summaryrefslogtreecommitdiff
path: root/src/ipa/raspberrypi/controller/rpi/alsc.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/ipa/raspberrypi/controller/rpi/alsc.cpp')
-rw-r--r--src/ipa/raspberrypi/controller/rpi/alsc.cpp180
1 files changed, 109 insertions, 71 deletions
diff --git a/src/ipa/raspberrypi/controller/rpi/alsc.cpp b/src/ipa/raspberrypi/controller/rpi/alsc.cpp
index 98b77154..6fd95a31 100644
--- a/src/ipa/raspberrypi/controller/rpi/alsc.cpp
+++ b/src/ipa/raspberrypi/controller/rpi/alsc.cpp
@@ -14,7 +14,7 @@
#include "../awb_status.h"
#include "alsc.hpp"
-// Raspberry Pi ALSC (Auto Lens Shading Correction) algorithm.
+/* Raspberry Pi ALSC (Auto Lens Shading Correction) algorithm. */
using namespace RPiController;
using namespace libcamera;
@@ -68,7 +68,7 @@ static void generateLut(double *lut, boost::property_tree::ptree const &params)
double r2 = (dx * dx + dy * dy) / R2;
lut[num++] =
(f1 * r2 + f2) * (f1 * r2 + f2) /
- (f2 * f2); // this reproduces the cos^4 rule
+ (f2 * f2); /* this reproduces the cos^4 rule */
}
}
}
@@ -171,7 +171,7 @@ void Alsc::initialise()
frameCount2_ = frameCount_ = framePhase_ = 0;
firstTime_ = true;
ct_ = config_.defaultCt;
- // The lambdas are initialised in the SwitchMode.
+ /* The lambdas are initialised in the SwitchMode. */
}
void Alsc::waitForAysncThread()
@@ -188,8 +188,10 @@ void Alsc::waitForAysncThread()
static bool compareModes(CameraMode const &cm0, CameraMode const &cm1)
{
- // Return true if the modes crop from the sensor significantly differently,
- // or if the user transform has changed.
+ /*
+ * Return true if the modes crop from the sensor significantly differently,
+ * or if the user transform has changed.
+ */
if (cm0.transform != cm1.transform)
return true;
int leftDiff = abs(cm0.cropX - cm1.cropX);
@@ -198,9 +200,11 @@ static bool compareModes(CameraMode const &cm0, CameraMode const &cm1)
cm1.cropX - cm1.scaleX * cm1.width);
int bottomDiff = fabs(cm0.cropY + cm0.scaleY * cm0.height -
cm1.cropY - cm1.scaleY * cm1.height);
- // These thresholds are a rather arbitrary amount chosen to trigger
- // when carrying on with the previously calculated tables might be
- // worse than regenerating them (but without the adaptive algorithm).
+ /*
+ * These thresholds are a rather arbitrary amount chosen to trigger
+ * when carrying on with the previously calculated tables might be
+ * worse than regenerating them (but without the adaptive algorithm).
+ */
int thresholdX = cm0.sensorWidth >> 4;
int thresholdY = cm0.sensorHeight >> 4;
return leftDiff > thresholdX || rightDiff > thresholdX ||
@@ -210,28 +214,34 @@ static bool compareModes(CameraMode const &cm0, CameraMode const &cm1)
void Alsc::switchMode(CameraMode const &cameraMode,
[[maybe_unused]] Metadata *metadata)
{
- // We're going to start over with the tables if there's any "significant"
- // change.
+ /*
+ * We're going to start over with the tables if there's any "significant"
+ * change.
+ */
bool resetTables = firstTime_ || compareModes(cameraMode_, cameraMode);
- // Believe the colour temperature from the AWB, if there is one.
+ /* Believe the colour temperature from the AWB, if there is one. */
ct_ = getCt(metadata, ct_);
- // Ensure the other thread isn't running while we do this.
+ /* Ensure the other thread isn't running while we do this. */
waitForAysncThread();
cameraMode_ = cameraMode;
- // We must resample the luminance table like we do the others, but it's
- // fixed so we can simply do it up front here.
+ /*
+ * We must resample the luminance table like we do the others, but it's
+ * fixed so we can simply do it up front here.
+ */
resampleCalTable(config_.luminanceLut, cameraMode_, luminanceTable_);
if (resetTables) {
- // Upon every "table reset", arrange for something sensible to be
- // generated. Construct the tables for the previous recorded colour
- // temperature. In order to start over from scratch we initialise
- // the lambdas, but the rest of this code then echoes the code in
- // doAlsc, without the adaptive algorithm.
+ /*
+ * Upon every "table reset", arrange for something sensible to be
+ * generated. Construct the tables for the previous recorded colour
+ * temperature. In order to start over from scratch we initialise
+ * the lambdas, but the rest of this code then echoes the code in
+ * doAlsc, without the adaptive algorithm.
+ */
for (int i = 0; i < XY; i++)
lambdaR_[i] = lambdaB_[i] = 1.0;
double calTableR[XY], calTableB[XY], calTableTmp[XY];
@@ -244,7 +254,7 @@ void Alsc::switchMode(CameraMode const &cameraMode,
addLuminanceToTables(syncResults_, asyncLambdaR_, 1.0, asyncLambdaB_,
luminanceTable_, config_.luminanceStrength);
memcpy(prevSyncResults_, syncResults_, sizeof(prevSyncResults_));
- framePhase_ = config_.framePeriod; // run the algo again asap
+ framePhase_ = config_.framePeriod; /* run the algo again asap */
firstTime_ = false;
}
}
@@ -260,7 +270,7 @@ void Alsc::fetchAsyncResults()
double getCt(Metadata *metadata, double defaultCt)
{
AwbStatus awbStatus;
- awbStatus.temperatureK = defaultCt; // in case nothing found
+ awbStatus.temperatureK = defaultCt; /* in case nothing found */
if (metadata->get("awb.status", awbStatus) != 0)
LOG(RPiAlsc, Debug) << "no AWB results found, using "
<< awbStatus.temperatureK;
@@ -282,18 +292,22 @@ static void copyStats(bcm2835_isp_stats_region regions[XY], StatisticsPtr &stats
regions[i].g_sum = inputRegions[i].g_sum / gTable[i];
regions[i].b_sum = inputRegions[i].b_sum / bTable[i];
regions[i].counted = inputRegions[i].counted;
- // (don't care about the uncounted value)
+ /* (don't care about the uncounted value) */
}
}
void Alsc::restartAsync(StatisticsPtr &stats, Metadata *imageMetadata)
{
LOG(RPiAlsc, Debug) << "Starting ALSC calculation";
- // Get the current colour temperature. It's all we need from the
- // metadata. Default to the last CT value (which could be the default).
+ /*
+ * Get the current colour temperature. It's all we need from the
+ * metadata. Default to the last CT value (which could be the default).
+ */
ct_ = getCt(imageMetadata, ct_);
- // We have to copy the statistics here, dividing out our best guess of
- // the LSC table that the pipeline applied to them.
+ /*
+ * We have to copy the statistics here, dividing out our best guess of
+ * the LSC table that the pipeline applied to them.
+ */
AlscStatus alscStatus;
if (imageMetadata->get("alsc.status", alscStatus) != 0) {
LOG(RPiAlsc, Warning)
@@ -317,8 +331,10 @@ void Alsc::restartAsync(StatisticsPtr &stats, Metadata *imageMetadata)
void Alsc::prepare(Metadata *imageMetadata)
{
- // Count frames since we started, and since we last poked the async
- // thread.
+ /*
+ * Count frames since we started, and since we last poked the async
+ * thread.
+ */
if (frameCount_ < (int)config_.startupFrames)
frameCount_++;
double speed = frameCount_ < (int)config_.startupFrames
@@ -331,12 +347,12 @@ void Alsc::prepare(Metadata *imageMetadata)
if (asyncStarted_ && asyncFinished_)
fetchAsyncResults();
}
- // Apply IIR filter to results and program into the pipeline.
+ /* Apply IIR filter to results and program into the pipeline. */
double *ptr = (double *)syncResults_,
*pptr = (double *)prevSyncResults_;
for (unsigned int i = 0; i < sizeof(syncResults_) / sizeof(double); i++)
pptr[i] = speed * ptr[i] + (1.0 - speed) * pptr[i];
- // Put output values into status metadata.
+ /* Put output values into status metadata. */
AlscStatus status;
memcpy(status.r, prevSyncResults_[0], sizeof(status.r));
memcpy(status.g, prevSyncResults_[1], sizeof(status.g));
@@ -346,8 +362,10 @@ void Alsc::prepare(Metadata *imageMetadata)
void Alsc::process(StatisticsPtr &stats, Metadata *imageMetadata)
{
- // Count frames since we started, and since we last poked the async
- // thread.
+ /*
+ * Count frames since we started, and since we last poked the async
+ * thread.
+ */
if (framePhase_ < (int)config_.framePeriod)
framePhase_++;
if (frameCount2_ < (int)config_.startupFrames)
@@ -415,8 +433,10 @@ void getCalTable(double ct, std::vector<AlscCalibration> const &calibrations,
void resampleCalTable(double const calTableIn[XY],
CameraMode const &cameraMode, double calTableOut[XY])
{
- // Precalculate and cache the x sampling locations and phases to save
- // recomputing them on every row.
+ /*
+ * Precalculate and cache the x sampling locations and phases to save
+ * recomputing them on every row.
+ */
int xLo[X], xHi[X];
double xf[X];
double scaleX = cameraMode.sensorWidth /
@@ -434,7 +454,7 @@ void resampleCalTable(double const calTableIn[XY],
xHi[i] = X - 1 - xHi[i];
}
}
- // Now march over the output table generating the new values.
+ /* Now march over the output table generating the new values. */
double scaleY = cameraMode.sensorHeight /
(cameraMode.height * cameraMode.scaleY);
double yOff = cameraMode.cropY / (double)cameraMode.sensorHeight;
@@ -461,7 +481,7 @@ void resampleCalTable(double const calTableIn[XY],
}
}
-// Calculate chrominance statistics (R/G and B/G) for each region.
+/* Calculate chrominance statistics (R/G and B/G) for each region. */
static_assert(XY == AWB_REGIONS, "ALSC/AWB statistics region mismatch");
static void calculateCrCb(bcm2835_isp_stats_region *awbRegion, double cr[XY],
double cb[XY], uint32_t minCount, uint16_t minG)
@@ -512,8 +532,10 @@ void compensateLambdasForCal(double const calTable[XY],
printf("]\n");
}
-// Compute weight out of 1.0 which reflects how similar we wish to make the
-// colours of these two regions.
+/*
+ * Compute weight out of 1.0 which reflects how similar we wish to make the
+ * colours of these two regions.
+ */
static double computeWeight(double Ci, double Cj, double sigma)
{
if (Ci == InsufficientData || Cj == InsufficientData)
@@ -522,11 +544,11 @@ static double computeWeight(double Ci, double Cj, double sigma)
return exp(-diff * diff / 2);
}
-// Compute all weights.
+/* Compute all weights. */
static void computeW(double const C[XY], double sigma, double W[XY][4])
{
for (int i = 0; i < XY; i++) {
- // Start with neighbour above and go clockwise.
+ /* Start with neighbour above and go clockwise. */
W[i][0] = i >= X ? computeWeight(C[i], C[i - X], sigma) : 0;
W[i][1] = i % X < X - 1 ? computeWeight(C[i], C[i + 1], sigma) : 0;
W[i][2] = i < XY - X ? computeWeight(C[i], C[i + X], sigma) : 0;
@@ -534,17 +556,19 @@ static void computeW(double const C[XY], double sigma, double W[XY][4])
}
}
-// Compute M, the large but sparse matrix such that M * lambdas = 0.
+/* Compute M, the large but sparse matrix such that M * lambdas = 0. */
static void constructM(double const C[XY], double const W[XY][4],
double M[XY][4])
{
double epsilon = 0.001;
for (int i = 0; i < XY; i++) {
- // Note how, if C[i] == INSUFFICIENT_DATA, the weights will all
- // be zero so the equation is still set up correctly.
+ /*
+ * Note how, if C[i] == INSUFFICIENT_DATA, the weights will all
+ * be zero so the equation is still set up correctly.
+ */
int m = !!(i >= X) + !!(i % X < X - 1) + !!(i < XY - X) +
- !!(i % X); // total number of neighbours
- // we'll divide the diagonal out straight away
+ !!(i % X); /* total number of neighbours */
+ /* we'll divide the diagonal out straight away */
double diagonal = (epsilon + W[i][0] + W[i][1] + W[i][2] + W[i][3]) * C[i];
M[i][0] = i >= X ? (W[i][0] * C[i - X] + epsilon / m * C[i]) / diagonal : 0;
M[i][1] = i % X < X - 1 ? (W[i][1] * C[i + 1] + epsilon / m * C[i]) / diagonal : 0;
@@ -553,9 +577,11 @@ static void constructM(double const C[XY], double const W[XY][4],
}
}
-// In the compute_lambda_ functions, note that the matrix coefficients for the
-// left/right neighbours are zero down the left/right edges, so we don't need
-// need to test the i value to exclude them.
+/*
+ * In the compute_lambda_ functions, note that the matrix coefficients for the
+ * left/right neighbours are zero down the left/right edges, so we don't need
+ * need to test the i value to exclude them.
+ */
static double computeLambdaBottom(int i, double const M[XY][4],
double lambda[XY])
{
@@ -585,7 +611,7 @@ static double computeLambdaTopEnd(int i, double const M[XY][4],
return M[i][0] * lambda[i - X] + M[i][3] * lambda[i - 1];
}
-// Gauss-Seidel iteration with over-relaxation.
+/* Gauss-Seidel iteration with over-relaxation. */
static double gaussSeidel2Sor(double const M[XY][4], double omega,
double lambda[XY], double lambdaBound)
{
@@ -610,8 +636,10 @@ static double gaussSeidel2Sor(double const M[XY][4], double omega,
}
lambda[i] = computeLambdaTopEnd(i, M, lambda);
lambda[i] = std::clamp(lambda[i], min, max);
- // Also solve the system from bottom to top, to help spread the updates
- // better.
+ /*
+ * Also solve the system from bottom to top, to help spread the updates
+ * better.
+ */
lambda[i] = computeLambdaTopEnd(i, M, lambda);
lambda[i] = std::clamp(lambda[i], min, max);
for (i = XY - 2; i >= XY - X; i--) {
@@ -637,7 +665,7 @@ static double gaussSeidel2Sor(double const M[XY][4], double omega,
return maxDiff;
}
-// Normalise the values so that the smallest value is 1.
+/* Normalise the values so that the smallest value is 1. */
static void normalise(double *ptr, size_t n)
{
double minval = ptr[0];
@@ -647,7 +675,7 @@ static void normalise(double *ptr, size_t n)
ptr[i] /= minval;
}
-// Rescale the values so that the average value is 1.
+/* Rescale the values so that the average value is 1. */
static void reaverage(Span<double> data)
{
double sum = std::accumulate(data.begin(), data.end(), 0.0);
@@ -670,15 +698,17 @@ static void runMatrixIterations(double const C[XY], double lambda[XY],
<< "Stop after " << i + 1 << " iterations";
break;
}
- // this happens very occasionally (so make a note), though
- // doesn't seem to matter
+ /*
+ * this happens very occasionally (so make a note), though
+ * doesn't seem to matter
+ */
if (maxDiff > lastMaxDiff)
LOG(RPiAlsc, Debug)
<< "Iteration " << i << ": maxDiff gone up "
<< lastMaxDiff << " to " << maxDiff;
lastMaxDiff = maxDiff;
}
- // We're going to normalise the lambdas so the total average is 1.
+ /* We're going to normalise the lambdas so the total average is 1. */
reaverage({ lambda, XY });
}
@@ -712,41 +742,49 @@ void addLuminanceToTables(double results[3][Y][X], double const lambdaR[XY],
void Alsc::doAlsc()
{
double cr[XY], cb[XY], wr[XY][4], wb[XY][4], calTableR[XY], calTableB[XY], calTableTmp[XY];
- // Calculate our R/B ("Cr"/"Cb") colour statistics, and assess which are
- // usable.
+ /*
+ * Calculate our R/B ("Cr"/"Cb") colour statistics, and assess which are
+ * usable.
+ */
calculateCrCb(statistics_, cr, cb, config_.minCount, config_.minG);
- // Fetch the new calibrations (if any) for this CT. Resample them in
- // case the camera mode is not full-frame.
+ /*
+ * Fetch the new calibrations (if any) for this CT. Resample them in
+ * case the camera mode is not full-frame.
+ */
getCalTable(ct_, config_.calibrationsCr, calTableTmp);
resampleCalTable(calTableTmp, cameraMode_, calTableR);
getCalTable(ct_, config_.calibrationsCb, calTableTmp);
resampleCalTable(calTableTmp, cameraMode_, calTableB);
- // You could print out the cal tables for this image here, if you're
- // tuning the algorithm...
- // Apply any calibration to the statistics, so the adaptive algorithm
- // makes only the extra adjustments.
+ /*
+ * You could print out the cal tables for this image here, if you're
+ * tuning the algorithm...
+ * Apply any calibration to the statistics, so the adaptive algorithm
+ * makes only the extra adjustments.
+ */
applyCalTable(calTableR, cr);
applyCalTable(calTableB, cb);
- // Compute weights between zones.
+ /* Compute weights between zones. */
computeW(cr, config_.sigmaCr, wr);
computeW(cb, config_.sigmaCb, wb);
- // Run Gauss-Seidel iterations over the resulting matrix, for R and B.
+ /* Run Gauss-Seidel iterations over the resulting matrix, for R and B. */
runMatrixIterations(cr, lambdaR_, wr, config_.omega, config_.nIter,
config_.threshold, config_.lambdaBound);
runMatrixIterations(cb, lambdaB_, wb, config_.omega, config_.nIter,
config_.threshold, config_.lambdaBound);
- // Fold the calibrated gains into our final lambda values. (Note that on
- // the next run, we re-start with the lambda values that don't have the
- // calibration gains included.)
+ /*
+ * Fold the calibrated gains into our final lambda values. (Note that on
+ * the next run, we re-start with the lambda values that don't have the
+ * calibration gains included.)
+ */
compensateLambdasForCal(calTableR, lambdaR_, asyncLambdaR_);
compensateLambdasForCal(calTableB, lambdaB_, asyncLambdaB_);
- // Fold in the luminance table at the appropriate strength.
+ /* Fold in the luminance table at the appropriate strength. */
addLuminanceToTables(asyncResults_, asyncLambdaR_, 1.0,
asyncLambdaB_, luminanceTable_,
config_.luminanceStrength);
}
-// Register algorithm with the system.
+/* Register algorithm with the system. */
static Algorithm *create(Controller *controller)
{
return (Algorithm *)new Alsc(controller);