summaryrefslogtreecommitdiff
path: root/src/qcam/assets/feathericons/cloud-lightning.svg
diff options
context:
space:
mode:
authorDavid Plowman <david.plowman@raspberrypi.com>2021-06-28 13:23:22 +0100
committerLaurent Pinchart <laurent.pinchart@ideasonboard.com>2021-06-28 19:33:42 +0300
commitbdf04cca086eb72a9e0528ba90a5c53d96e52a01 (patch)
treedbe4f65e6e61fe36cfdf445907983718c070aa05 /src/qcam/assets/feathericons/cloud-lightning.svg
parent8738d539f4a350d51bc1f6b780cc1fdfd62cf4ec (diff)
libcamera: Add support for monochrome sensors
This commit adds support for monochrome (greyscale) raw sensors. These are sensors that have no colour filter array, so all pixels are the same and there are no distinct colour channels. These sensors still require many of an ISP's processing stages, such as denoise, tone mapping, but not those that involve colours (such as demosaic, or colour matrices). Signed-off-by: David Plowman <david.plowman@raspberrypi.com> Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Diffstat (limited to 'src/qcam/assets/feathericons/cloud-lightning.svg')
0 files changed, 0 insertions, 0 deletions
#n129'>129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2019, Raspberry Pi Ltd
#
# camera tuning tool for CCM (colour correction matrix)

from ctt_image_load import *
from ctt_awb import get_alsc_patches
import colors
from scipy.optimize import minimize
from ctt_visualise import visualise_macbeth_chart
import numpy as np
"""
takes 8-bit macbeth chart values, degammas and returns 16 bit
"""

'''
This program has many options from which to derive the color matrix from.
The first is average. This minimises the average delta E across all patches of
the macbeth chart. Testing across all cameras yeilded this as the most color
accurate and vivid. Other options are avalible however.
Maximum minimises the maximum Delta E of the patches. It iterates through till
a minimum maximum is found (so that there is
not one patch that deviates wildly.)
This yields generally good results but overall the colors are less accurate
Have a fiddle with maximum and see what you think.
The final option allows you to select the patches for which to average across.
This means that you can bias certain patches, for instance if you want the
reds to be more accurate.
'''

matrix_selection_types = ["average", "maximum", "patches"]
typenum = 0  # select from array above, 0 = average, 1 = maximum, 2 = patches
test_patches = [1, 2, 5, 8, 9, 12, 14]

'''
Enter patches to test for. Can also be entered twice if you
would like twice as much bias on one patch.
'''


def degamma(x):
    x = x / ((2 ** 8) - 1)  # takes 255 and scales it down to one
    x = np.where(x < 0.04045, x / 12.92, ((x + 0.055) / 1.055) ** 2.4)
    x = x * ((2 ** 16) - 1)  # takes one and scales up to 65535, 16 bit color
    return x


def gamma(x):
    # Take 3 long array of color values and gamma them
    return [((colour / 255) ** (1 / 2.4) * 1.055 - 0.055) * 255 for colour in x]


"""
FInds colour correction matrices for list of images
"""


def ccm(Cam, cal_cr_list, cal_cb_list, grid_size):
    global matrix_selection_types, typenum
    imgs = Cam.imgs
    """
    standard macbeth chart colour values
    """
    m_rgb = np.array([  # these are in RGB
        [116, 81, 67],    # dark skin
        [199, 147, 129],  # light skin
        [91, 122, 156],   # blue sky
        [90, 108, 64],    # foliage
        [130, 128, 176],  # blue flower
        [92, 190, 172],   # bluish green
        [224, 124, 47],   # orange
        [68, 91, 170],    # purplish blue
        [198, 82, 97],    # moderate red
        [94, 58, 106],    # purple
        [159, 189, 63],   # yellow green
        [230, 162, 39],   # orange yellow
        [35, 63, 147],    # blue
        [67, 149, 74],    # green
        [180, 49, 57],    # red
        [238, 198, 20],   # yellow
        [193, 84, 151],   # magenta
        [0, 136, 170],    # cyan (goes out of gamut)
        [245, 245, 243],  # white 9.5
        [200, 202, 202],  # neutral 8
        [161, 163, 163],  # neutral 6.5
        [121, 121, 122],  # neutral 5
        [82, 84, 86],     # neutral 3.5
        [49, 49, 51]      # black 2
    ])
    """
    convert reference colours from srgb to rgb
    """
    m_srgb = degamma(m_rgb)  # now in 16 bit color.

    # Produce array of LAB values for ideal color chart
    m_lab = [colors.RGB_to_LAB(color / 256) for color in m_srgb]

    """
    reorder reference values to match how patches are ordered
    """
    m_srgb = np.array([m_srgb[i::6] for i in range(6)]).reshape((24, 3))
    m_lab = np.array([m_lab[i::6] for i in range(6)]).reshape((24, 3))
    m_rgb = np.array([m_rgb[i::6] for i in range(6)]).reshape((24, 3))
    """
    reformat alsc correction tables or set colour_cals to None if alsc is
    deactivated
    """
    if cal_cr_list is None:
        colour_cals = None
    else:
        colour_cals = {}
        for cr, cb in zip(cal_cr_list, cal_cb_list):
            cr_tab = cr['table']
            cb_tab = cb['table']
            """
            normalise tables so min value is 1
            """
            cr_tab = cr_tab / np.min(cr_tab)
            cb_tab = cb_tab / np.min(cb_tab)
            colour_cals[cr['ct']] = [cr_tab, cb_tab]

    """
    for each image, perform awb and alsc corrections.
    Then calculate the colour correction matrix for that image, recording the
    ccm and the colour tempertaure.
    """
    ccm_tab = {}
    for Img in imgs:
        Cam.log += '\nProcessing image: ' + Img.name
        """
        get macbeth patches with alsc applied if alsc enabled.
        Note: if alsc is disabled then colour_cals will be set to None and no
        the function will simply return the macbeth patches
        """
        r, b, g = get_alsc_patches(Img, colour_cals, grey=False, grid_size=grid_size)
        """
        do awb
        Note: awb is done by measuring the macbeth chart in the image, rather
        than from the awb calibration. This is done so the awb will be perfect
        and the ccm matrices will be more accurate.
        """
        r_greys, b_greys, g_greys = r[3::4], b[3::4], g[3::4]
        r_g = np.mean(r_greys / g_greys)
        b_g = np.mean(b_greys / g_greys)
        r = r / r_g
        b = b / b_g
        """
        normalise brightness wrt reference macbeth colours and then average
        each channel for each patch
        """
        gain = np.mean(m_srgb) / np.mean((r, g, b))