diff options
author | Naushir Patuck <naush@raspberrypi.com> | 2020-05-03 16:49:53 +0100 |
---|---|---|
committer | Laurent Pinchart <laurent.pinchart@ideasonboard.com> | 2020-05-11 23:54:45 +0300 |
commit | c01cfe14f5540ba96b458088185ac7ae90bb3534 (patch) | |
tree | f9112e0195de83ea1b20cf81cb62144cd50174f9 /utils/raspberrypi/ctt/ctt_ccm.py | |
parent | 0db2c8dc75e466e7648dc1b95380495c6a126349 (diff) |
libcamera: utils: Raspberry Pi Camera Tuning Tool
Initial implementation of the Raspberry Pi (BCM2835) Camera Tuning Tool.
All code is licensed under the BSD-2-Clause terms.
Copyright (c) 2019-2020 Raspberry Pi Trading Ltd.
Signed-off-by: Naushir Patuck <naush@raspberrypi.com>
Acked-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Diffstat (limited to 'utils/raspberrypi/ctt/ctt_ccm.py')
-rw-r--r-- | utils/raspberrypi/ctt/ctt_ccm.py | 221 |
1 files changed, 221 insertions, 0 deletions
diff --git a/utils/raspberrypi/ctt/ctt_ccm.py b/utils/raspberrypi/ctt/ctt_ccm.py new file mode 100644 index 00000000..8200a27f --- /dev/null +++ b/utils/raspberrypi/ctt/ctt_ccm.py @@ -0,0 +1,221 @@ +# SPDX-License-Identifier: BSD-2-Clause +# +# Copyright (C) 2019, Raspberry Pi (Trading) Limited +# +# ctt_ccm.py - camera tuning tool for CCM (colour correction matrix) + +from ctt_image_load import * +from ctt_awb import get_alsc_patches + +""" +takes 8-bit macbeth chart values, degammas and returns 16 bit +""" +def degamma(x): + x = x / ((2**8)-1) + x = np.where(x < 0.04045, x/12.92, ((x+0.055)/1.055)**2.4) + x = x * ((2**16)-1) + return x + +""" +FInds colour correction matrices for list of images +""" +def ccm(Cam,cal_cr_list,cal_cb_list): + imgs = Cam.imgs + """ + standard macbeth chart colour values + """ + m_rgb = np.array([ # these are in sRGB + [116, 81, 67], # dark skin + [199, 147, 129], # light skin + [91, 122, 156], # blue sky + [90, 108, 64], # foliage + [130, 128, 176], # blue flower + [92, 190, 172], # bluish green + [224, 124, 47], # orange + [68, 91,170], # purplish blue + [198, 82, 97], # moderate red + [94, 58, 106], # purple + [159, 189, 63], # yellow green + [230, 162, 39], # orange yellow + [35, 63, 147], # blue + [67, 149, 74], # green + [180, 49, 57], # red + [238, 198, 20], # yellow + [193, 84, 151], # magenta + [0, 136, 170], # cyan (goes out of gamut) + [245, 245, 243], # white 9.5 + [200, 202, 202], # neutral 8 + [161, 163, 163], # neutral 6.5 + [121, 121, 122], # neutral 5 + [82, 84, 86], # neutral 3.5 + [49, 49, 51] # black 2 + ]) + + """ + convert reference colours from srgb to rgb + """ + m_srgb = degamma(m_rgb) + """ + reorder reference values to match how patches are ordered + """ + m_srgb = np.array([m_srgb[i::6] for i in range(6)]).reshape((24,3)) + + """ + reformat alsc correction tables or set colour_cals to None if alsc is + deactivated + """ + if cal_cr_list == None: + colour_cals = None + else: + colour_cals = {} + for cr,cb in zip(cal_cr_list,cal_cb_list): + cr_tab = cr['table'] + cb_tab = cb['table'] + """ + normalise tables so min value is 1 + """ + cr_tab= cr_tab/np.min(cr_tab) + cb_tab= cb_tab/np.min(cb_tab) + colour_cals[cr['ct']] = [cr_tab,cb_tab] + + """ + for each image, perform awb and alsc corrections. + Then calculate the colour correction matrix for that image, recording the + ccm and the colour tempertaure. + """ + ccm_tab = {} + for Img in imgs: + Cam.log += '\nProcessing image: ' + Img.name + """ + get macbeth patches with alsc applied if alsc enabled. + Note: if alsc is disabled then colour_cals will be set to None and no + the function will simply return the macbeth patches + """ + r,b,g = get_alsc_patches(Img,colour_cals,grey=False) + """ + do awb + Note: awb is done by measuring the macbeth chart in the image, rather + than from the awb calibration. This is done so the awb will be perfect + and the ccm matrices will be more accurate. + """ + r_greys,b_greys,g_greys = r[3::4],b[3::4],g[3::4] + r_g = np.mean(r_greys/g_greys) + b_g = np.mean(b_greys/g_greys) + r = r / r_g + b = b / b_g + + """ + normalise brightness wrt reference macbeth colours and then average + each channel for each patch + """ + gain = np.mean(m_srgb)/np.mean((r,g,b)) + Cam.log += '\nGain with respect to standard colours: {:.3f}'.format(gain) + r = np.mean(gain*r,axis=1) + b = np.mean(gain*b,axis=1) + g = np.mean(gain*g,axis=1) + + """ + calculate ccm matrix + """ + ccm = do_ccm(r,g,b,m_srgb) + + """ + if a ccm has already been calculated for that temperature then don't + overwrite but save both. They will then be averaged later on + """ + if Img.col in ccm_tab.keys(): + ccm_tab[Img.col].append(ccm) + else: + ccm_tab[Img.col] = [ccm] + Cam.log += '\n' + + Cam.log += '\nFinished processing images' + """ + average any ccms that share a colour temperature + """ + for k,v in ccm_tab.items(): + tab = np.mean(v,axis=0) + tab = np.where((10000*tab)%1<=0.05,tab+0.00001,tab) + tab = np.where((10000*tab)%1>=0.95,tab-0.00001,tab) + ccm_tab[k] = list(np.round(tab,5)) + Cam.log += '\nMatrix calculated for colour temperature of {} K'.format(k) + + """ + return all ccms with respective colour temperature in the correct format, + sorted by their colour temperature + """ + sorted_ccms = sorted(ccm_tab.items(),key=lambda kv: kv[0]) + ccms = [] + for i in sorted_ccms: + ccms.append({ + 'ct' : i[0], + 'ccm' : i[1] + }) + return ccms + +""" +calculates the ccm for an individual image. +ccms are calculate in rgb space, and are fit by hand. Although it is a 3x3 +matrix, each row must add up to 1 in order to conserve greyness, simplifying +calculation. +Should you want to fit them in another space (e.g. LAB) we wish you the best of +luck and send us the code when you are done! :-) +""" +def do_ccm(r,g,b,m_srgb): + rb = r-b + gb = g-b + rb_2s = (rb*rb) + rb_gbs = (rb*gb) + gb_2s = (gb*gb) + + r_rbs = ( rb * (m_srgb[...,0] - b) ) + r_gbs = ( gb * (m_srgb[...,0] - b) ) + g_rbs = ( rb * (m_srgb[...,1] - b) ) + g_gbs = ( gb * (m_srgb[...,1] - b) ) + b_rbs = ( rb * (m_srgb[...,2] - b) ) + b_gbs = ( gb * (m_srgb[...,2] - b) ) + + """ + Obtain least squares fit + """ + rb_2 = np.sum(rb_2s) + gb_2 = np.sum(gb_2s) + rb_gb = np.sum(rb_gbs) + r_rb = np.sum(r_rbs) + r_gb = np.sum(r_gbs) + g_rb = np.sum(g_rbs) + g_gb = np.sum(g_gbs) + b_rb = np.sum(b_rbs) + b_gb = np.sum(b_gbs) + + det = rb_2*gb_2 - rb_gb*rb_gb + + """ + Raise error if matrix is singular... + This shouldn't really happen with real data but if it does just take new + pictures and try again, not much else to be done unfortunately... + """ + if det < 0.001: + raise ArithmeticError + + r_a = (gb_2*r_rb - rb_gb*r_gb)/det + r_b = (rb_2*r_gb - rb_gb*r_rb)/det + """ + Last row can be calculated by knowing the sum must be 1 + """ + r_c = 1 - r_a - r_b + + g_a = (gb_2*g_rb - rb_gb*g_gb)/det + g_b = (rb_2*g_gb - rb_gb*g_rb)/det + g_c = 1 - g_a - g_b + + b_a = (gb_2*b_rb - rb_gb*b_gb)/det + b_b = (rb_2*b_gb - rb_gb*b_rb)/det + b_c = 1 - b_a - b_b + + """ + format ccm + """ + ccm = [r_a,r_b,r_c,g_a,g_b,g_c,b_a,b_b,b_c] + + return ccm |