diff options
Diffstat (limited to 'src/ipa/raspberrypi/controller/rpi/awb.cpp')
-rw-r--r-- | src/ipa/raspberrypi/controller/rpi/awb.cpp | 192 |
1 files changed, 117 insertions, 75 deletions
diff --git a/src/ipa/raspberrypi/controller/rpi/awb.cpp b/src/ipa/raspberrypi/controller/rpi/awb.cpp index 07791e8b..e4ed114d 100644 --- a/src/ipa/raspberrypi/controller/rpi/awb.cpp +++ b/src/ipa/raspberrypi/controller/rpi/awb.cpp @@ -21,8 +21,10 @@ LOG_DEFINE_CATEGORY(RPiAwb) #define AWB_STATS_SIZE_X DEFAULT_AWB_REGIONS_X #define AWB_STATS_SIZE_Y DEFAULT_AWB_REGIONS_Y -// todo - the locking in this algorithm needs some tidying up as has been done -// elsewhere (ALSC and AGC). +/* + * todo - the locking in this algorithm needs some tidying up as has been done + * elsewhere (ALSC and AGC). + */ void AwbMode::read(boost::property_tree::ptree const ¶ms) { @@ -107,11 +109,11 @@ void AwbConfig::read(boost::property_tree::ptree const ¶ms) bayes = false; } } - fast = params.get<int>("fast", bayes); // default to fast for Bayesian, otherwise slow + fast = params.get<int>("fast", bayes); /* default to fast for Bayesian, otherwise slow */ whitepointR = params.get<double>("whitepoint_r", 0.0); whitepointB = params.get<double>("whitepoint_b", 0.0); if (bayes == false) - sensitivityR = sensitivityB = 1.0; // nor do sensitivities make any sense + sensitivityR = sensitivityB = 1.0; /* nor do sensitivities make any sense */ } Awb::Awb(Controller *controller) @@ -147,16 +149,18 @@ void Awb::read(boost::property_tree::ptree const ¶ms) void Awb::initialise() { frameCount_ = framePhase_ = 0; - // Put something sane into the status that we are filtering towards, - // just in case the first few frames don't have anything meaningful in - // them. + /* + * Put something sane into the status that we are filtering towards, + * just in case the first few frames don't have anything meaningful in + * them. + */ if (!config_.ctR.empty() && !config_.ctB.empty()) { syncResults_.temperatureK = config_.ctR.domain().clip(4000); syncResults_.gainR = 1.0 / config_.ctR.eval(syncResults_.temperatureK); syncResults_.gainG = 1.0; syncResults_.gainB = 1.0 / config_.ctB.eval(syncResults_.temperatureK); } else { - // random values just to stop the world blowing up + /* random values just to stop the world blowing up */ syncResults_.temperatureK = 4500; syncResults_.gainR = syncResults_.gainG = syncResults_.gainB = 1.0; } @@ -171,7 +175,7 @@ bool Awb::isPaused() const void Awb::pause() { - // "Pause" by fixing everything to the most recent values. + /* "Pause" by fixing everything to the most recent values. */ manualR_ = syncResults_.gainR = prevSyncResults_.gainR; manualB_ = syncResults_.gainB = prevSyncResults_.gainB; syncResults_.gainG = prevSyncResults_.gainG; @@ -186,8 +190,10 @@ void Awb::resume() unsigned int Awb::getConvergenceFrames() const { - // If not in auto mode, there is no convergence - // to happen, so no need to drop any frames - return zero. + /* + * If not in auto mode, there is no convergence + * to happen, so no need to drop any frames - return zero. + */ if (!isAutoEnabled()) return 0; else @@ -201,11 +207,13 @@ void Awb::setMode(std::string const &modeName) void Awb::setManualGains(double manualR, double manualB) { - // If any of these are 0.0, we swich back to auto. + /* If any of these are 0.0, we swich back to auto. */ manualR_ = manualR; manualB_ = manualB; - // If not in auto mode, set these values into the syncResults which - // means that Prepare() will adopt them immediately. + /* + * If not in auto mode, set these values into the syncResults which + * means that Prepare() will adopt them immediately. + */ if (!isAutoEnabled()) { syncResults_.gainR = prevSyncResults_.gainR = manualR_; syncResults_.gainG = prevSyncResults_.gainG = 1.0; @@ -216,8 +224,10 @@ void Awb::setManualGains(double manualR, double manualB) void Awb::switchMode([[maybe_unused]] CameraMode const &cameraMode, Metadata *metadata) { - // On the first mode switch we'll have no meaningful colour - // temperature, so try to dead reckon one if in manual mode. + /* + * On the first mode switch we'll have no meaningful colour + * temperature, so try to dead reckon one if in manual mode. + */ if (!isAutoEnabled() && firstSwitchMode_ && config_.bayes) { Pwl ctRInverse = config_.ctR.inverse(); Pwl ctBInverse = config_.ctB.inverse(); @@ -226,7 +236,7 @@ void Awb::switchMode([[maybe_unused]] CameraMode const &cameraMode, prevSyncResults_.temperatureK = (ctR + ctB) / 2; syncResults_.temperatureK = prevSyncResults_.temperatureK; } - // Let other algorithms know the current white balance values. + /* Let other algorithms know the current white balance values. */ metadata->set("awb.status", prevSyncResults_); firstSwitchMode_ = false; } @@ -241,8 +251,10 @@ void Awb::fetchAsyncResults() LOG(RPiAwb, Debug) << "Fetch AWB results"; asyncFinished_ = false; asyncStarted_ = false; - // It's possible manual gains could be set even while the async - // thread was running, so only copy the results if still in auto mode. + /* + * It's possible manual gains could be set even while the async + * thread was running, so only copy the results if still in auto mode. + */ if (isAutoEnabled()) syncResults_ = asyncResults_; } @@ -250,9 +262,9 @@ void Awb::fetchAsyncResults() void Awb::restartAsync(StatisticsPtr &stats, double lux) { LOG(RPiAwb, Debug) << "Starting AWB calculation"; - // this makes a new reference which belongs to the asynchronous thread + /* this makes a new reference which belongs to the asynchronous thread */ statistics_ = stats; - // store the mode as it could technically change + /* store the mode as it could technically change */ auto m = config_.modes.find(modeName_); mode_ = m != config_.modes.end() ? &m->second @@ -284,7 +296,7 @@ void Awb::prepare(Metadata *imageMetadata) if (asyncStarted_ && asyncFinished_) fetchAsyncResults(); } - // Finally apply IIR filter to results and put into metadata. + /* Finally apply IIR filter to results and put into metadata. */ memcpy(prevSyncResults_.mode, syncResults_.mode, sizeof(prevSyncResults_.mode)); prevSyncResults_.temperatureK = speed * syncResults_.temperatureK + @@ -304,17 +316,17 @@ void Awb::prepare(Metadata *imageMetadata) void Awb::process(StatisticsPtr &stats, Metadata *imageMetadata) { - // Count frames since we last poked the async thread. + /* Count frames since we last poked the async thread. */ if (framePhase_ < (int)config_.framePeriod) framePhase_++; LOG(RPiAwb, Debug) << "frame_phase " << framePhase_; - // We do not restart the async thread if we're not in auto mode. + /* We do not restart the async thread if we're not in auto mode. */ if (isAutoEnabled() && (framePhase_ >= (int)config_.framePeriod || frameCount_ < (int)config_.startupFrames)) { - // Update any settings and any image metadata that we need. + /* Update any settings and any image metadata that we need. */ struct LuxStatus luxStatus = {}; - luxStatus.lux = 400; // in case no metadata + luxStatus.lux = 400; /* in case no metadata */ if (imageMetadata->get("lux.status", luxStatus) != 0) LOG(RPiAwb, Debug) << "No lux metadata found"; LOG(RPiAwb, Debug) << "Awb lux value is " << luxStatus.lux; @@ -366,15 +378,21 @@ static void generateStats(std::vector<Awb::RGB> &zones, void Awb::prepareStats() { zones_.clear(); - // LSC has already been applied to the stats in this pipeline, so stop - // any LSC compensation. We also ignore config_.fast in this version. + /* + * LSC has already been applied to the stats in this pipeline, so stop + * any LSC compensation. We also ignore config_.fast in this version. + */ generateStats(zones_, statistics_->awb_stats, config_.minPixels, config_.minG); - // we're done with these; we may as well relinquish our hold on the - // pointer. + /* + * we're done with these; we may as well relinquish our hold on the + * pointer. + */ statistics_.reset(); - // apply sensitivities, so values appear to come from our "canonical" - // sensor. + /* + * apply sensitivities, so values appear to come from our "canonical" + * sensor. + */ for (auto &zone : zones_) { zone.R *= config_.sensitivityR; zone.B *= config_.sensitivityB; @@ -383,14 +401,16 @@ void Awb::prepareStats() double Awb::computeDelta2Sum(double gainR, double gainB) { - // Compute the sum of the squared colour error (non-greyness) as it - // appears in the log likelihood equation. + /* + * Compute the sum of the squared colour error (non-greyness) as it + * appears in the log likelihood equation. + */ double delta2Sum = 0; for (auto &z : zones_) { double deltaR = gainR * z.R - 1 - config_.whitepointR; double deltaB = gainB * z.B - 1 - config_.whitepointB; double delta2 = deltaR * deltaR + deltaB * deltaB; - //LOG(RPiAwb, Debug) << "deltaR " << deltaR << " deltaB " << deltaB << " delta2 " << delta2; + /* LOG(RPiAwb, Debug) << "deltaR " << deltaR << " deltaB " << deltaB << " delta2 " << delta2; */ delta2 = std::min(delta2, config_.deltaLimit); delta2Sum += delta2; } @@ -399,15 +419,17 @@ double Awb::computeDelta2Sum(double gainR, double gainB) Pwl Awb::interpolatePrior() { - // Interpolate the prior log likelihood function for our current lux - // value. + /* + * Interpolate the prior log likelihood function for our current lux + * value. + */ if (lux_ <= config_.priors.front().lux) return config_.priors.front().prior; else if (lux_ >= config_.priors.back().lux) return config_.priors.back().prior; else { int idx = 0; - // find which two we lie between + /* find which two we lie between */ while (config_.priors[idx + 1].lux < lux_) idx++; double lux0 = config_.priors[idx].lux, @@ -424,8 +446,10 @@ Pwl Awb::interpolatePrior() static double interpolateQuadatric(Pwl::Point const &a, Pwl::Point const &b, Pwl::Point const &c) { - // Given 3 points on a curve, find the extremum of the function in that - // interval by fitting a quadratic. + /* + * Given 3 points on a curve, find the extremum of the function in that + * interval by fitting a quadratic. + */ const double eps = 1e-3; Pwl::Point ca = c - a, ba = b - a; double denominator = 2 * (ba.y * ca.x - ca.y * ba.x); @@ -434,17 +458,17 @@ static double interpolateQuadatric(Pwl::Point const &a, Pwl::Point const &b, double result = numerator / denominator + a.x; return std::max(a.x, std::min(c.x, result)); } - // has degenerated to straight line segment + /* has degenerated to straight line segment */ return a.y < c.y - eps ? a.x : (c.y < a.y - eps ? c.x : b.x); } double Awb::coarseSearch(Pwl const &prior) { - points_.clear(); // assume doesn't deallocate memory + points_.clear(); /* assume doesn't deallocate memory */ size_t bestPoint = 0; double t = mode_->ctLo; int spanR = 0, spanB = 0; - // Step down the CT curve evaluating log likelihood. + /* Step down the CT curve evaluating log likelihood. */ while (true) { double r = config_.ctR.eval(t, &spanR); double b = config_.ctB.eval(t, &spanB); @@ -462,13 +486,15 @@ double Awb::coarseSearch(Pwl const &prior) bestPoint = points_.size() - 1; if (t == mode_->ctHi) break; - // for even steps along the r/b curve scale them by the current t + /* for even steps along the r/b curve scale them by the current t */ t = std::min(t + t / 10 * config_.coarseStep, mode_->ctHi); } t = points_[bestPoint].x; LOG(RPiAwb, Debug) << "Coarse search found CT " << t; - // We have the best point of the search, but refine it with a quadratic - // interpolation around its neighbours. + /* + * We have the best point of the search, but refine it with a quadratic + * interpolation around its neighbours. + */ if (points_.size() > 2) { unsigned long bp = std::min(bestPoint, points_.size() - 2); bestPoint = std::max(1UL, bp); @@ -496,17 +522,21 @@ void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior) Pwl::Point transverse(bDiff, -rDiff); if (transverse.len2() < 1e-6) return; - // unit vector orthogonal to the b vs. r function (pointing outwards - // with r and b increasing) + /* + * unit vector orthogonal to the b vs. r function (pointing outwards + * with r and b increasing) + */ transverse = transverse / transverse.len(); double bestLogLikelihood = 0, bestT = 0, bestR = 0, bestB = 0; double transverseRange = config_.transverseNeg + config_.transversePos; const int maxNumDeltas = 12; - // a transverse step approximately every 0.01 r/b units + /* a transverse step approximately every 0.01 r/b units */ int numDeltas = floor(transverseRange * 100 + 0.5) + 1; numDeltas = numDeltas < 3 ? 3 : (numDeltas > maxNumDeltas ? maxNumDeltas : numDeltas); - // Step down CT curve. March a bit further if the transverse range is - // large. + /* + * Step down CT curve. March a bit further if the transverse range is + * large. + */ nsteps += numDeltas; for (int i = -nsteps; i <= nsteps; i++) { double tTest = t + i * step; @@ -514,10 +544,10 @@ void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior) prior.eval(prior.domain().clip(tTest)); double rCurve = config_.ctR.eval(tTest, &spanR); double bCurve = config_.ctB.eval(tTest, &spanB); - // x will be distance off the curve, y the log likelihood there + /* x will be distance off the curve, y the log likelihood there */ Pwl::Point points[maxNumDeltas]; int bestPoint = 0; - // Take some measurements transversely *off* the CT curve. + /* Take some measurements transversely *off* the CT curve. */ for (int j = 0; j < numDeltas; j++) { points[j].x = -config_.transverseNeg + (transverseRange * j) / (numDeltas - 1); @@ -533,8 +563,10 @@ void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior) if (points[j].y < points[bestPoint].y) bestPoint = j; } - // We have NUM_DELTAS points transversely across the CT curve, - // now let's do a quadratic interpolation for the best result. + /* + * We have NUM_DELTAS points transversely across the CT curve, + * now let's do a quadratic interpolation for the best result. + */ bestPoint = std::max(1, std::min(bestPoint, numDeltas - 2)); Pwl::Point rbTest = Pwl::Point(rCurve, bCurve) + transverse * interpolateQuadatric(points[bestPoint - 1], @@ -560,12 +592,16 @@ void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior) void Awb::awbBayes() { - // May as well divide out G to save computeDelta2Sum from doing it over - // and over. + /* + * May as well divide out G to save computeDelta2Sum from doing it over + * and over. + */ for (auto &z : zones_) z.R = z.R / (z.G + 1), z.B = z.B / (z.G + 1); - // Get the current prior, and scale according to how many zones are - // valid... not entirely sure about this. + /* + * Get the current prior, and scale according to how many zones are + * valid... not entirely sure about this. + */ Pwl prior = interpolatePrior(); prior *= zones_.size() / (double)(AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y); prior.map([](double x, double y) { @@ -577,19 +613,23 @@ void Awb::awbBayes() LOG(RPiAwb, Debug) << "After coarse search: r " << r << " b " << b << " (gains r " << 1 / r << " b " << 1 / b << ")"; - // Not entirely sure how to handle the fine search yet. Mostly the - // estimated CT is already good enough, but the fine search allows us to - // wander transverely off the CT curve. Under some illuminants, where - // there may be more or less green light, this may prove beneficial, - // though I probably need more real datasets before deciding exactly how - // this should be controlled and tuned. + /* + * Not entirely sure how to handle the fine search yet. Mostly the + * estimated CT is already good enough, but the fine search allows us to + * wander transverely off the CT curve. Under some illuminants, where + * there may be more or less green light, this may prove beneficial, + * though I probably need more real datasets before deciding exactly how + * this should be controlled and tuned. + */ fineSearch(t, r, b, prior); LOG(RPiAwb, Debug) << "After fine search: r " << r << " b " << b << " (gains r " << 1 / r << " b " << 1 / b << ")"; - // Write results out for the main thread to pick up. Remember to adjust - // the gains from the ones that the "canonical sensor" would require to - // the ones needed by *this* sensor. + /* + * Write results out for the main thread to pick up. Remember to adjust + * the gains from the ones that the "canonical sensor" would require to + * the ones needed by *this* sensor. + */ asyncResults_.temperatureK = t; asyncResults_.gainR = 1.0 / r * config_.sensitivityR; asyncResults_.gainG = 1.0; @@ -599,10 +639,12 @@ void Awb::awbBayes() void Awb::awbGrey() { LOG(RPiAwb, Debug) << "Grey world AWB"; - // Make a separate list of the derivatives for each of red and blue, so - // that we can sort them to exclude the extreme gains. We could - // consider some variations, such as normalising all the zones first, or - // doing an L2 average etc. + /* + * Make a separate list of the derivatives for each of red and blue, so + * that we can sort them to exclude the extreme gains. We could + * consider some variations, such as normalising all the zones first, or + * doing an L2 average etc. + */ std::vector<RGB> &derivsR(zones_); std::vector<RGB> derivsB(derivsR); std::sort(derivsR.begin(), derivsR.end(), @@ -613,7 +655,7 @@ void Awb::awbGrey() [](RGB const &a, RGB const &b) { return a.G * b.B < b.G * a.B; }); - // Average the middle half of the values. + /* Average the middle half of the values. */ int discard = derivsR.size() / 4; RGB sumR(0, 0, 0), sumB(0, 0, 0); for (auto ri = derivsR.begin() + discard, @@ -622,7 +664,7 @@ void Awb::awbGrey() sumR += *ri, sumB += *bi; double gainR = sumR.G / (sumR.R + 1), gainB = sumB.G / (sumB.B + 1); - asyncResults_.temperatureK = 4500; // don't know what it is + asyncResults_.temperatureK = 4500; /* don't know what it is */ asyncResults_.gainR = gainR; asyncResults_.gainG = 1.0; asyncResults_.gainB = gainB; @@ -645,7 +687,7 @@ void Awb::doAwb() } } -// Register algorithm with the system. +/* Register algorithm with the system. */ static Algorithm *create(Controller *controller) { return (Algorithm *)new Awb(controller); |