if (dropFrameCount_) { + dropFrameCount_--; + LOG(RPI, Debug) << "Dropping frame at the request of the IPA (" + << dropFrameCount_ << " left)"; + } + } +} + +void CameraData::fillRequestMetadata(const ControlList &bufferControls, Request *request) +{ + request->metadata().set(controls::SensorTimestamp, + bufferControls.get(controls::SensorTimestamp).value_or(0)); + + request->metadata().set(controls::ScalerCrop, scalerCrop_); +} + +} /* namespace libcamera */ |