diff options
Diffstat (limited to 'src/ipa/raspberrypi/controller/rpi/alsc.cpp')
-rw-r--r-- | src/ipa/raspberrypi/controller/rpi/alsc.cpp | 180 |
1 files changed, 109 insertions, 71 deletions
diff --git a/src/ipa/raspberrypi/controller/rpi/alsc.cpp b/src/ipa/raspberrypi/controller/rpi/alsc.cpp index 98b77154..6fd95a31 100644 --- a/src/ipa/raspberrypi/controller/rpi/alsc.cpp +++ b/src/ipa/raspberrypi/controller/rpi/alsc.cpp @@ -14,7 +14,7 @@ #include "../awb_status.h" #include "alsc.hpp" -// Raspberry Pi ALSC (Auto Lens Shading Correction) algorithm. +/* Raspberry Pi ALSC (Auto Lens Shading Correction) algorithm. */ using namespace RPiController; using namespace libcamera; @@ -68,7 +68,7 @@ static void generateLut(double *lut, boost::property_tree::ptree const ¶ms) double r2 = (dx * dx + dy * dy) / R2; lut[num++] = (f1 * r2 + f2) * (f1 * r2 + f2) / - (f2 * f2); // this reproduces the cos^4 rule + (f2 * f2); /* this reproduces the cos^4 rule */ } } } @@ -171,7 +171,7 @@ void Alsc::initialise() frameCount2_ = frameCount_ = framePhase_ = 0; firstTime_ = true; ct_ = config_.defaultCt; - // The lambdas are initialised in the SwitchMode. + /* The lambdas are initialised in the SwitchMode. */ } void Alsc::waitForAysncThread() @@ -188,8 +188,10 @@ void Alsc::waitForAysncThread() static bool compareModes(CameraMode const &cm0, CameraMode const &cm1) { - // Return true if the modes crop from the sensor significantly differently, - // or if the user transform has changed. + /* + * Return true if the modes crop from the sensor significantly differently, + * or if the user transform has changed. + */ if (cm0.transform != cm1.transform) return true; int leftDiff = abs(cm0.cropX - cm1.cropX); @@ -198,9 +200,11 @@ static bool compareModes(CameraMode const &cm0, CameraMode const &cm1) cm1.cropX - cm1.scaleX * cm1.width); int bottomDiff = fabs(cm0.cropY + cm0.scaleY * cm0.height - cm1.cropY - cm1.scaleY * cm1.height); - // These thresholds are a rather arbitrary amount chosen to trigger - // when carrying on with the previously calculated tables might be - // worse than regenerating them (but without the adaptive algorithm). + /* + * These thresholds are a rather arbitrary amount chosen to trigger + * when carrying on with the previously calculated tables might be + * worse than regenerating them (but without the adaptive algorithm). + */ int thresholdX = cm0.sensorWidth >> 4; int thresholdY = cm0.sensorHeight >> 4; return leftDiff > thresholdX || rightDiff > thresholdX || @@ -210,28 +214,34 @@ static bool compareModes(CameraMode const &cm0, CameraMode const &cm1) void Alsc::switchMode(CameraMode const &cameraMode, [[maybe_unused]] Metadata *metadata) { - // We're going to start over with the tables if there's any "significant" - // change. + /* + * We're going to start over with the tables if there's any "significant" + * change. + */ bool resetTables = firstTime_ || compareModes(cameraMode_, cameraMode); - // Believe the colour temperature from the AWB, if there is one. + /* Believe the colour temperature from the AWB, if there is one. */ ct_ = getCt(metadata, ct_); - // Ensure the other thread isn't running while we do this. + /* Ensure the other thread isn't running while we do this. */ waitForAysncThread(); cameraMode_ = cameraMode; - // We must resample the luminance table like we do the others, but it's - // fixed so we can simply do it up front here. + /* + * We must resample the luminance table like we do the others, but it's + * fixed so we can simply do it up front here. + */ resampleCalTable(config_.luminanceLut, cameraMode_, luminanceTable_); if (resetTables) { - // Upon every "table reset", arrange for something sensible to be - // generated. Construct the tables for the previous recorded colour - // temperature. In order to start over from scratch we initialise - // the lambdas, but the rest of this code then echoes the code in - // doAlsc, without the adaptive algorithm. + /* + * Upon every "table reset", arrange for something sensible to be + * generated. Construct the tables for the previous recorded colour + * temperature. In order to start over from scratch we initialise + * the lambdas, but the rest of this code then echoes the code in + * doAlsc, without the adaptive algorithm. + */ for (int i = 0; i < XY; i++) lambdaR_[i] = lambdaB_[i] = 1.0; double calTableR[XY], calTableB[XY], calTableTmp[XY]; @@ -244,7 +254,7 @@ void Alsc::switchMode(CameraMode const &cameraMode, addLuminanceToTables(syncResults_, asyncLambdaR_, 1.0, asyncLambdaB_, luminanceTable_, config_.luminanceStrength); memcpy(prevSyncResults_, syncResults_, sizeof(prevSyncResults_)); - framePhase_ = config_.framePeriod; // run the algo again asap + framePhase_ = config_.framePeriod; /* run the algo again asap */ firstTime_ = false; } } @@ -260,7 +270,7 @@ void Alsc::fetchAsyncResults() double getCt(Metadata *metadata, double defaultCt) { AwbStatus awbStatus; - awbStatus.temperatureK = defaultCt; // in case nothing found + awbStatus.temperatureK = defaultCt; /* in case nothing found */ if (metadata->get("awb.status", awbStatus) != 0) LOG(RPiAlsc, Debug) << "no AWB results found, using " << awbStatus.temperatureK; @@ -282,18 +292,22 @@ static void copyStats(bcm2835_isp_stats_region regions[XY], StatisticsPtr &stats regions[i].g_sum = inputRegions[i].g_sum / gTable[i]; regions[i].b_sum = inputRegions[i].b_sum / bTable[i]; regions[i].counted = inputRegions[i].counted; - // (don't care about the uncounted value) + /* (don't care about the uncounted value) */ } } void Alsc::restartAsync(StatisticsPtr &stats, Metadata *imageMetadata) { LOG(RPiAlsc, Debug) << "Starting ALSC calculation"; - // Get the current colour temperature. It's all we need from the - // metadata. Default to the last CT value (which could be the default). + /* + * Get the current colour temperature. It's all we need from the + * metadata. Default to the last CT value (which could be the default). + */ ct_ = getCt(imageMetadata, ct_); - // We have to copy the statistics here, dividing out our best guess of - // the LSC table that the pipeline applied to them. + /* + * We have to copy the statistics here, dividing out our best guess of + * the LSC table that the pipeline applied to them. + */ AlscStatus alscStatus; if (imageMetadata->get("alsc.status", alscStatus) != 0) { LOG(RPiAlsc, Warning) @@ -317,8 +331,10 @@ void Alsc::restartAsync(StatisticsPtr &stats, Metadata *imageMetadata) void Alsc::prepare(Metadata *imageMetadata) { - // Count frames since we started, and since we last poked the async - // thread. + /* + * Count frames since we started, and since we last poked the async + * thread. + */ if (frameCount_ < (int)config_.startupFrames) frameCount_++; double speed = frameCount_ < (int)config_.startupFrames @@ -331,12 +347,12 @@ void Alsc::prepare(Metadata *imageMetadata) if (asyncStarted_ && asyncFinished_) fetchAsyncResults(); } - // Apply IIR filter to results and program into the pipeline. + /* Apply IIR filter to results and program into the pipeline. */ double *ptr = (double *)syncResults_, *pptr = (double *)prevSyncResults_; for (unsigned int i = 0; i < sizeof(syncResults_) / sizeof(double); i++) pptr[i] = speed * ptr[i] + (1.0 - speed) * pptr[i]; - // Put output values into status metadata. + /* Put output values into status metadata. */ AlscStatus status; memcpy(status.r, prevSyncResults_[0], sizeof(status.r)); memcpy(status.g, prevSyncResults_[1], sizeof(status.g)); @@ -346,8 +362,10 @@ void Alsc::prepare(Metadata *imageMetadata) void Alsc::process(StatisticsPtr &stats, Metadata *imageMetadata) { - // Count frames since we started, and since we last poked the async - // thread. + /* + * Count frames since we started, and since we last poked the async + * thread. + */ if (framePhase_ < (int)config_.framePeriod) framePhase_++; if (frameCount2_ < (int)config_.startupFrames) @@ -415,8 +433,10 @@ void getCalTable(double ct, std::vector<AlscCalibration> const &calibrations, void resampleCalTable(double const calTableIn[XY], CameraMode const &cameraMode, double calTableOut[XY]) { - // Precalculate and cache the x sampling locations and phases to save - // recomputing them on every row. + /* + * Precalculate and cache the x sampling locations and phases to save + * recomputing them on every row. + */ int xLo[X], xHi[X]; double xf[X]; double scaleX = cameraMode.sensorWidth / @@ -434,7 +454,7 @@ void resampleCalTable(double const calTableIn[XY], xHi[i] = X - 1 - xHi[i]; } } - // Now march over the output table generating the new values. + /* Now march over the output table generating the new values. */ double scaleY = cameraMode.sensorHeight / (cameraMode.height * cameraMode.scaleY); double yOff = cameraMode.cropY / (double)cameraMode.sensorHeight; @@ -461,7 +481,7 @@ void resampleCalTable(double const calTableIn[XY], } } -// Calculate chrominance statistics (R/G and B/G) for each region. +/* Calculate chrominance statistics (R/G and B/G) for each region. */ static_assert(XY == AWB_REGIONS, "ALSC/AWB statistics region mismatch"); static void calculateCrCb(bcm2835_isp_stats_region *awbRegion, double cr[XY], double cb[XY], uint32_t minCount, uint16_t minG) @@ -512,8 +532,10 @@ void compensateLambdasForCal(double const calTable[XY], printf("]\n"); } -// Compute weight out of 1.0 which reflects how similar we wish to make the -// colours of these two regions. +/* + * Compute weight out of 1.0 which reflects how similar we wish to make the + * colours of these two regions. + */ static double computeWeight(double Ci, double Cj, double sigma) { if (Ci == InsufficientData || Cj == InsufficientData) @@ -522,11 +544,11 @@ static double computeWeight(double Ci, double Cj, double sigma) return exp(-diff * diff / 2); } -// Compute all weights. +/* Compute all weights. */ static void computeW(double const C[XY], double sigma, double W[XY][4]) { for (int i = 0; i < XY; i++) { - // Start with neighbour above and go clockwise. + /* Start with neighbour above and go clockwise. */ W[i][0] = i >= X ? computeWeight(C[i], C[i - X], sigma) : 0; W[i][1] = i % X < X - 1 ? computeWeight(C[i], C[i + 1], sigma) : 0; W[i][2] = i < XY - X ? computeWeight(C[i], C[i + X], sigma) : 0; @@ -534,17 +556,19 @@ static void computeW(double const C[XY], double sigma, double W[XY][4]) } } -// Compute M, the large but sparse matrix such that M * lambdas = 0. +/* Compute M, the large but sparse matrix such that M * lambdas = 0. */ static void constructM(double const C[XY], double const W[XY][4], double M[XY][4]) { double epsilon = 0.001; for (int i = 0; i < XY; i++) { - // Note how, if C[i] == INSUFFICIENT_DATA, the weights will all - // be zero so the equation is still set up correctly. + /* + * Note how, if C[i] == INSUFFICIENT_DATA, the weights will all + * be zero so the equation is still set up correctly. + */ int m = !!(i >= X) + !!(i % X < X - 1) + !!(i < XY - X) + - !!(i % X); // total number of neighbours - // we'll divide the diagonal out straight away + !!(i % X); /* total number of neighbours */ + /* we'll divide the diagonal out straight away */ double diagonal = (epsilon + W[i][0] + W[i][1] + W[i][2] + W[i][3]) * C[i]; M[i][0] = i >= X ? (W[i][0] * C[i - X] + epsilon / m * C[i]) / diagonal : 0; M[i][1] = i % X < X - 1 ? (W[i][1] * C[i + 1] + epsilon / m * C[i]) / diagonal : 0; @@ -553,9 +577,11 @@ static void constructM(double const C[XY], double const W[XY][4], } } -// In the compute_lambda_ functions, note that the matrix coefficients for the -// left/right neighbours are zero down the left/right edges, so we don't need -// need to test the i value to exclude them. +/* + * In the compute_lambda_ functions, note that the matrix coefficients for the + * left/right neighbours are zero down the left/right edges, so we don't need + * need to test the i value to exclude them. + */ static double computeLambdaBottom(int i, double const M[XY][4], double lambda[XY]) { @@ -585,7 +611,7 @@ static double computeLambdaTopEnd(int i, double const M[XY][4], return M[i][0] * lambda[i - X] + M[i][3] * lambda[i - 1]; } -// Gauss-Seidel iteration with over-relaxation. +/* Gauss-Seidel iteration with over-relaxation. */ static double gaussSeidel2Sor(double const M[XY][4], double omega, double lambda[XY], double lambdaBound) { @@ -610,8 +636,10 @@ static double gaussSeidel2Sor(double const M[XY][4], double omega, } lambda[i] = computeLambdaTopEnd(i, M, lambda); lambda[i] = std::clamp(lambda[i], min, max); - // Also solve the system from bottom to top, to help spread the updates - // better. + /* + * Also solve the system from bottom to top, to help spread the updates + * better. + */ lambda[i] = computeLambdaTopEnd(i, M, lambda); lambda[i] = std::clamp(lambda[i], min, max); for (i = XY - 2; i >= XY - X; i--) { @@ -637,7 +665,7 @@ static double gaussSeidel2Sor(double const M[XY][4], double omega, return maxDiff; } -// Normalise the values so that the smallest value is 1. +/* Normalise the values so that the smallest value is 1. */ static void normalise(double *ptr, size_t n) { double minval = ptr[0]; @@ -647,7 +675,7 @@ static void normalise(double *ptr, size_t n) ptr[i] /= minval; } -// Rescale the values so that the average value is 1. +/* Rescale the values so that the average value is 1. */ static void reaverage(Span<double> data) { double sum = std::accumulate(data.begin(), data.end(), 0.0); @@ -670,15 +698,17 @@ static void runMatrixIterations(double const C[XY], double lambda[XY], << "Stop after " << i + 1 << " iterations"; break; } - // this happens very occasionally (so make a note), though - // doesn't seem to matter + /* + * this happens very occasionally (so make a note), though + * doesn't seem to matter + */ if (maxDiff > lastMaxDiff) LOG(RPiAlsc, Debug) << "Iteration " << i << ": maxDiff gone up " << lastMaxDiff << " to " << maxDiff; lastMaxDiff = maxDiff; } - // We're going to normalise the lambdas so the total average is 1. + /* We're going to normalise the lambdas so the total average is 1. */ reaverage({ lambda, XY }); } @@ -712,41 +742,49 @@ void addLuminanceToTables(double results[3][Y][X], double const lambdaR[XY], void Alsc::doAlsc() { double cr[XY], cb[XY], wr[XY][4], wb[XY][4], calTableR[XY], calTableB[XY], calTableTmp[XY]; - // Calculate our R/B ("Cr"/"Cb") colour statistics, and assess which are - // usable. + /* + * Calculate our R/B ("Cr"/"Cb") colour statistics, and assess which are + * usable. + */ calculateCrCb(statistics_, cr, cb, config_.minCount, config_.minG); - // Fetch the new calibrations (if any) for this CT. Resample them in - // case the camera mode is not full-frame. + /* + * Fetch the new calibrations (if any) for this CT. Resample them in + * case the camera mode is not full-frame. + */ getCalTable(ct_, config_.calibrationsCr, calTableTmp); resampleCalTable(calTableTmp, cameraMode_, calTableR); getCalTable(ct_, config_.calibrationsCb, calTableTmp); resampleCalTable(calTableTmp, cameraMode_, calTableB); - // You could print out the cal tables for this image here, if you're - // tuning the algorithm... - // Apply any calibration to the statistics, so the adaptive algorithm - // makes only the extra adjustments. + /* + * You could print out the cal tables for this image here, if you're + * tuning the algorithm... + * Apply any calibration to the statistics, so the adaptive algorithm + * makes only the extra adjustments. + */ applyCalTable(calTableR, cr); applyCalTable(calTableB, cb); - // Compute weights between zones. + /* Compute weights between zones. */ computeW(cr, config_.sigmaCr, wr); computeW(cb, config_.sigmaCb, wb); - // Run Gauss-Seidel iterations over the resulting matrix, for R and B. + /* Run Gauss-Seidel iterations over the resulting matrix, for R and B. */ runMatrixIterations(cr, lambdaR_, wr, config_.omega, config_.nIter, config_.threshold, config_.lambdaBound); runMatrixIterations(cb, lambdaB_, wb, config_.omega, config_.nIter, config_.threshold, config_.lambdaBound); - // Fold the calibrated gains into our final lambda values. (Note that on - // the next run, we re-start with the lambda values that don't have the - // calibration gains included.) + /* + * Fold the calibrated gains into our final lambda values. (Note that on + * the next run, we re-start with the lambda values that don't have the + * calibration gains included.) + */ compensateLambdasForCal(calTableR, lambdaR_, asyncLambdaR_); compensateLambdasForCal(calTableB, lambdaB_, asyncLambdaB_); - // Fold in the luminance table at the appropriate strength. + /* Fold in the luminance table at the appropriate strength. */ addLuminanceToTables(asyncResults_, asyncLambdaR_, 1.0, asyncLambdaB_, luminanceTable_, config_.luminanceStrength); } -// Register algorithm with the system. +/* Register algorithm with the system. */ static Algorithm *create(Controller *controller) { return (Algorithm *)new Alsc(controller); |