diff options
author | Naushir Patuck <naush@raspberrypi.com> | 2020-05-03 16:49:53 +0100 |
---|---|---|
committer | Laurent Pinchart <laurent.pinchart@ideasonboard.com> | 2020-05-11 23:54:45 +0300 |
commit | c01cfe14f5540ba96b458088185ac7ae90bb3534 (patch) | |
tree | f9112e0195de83ea1b20cf81cb62144cd50174f9 /utils/raspberrypi/ctt/ctt_geq.py | |
parent | 0db2c8dc75e466e7648dc1b95380495c6a126349 (diff) |
libcamera: utils: Raspberry Pi Camera Tuning Tool
Initial implementation of the Raspberry Pi (BCM2835) Camera Tuning Tool.
All code is licensed under the BSD-2-Clause terms.
Copyright (c) 2019-2020 Raspberry Pi Trading Ltd.
Signed-off-by: Naushir Patuck <naush@raspberrypi.com>
Acked-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Diffstat (limited to 'utils/raspberrypi/ctt/ctt_geq.py')
-rw-r--r-- | utils/raspberrypi/ctt/ctt_geq.py | 179 |
1 files changed, 179 insertions, 0 deletions
diff --git a/utils/raspberrypi/ctt/ctt_geq.py b/utils/raspberrypi/ctt/ctt_geq.py new file mode 100644 index 00000000..dd798f4a --- /dev/null +++ b/utils/raspberrypi/ctt/ctt_geq.py @@ -0,0 +1,179 @@ +# SPDX-License-Identifier: BSD-2-Clause +# +# Copyright (C) 2019, Raspberry Pi (Trading) Limited +# +# ctt_geq.py - camera tuning tool for GEQ (green equalisation) + +from ctt_tools import * +import matplotlib.pyplot as plt +import scipy.optimize as optimize + +""" +Uses green differences in macbeth patches to fit green equalisation threshold +model. Ideally, all macbeth chart centres would fall below the threshold as +these should be corrected by geq. +""" +def geq_fit(Cam,plot): + imgs = Cam.imgs + """ + green equalisation to mitigate mazing. + Fits geq model by looking at difference + between greens in macbeth patches + """ + geqs = np.array([ geq(Cam,Img)*Img.againQ8_norm for Img in imgs ]) + Cam.log += '\nProcessed all images' + geqs = geqs.reshape((-1,2)) + """ + data is sorted by green difference and top half is selected since higher + green difference data define the decision boundary. + """ + geqs = np.array(sorted(geqs,key = lambda r:np.abs((r[1]-r[0])/r[0]))) + + length = len(geqs) + g0 = geqs[length//2:,0] + g1 = geqs[length//2:,1] + gdiff = np.abs(g0-g1) + """ + find linear fit by minimising asymmetric least square errors + in order to cover most of the macbeth images. + the philosophy here is that every macbeth patch should fall within the + threshold, hence the upper bound approach + """ + def f(params): + m,c = params + a = gdiff - (m*g0+c) + """ + asymmetric square error returns: + 1.95 * a**2 if a is positive + 0.05 * a**2 if a is negative + """ + return(np.sum(a**2+0.95*np.abs(a)*a)) + + initial_guess = [0.01,500] + """ + Nelder-Mead is usually not the most desirable optimisation method + but has been chosen here due to its robustness to undifferentiability + (is that a word?) + """ + result = optimize.minimize(f,initial_guess,method='Nelder-Mead') + """ + need to check if the fit worked correectly + """ + if result.success: + slope,offset = result.x + Cam.log += '\nFit result: slope = {:.5f} '.format(slope) + Cam.log += 'offset = {}'.format(int(offset)) + """ + optional plotting code + """ + if plot: + x = np.linspace(max(g0)*1.1,100) + y = slope*x + offset + plt.title('GEQ Asymmetric \'Upper Bound\' Fit') + plt.plot(x,y,color='red',ls='--',label='fit') + plt.scatter(g0,gdiff,color='b',label='data') + plt.ylabel('Difference in green channels') + plt.xlabel('Green value') + + """ + This upper bound asymmetric gives correct order of magnitude values. + The pipeline approximates a 1st derivative of a gaussian with some + linear piecewise functions, introducing arbitrary cutoffs. For + pessimistic geq, the model parameters have been increased by a + scaling factor/constant. + + Feel free to tune these or edit the json files directly if you + belive there are still mazing effects left (threshold too low) or if you + think it is being overcorrected (threshold too high). + We have gone for a one size fits most approach that will produce + acceptable results in most applications. + """ + slope *= 1.5 + offset += 201 + Cam.log += '\nFit after correction factors: slope = {:.5f}'.format(slope) + Cam.log += ' offset = {}'.format(int(offset)) + """ + clamp offset at 0 due to pipeline considerations + """ + if offset < 0: + Cam.log += '\nOffset raised to 0' + offset = 0 + """ + optional plotting code + """ + if plot: + y2 = slope*x + offset + plt.plot(x,y2,color='green',ls='--',label='scaled fit') + plt.grid() + plt.legend() + plt.show() + + """ + the case where for some reason the fit didn't work correctly + + Transpose data and then least squares linear fit. Transposing data + makes it robust to many patches where green difference is the same + since they only contribute to one error minimisation, instead of dragging + the entire linear fit down. + """ + + else: + print('\nError! Couldn\'t fit asymmetric lest squares') + print(result.message) + Cam.log += '\nWARNING: Asymmetric least squares fit failed! ' + Cam.log += 'Standard fit used could possibly lead to worse results' + fit = np.polyfit(gdiff,g0,1) + offset,slope = -fit[1]/fit[0],1/fit[0] + Cam.log += '\nFit result: slope = {:.5f} '.format(slope) + Cam.log += 'offset = {}'.format(int(offset)) + """ + optional plotting code + """ + if plot: + x = np.linspace(max(g0)*1.1,100) + y = slope*x + offset + plt.title('GEQ Linear Fit') + plt.plot(x,y,color='red',ls='--',label='fit') + plt.scatter(g0,gdiff,color='b',label='data') + plt.ylabel('Difference in green channels') + plt.xlabel('Green value') + """ + Scaling factors (see previous justification) + The model here will not be an upper bound so scaling factors have + been increased. + This method of deriving geq model parameters is extremely arbitrary + and undesirable. + """ + slope *= 2.5 + offset += 301 + Cam.log += '\nFit after correction factors: slope = {:.5f}'.format(slope) + Cam.log += ' offset = {}'.format(int(offset)) + + if offset < 0: + Cam.log += '\nOffset raised to 0' + offset = 0 + + """ + optional plotting code + """ + if plot: + y2 = slope*x + offset + plt.plot(x,y2,color='green',ls='--',label='scaled fit') + plt.legend() + plt.grid() + plt.show() + + return round(slope,5),int(offset) + +"""" +Return green channels of macbeth patches +returns g0,g1 where +> g0 is green next to red +> g1 is green next to blue +""" +def geq(Cam,Img): + Cam.log += '\nProcessing image {}'.format(Img.name) + patches = [Img.patches[i] for i in Img.order][1:3] + g_patches = np.array([(np.mean(patches[0][i]),np.mean(patches[1][i])) for i in range(24)]) + Cam.log += '\n' + return(g_patches) |