summaryrefslogtreecommitdiff
path: root/src/ipa
diff options
context:
space:
mode:
authorNaushir Patuck <naush@raspberrypi.com>2023-03-27 13:20:23 +0100
committerKieran Bingham <kieran.bingham@ideasonboard.com>2023-03-31 13:29:18 +0100
commitaf946958daf38974b614fb1a007366bd78e110fb (patch)
tree39517326b32b6807af80ce1cb00f31feccea95b3 /src/ipa
parentf6cc78b446de8dc03251aa5aab094852bca77285 (diff)
ipa: raspberrypi: Generalise the ALSC algorithm
Remove any hard-coded assumptions about the target hardware platform from the ALSC algorithm. Instead, use the "target" string provided by the camera tuning config and generalised statistics structures to determing parameters such as grid and region sizes. The ALSC calculations use run-time allocated arrays/vectors on every frame. Allocating these might add a non-trivial run-time penalty. Replace these dynamic allocations with a set of reusable pre-allocated vectors during the init phase. Signed-off-by: Naushir Patuck <naush@raspberrypi.com> Signed-off-by: David Plowman <david.plowman@raspberrypi.com> Reviewed-by: David Plowman <david.plowman@raspberrypi.com> Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com> Signed-off-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
Diffstat (limited to 'src/ipa')
-rw-r--r--src/ipa/raspberrypi/controller/alsc_status.h13
-rw-r--r--src/ipa/raspberrypi/controller/rpi/alsc.cpp341
-rw-r--r--src/ipa/raspberrypi/controller/rpi/alsc.h29
-rw-r--r--src/ipa/raspberrypi/raspberrypi.cpp9
4 files changed, 224 insertions, 168 deletions
diff --git a/src/ipa/raspberrypi/controller/alsc_status.h b/src/ipa/raspberrypi/controller/alsc_status.h
index e5aa7e37..49a9f4a0 100644
--- a/src/ipa/raspberrypi/controller/alsc_status.h
+++ b/src/ipa/raspberrypi/controller/alsc_status.h
@@ -6,16 +6,17 @@
*/
#pragma once
+#include <vector>
+
/*
* The ALSC algorithm should post the following structure into the image's
* "alsc.status" metadata.
*/
-constexpr unsigned int AlscCellsX = 16;
-constexpr unsigned int AlscCellsY = 12;
-
struct AlscStatus {
- double r[AlscCellsY][AlscCellsX];
- double g[AlscCellsY][AlscCellsX];
- double b[AlscCellsY][AlscCellsX];
+ std::vector<double> r;
+ std::vector<double> g;
+ std::vector<double> b;
+ unsigned int rows;
+ unsigned int cols;
};
diff --git a/src/ipa/raspberrypi/controller/rpi/alsc.cpp b/src/ipa/raspberrypi/controller/rpi/alsc.cpp
index eb4e2f94..51fe5d73 100644
--- a/src/ipa/raspberrypi/controller/rpi/alsc.cpp
+++ b/src/ipa/raspberrypi/controller/rpi/alsc.cpp
@@ -5,6 +5,7 @@
* alsc.cpp - ALSC (auto lens shading correction) control algorithm
*/
+#include <algorithm>
#include <functional>
#include <math.h>
#include <numeric>
@@ -24,9 +25,6 @@ LOG_DEFINE_CATEGORY(RPiAlsc)
#define NAME "rpi.alsc"
-static const int X = AlscCellsX;
-static const int Y = AlscCellsY;
-static const int XY = X * Y;
static const double InsufficientData = -1.0;
Alsc::Alsc(Controller *controller)
@@ -51,8 +49,11 @@ char const *Alsc::name() const
return NAME;
}
-static int generateLut(double *lut, const libcamera::YamlObject &params)
+static int generateLut(std::vector<double> &lut, const libcamera::YamlObject &params,
+ const Size &size)
{
+ /* These must be signed ints for the co-ordinate calculations below. */
+ int X = size.width, Y = size.height;
double cstrength = params["corner_strength"].get<double>(2.0);
if (cstrength <= 1.0) {
LOG(RPiAlsc, Error) << "corner_strength must be > 1.0";
@@ -81,9 +82,9 @@ static int generateLut(double *lut, const libcamera::YamlObject &params)
return 0;
}
-static int readLut(double *lut, const libcamera::YamlObject &params)
+static int readLut(std::vector<double> &lut, const libcamera::YamlObject &params, const Size &size)
{
- if (params.size() != XY) {
+ if (params.size() != size.width * size.height) {
LOG(RPiAlsc, Error) << "Invalid number of entries in LSC table";
return -EINVAL;
}
@@ -101,7 +102,7 @@ static int readLut(double *lut, const libcamera::YamlObject &params)
static int readCalibrations(std::vector<AlscCalibration> &calibrations,
const libcamera::YamlObject &params,
- std::string const &name)
+ std::string const &name, const Size &size)
{
if (params.contains(name)) {
double lastCt = 0;
@@ -119,7 +120,7 @@ static int readCalibrations(std::vector<AlscCalibration> &calibrations,
calibration.ct = lastCt = ct;
const libcamera::YamlObject &table = p["table"];
- if (table.size() != XY) {
+ if (table.size() != size.width * size.height) {
LOG(RPiAlsc, Error)
<< "Incorrect number of values for ct "
<< ct << " in " << name;
@@ -127,6 +128,7 @@ static int readCalibrations(std::vector<AlscCalibration> &calibrations,
}
int num = 0;
+ calibration.table.resize(size.width * size.height);
for (const auto &elem : table.asList()) {
value = elem.get<double>();
if (!value)
@@ -134,7 +136,7 @@ static int readCalibrations(std::vector<AlscCalibration> &calibrations,
calibration.table[num++] = *value;
}
- calibrations.push_back(calibration);
+ calibrations.push_back(std::move(calibration));
LOG(RPiAlsc, Debug)
<< "Read " << name << " calibration for ct " << ct;
}
@@ -144,6 +146,7 @@ static int readCalibrations(std::vector<AlscCalibration> &calibrations,
int Alsc::read(const libcamera::YamlObject &params)
{
+ config_.tableSize = getHardwareConfig().awbRegions;
config_.framePeriod = params["frame_period"].get<uint16_t>(12);
config_.startupFrames = params["startup_frames"].get<uint16_t>(10);
config_.speed = params["speed"].get<double>(0.05);
@@ -153,28 +156,29 @@ int Alsc::read(const libcamera::YamlObject &params)
config_.minCount = params["min_count"].get<double>(10.0);
config_.minG = params["min_G"].get<uint16_t>(50);
config_.omega = params["omega"].get<double>(1.3);
- config_.nIter = params["n_iter"].get<uint32_t>(X + Y);
+ config_.nIter = params["n_iter"].get<uint32_t>(config_.tableSize.width + config_.tableSize.height);
config_.luminanceStrength =
params["luminance_strength"].get<double>(1.0);
- for (int i = 0; i < XY; i++)
- config_.luminanceLut[i] = 1.0;
+ config_.luminanceLut.resize(config_.tableSize.width * config_.tableSize.height, 1.0);
int ret = 0;
if (params.contains("corner_strength"))
- ret = generateLut(config_.luminanceLut, params);
+ ret = generateLut(config_.luminanceLut, params, config_.tableSize);
else if (params.contains("luminance_lut"))
- ret = readLut(config_.luminanceLut, params["luminance_lut"]);
+ ret = readLut(config_.luminanceLut, params["luminance_lut"], config_.tableSize);
else
LOG(RPiAlsc, Warning)
<< "no luminance table - assume unity everywhere";
if (ret)
return ret;
- ret = readCalibrations(config_.calibrationsCr, params, "calibrations_Cr");
+ ret = readCalibrations(config_.calibrationsCr, params, "calibrations_Cr",
+ config_.tableSize);
if (ret)
return ret;
- ret = readCalibrations(config_.calibrationsCb, params, "calibrations_Cb");
+ ret = readCalibrations(config_.calibrationsCb, params, "calibrations_Cb",
+ config_.tableSize);
if (ret)
return ret;
@@ -187,13 +191,16 @@ int Alsc::read(const libcamera::YamlObject &params)
static double getCt(Metadata *metadata, double defaultCt);
static void getCalTable(double ct, std::vector<AlscCalibration> const &calibrations,
- double calTable[XY]);
-static void resampleCalTable(double const calTableIn[XY], CameraMode const &cameraMode,
- double calTableOut[XY]);
-static void compensateLambdasForCal(double const calTable[XY], double const oldLambdas[XY],
- double newLambdas[XY]);
-static void addLuminanceToTables(double results[3][Y][X], double const lambdaR[XY], double lambdaG,
- double const lambdaB[XY], double const luminanceLut[XY],
+ std::vector<double> &calTable);
+static void resampleCalTable(const std::vector<double> &calTableIn, CameraMode const &cameraMode,
+ const Size &size, std::vector<double> &calTableOut);
+static void compensateLambdasForCal(const std::vector<double> &calTable,
+ const std::vector<double> &oldLambdas,
+ std::vector<double> &newLambdas);
+static void addLuminanceToTables(std::array<std::vector<double>, 3> &results,
+ const std::vector<double> &lambdaR, double lambdaG,
+ const std::vector<double> &lambdaB,
+ const std::vector<double> &luminanceLut,
double luminanceStrength);
void Alsc::initialise()
@@ -201,7 +208,28 @@ void Alsc::initialise()
frameCount2_ = frameCount_ = framePhase_ = 0;
firstTime_ = true;
ct_ = config_.defaultCt;
+
+ const size_t XY = config_.tableSize.width * config_.tableSize.height;
+
+ for (auto &r : syncResults_)
+ r.resize(XY);
+ for (auto &r : prevSyncResults_)
+ r.resize(XY);
+ for (auto &r : asyncResults_)
+ r.resize(XY);
+
+ luminanceTable_.resize(XY);
+ asyncLambdaR_.resize(XY);
+ asyncLambdaB_.resize(XY);
/* The lambdas are initialised in the SwitchMode. */
+ lambdaR_.resize(XY);
+ lambdaB_.resize(XY);
+
+ /* Temporaries for the computations, but sensible to allocate this up-front! */
+ for (auto &c : tmpC_)
+ c.resize(XY);
+ for (auto &m : tmpM_)
+ m.resize(XY);
}
void Alsc::waitForAysncThread()
@@ -262,7 +290,7 @@ void Alsc::switchMode(CameraMode const &cameraMode,
* We must resample the luminance table like we do the others, but it's
* fixed so we can simply do it up front here.
*/
- resampleCalTable(config_.luminanceLut, cameraMode_, luminanceTable_);
+ resampleCalTable(config_.luminanceLut, cameraMode_, config_.tableSize, luminanceTable_);
if (resetTables) {
/*
@@ -272,18 +300,18 @@ void Alsc::switchMode(CameraMode const &cameraMode,
* the lambdas, but the rest of this code then echoes the code in
* doAlsc, without the adaptive algorithm.
*/
- for (int i = 0; i < XY; i++)
- lambdaR_[i] = lambdaB_[i] = 1.0;
- double calTableR[XY], calTableB[XY], calTableTmp[XY];
+ std::fill(lambdaR_.begin(), lambdaR_.end(), 1.0);
+ std::fill(lambdaB_.begin(), lambdaB_.end(), 1.0);
+ std::vector<double> &calTableR = tmpC_[0], &calTableB = tmpC_[1], &calTableTmp = tmpC_[2];
getCalTable(ct_, config_.calibrationsCr, calTableTmp);
- resampleCalTable(calTableTmp, cameraMode_, calTableR);
+ resampleCalTable(calTableTmp, cameraMode_, config_.tableSize, calTableR);
getCalTable(ct_, config_.calibrationsCb, calTableTmp);
- resampleCalTable(calTableTmp, cameraMode_, calTableB);
+ resampleCalTable(calTableTmp, cameraMode_, config_.tableSize, calTableB);
compensateLambdasForCal(calTableR, lambdaR_, asyncLambdaR_);
compensateLambdasForCal(calTableB, lambdaB_, asyncLambdaB_);
addLuminanceToTables(syncResults_, asyncLambdaR_, 1.0, asyncLambdaB_,
luminanceTable_, config_.luminanceStrength);
- memcpy(prevSyncResults_, syncResults_, sizeof(prevSyncResults_));
+ prevSyncResults_ = syncResults_;
framePhase_ = config_.framePeriod; /* run the algo again asap */
firstTime_ = false;
}
@@ -294,7 +322,7 @@ void Alsc::fetchAsyncResults()
LOG(RPiAlsc, Debug) << "Fetch ALSC results";
asyncFinished_ = false;
asyncStarted_ = false;
- memcpy(syncResults_, asyncResults_, sizeof(syncResults_));
+ syncResults_ = asyncResults_;
}
double getCt(Metadata *metadata, double defaultCt)
@@ -316,9 +344,9 @@ static void copyStats(RgbyRegions &regions, StatisticsPtr &stats,
if (!regions.numRegions())
regions.init(stats->awbRegions.size());
- double *rTable = (double *)status.r;
- double *gTable = (double *)status.g;
- double *bTable = (double *)status.b;
+ const std::vector<double> &rTable = status.r;
+ const std::vector<double> &gTable = status.g;
+ const std::vector<double> &bTable = status.b;
for (unsigned int i = 0; i < stats->awbRegions.numRegions(); i++) {
auto r = stats->awbRegions.get(i);
r.val.rSum = static_cast<uint64_t>(r.val.rSum / rTable[i]);
@@ -344,12 +372,9 @@ void Alsc::restartAsync(StatisticsPtr &stats, Metadata *imageMetadata)
if (imageMetadata->get("alsc.status", alscStatus) != 0) {
LOG(RPiAlsc, Warning)
<< "No ALSC status found for applied gains!";
- for (int y = 0; y < Y; y++)
- for (int x = 0; x < X; x++) {
- alscStatus.r[y][x] = 1.0;
- alscStatus.g[y][x] = 1.0;
- alscStatus.b[y][x] = 1.0;
- }
+ alscStatus.r.resize(config_.tableSize.width * config_.tableSize.height, 1.0);
+ alscStatus.g.resize(config_.tableSize.width * config_.tableSize.height, 1.0);
+ alscStatus.b.resize(config_.tableSize.width * config_.tableSize.height, 1.0);
}
copyStats(statistics_, stats, alscStatus);
framePhase_ = 0;
@@ -380,15 +405,15 @@ void Alsc::prepare(Metadata *imageMetadata)
fetchAsyncResults();
}
/* Apply IIR filter to results and program into the pipeline. */
- double *ptr = (double *)syncResults_,
- *pptr = (double *)prevSyncResults_;
- for (unsigned int i = 0; i < sizeof(syncResults_) / sizeof(double); i++)
- pptr[i] = speed * ptr[i] + (1.0 - speed) * pptr[i];
+ for (unsigned int j = 0; j < syncResults_.size(); j++) {
+ for (unsigned int i = 0; i < syncResults_[j].size(); i++)
+ prevSyncResults_[j][i] = speed * syncResults_[j][i] + (1.0 - speed) * prevSyncResults_[j][i];
+ }
/* Put output values into status metadata. */
AlscStatus status;
- memcpy(status.r, prevSyncResults_[0], sizeof(status.r));
- memcpy(status.g, prevSyncResults_[1], sizeof(status.g));
- memcpy(status.b, prevSyncResults_[2], sizeof(status.b));
+ status.r = prevSyncResults_[0];
+ status.g = prevSyncResults_[1];
+ status.b = prevSyncResults_[2];
imageMetadata->set("alsc.status", status);
}
@@ -432,18 +457,17 @@ void Alsc::asyncFunc()
}
void getCalTable(double ct, std::vector<AlscCalibration> const &calibrations,
- double calTable[XY])
+ std::vector<double> &calTable)
{
if (calibrations.empty()) {
- for (int i = 0; i < XY; i++)
- calTable[i] = 1.0;
+ std::fill(calTable.begin(), calTable.end(), 1.0);
LOG(RPiAlsc, Debug) << "no calibrations found";
} else if (ct <= calibrations.front().ct) {
- memcpy(calTable, calibrations.front().table, XY * sizeof(double));
+ calTable = calibrations.front().table;
LOG(RPiAlsc, Debug) << "using calibration for "
<< calibrations.front().ct;
} else if (ct >= calibrations.back().ct) {
- memcpy(calTable, calibrations.back().table, XY * sizeof(double));
+ calTable = calibrations.back().table;
LOG(RPiAlsc, Debug) << "using calibration for "
<< calibrations.back().ct;
} else {
@@ -454,7 +478,7 @@ void getCalTable(double ct, std::vector<AlscCalibration> const &calibrations,
LOG(RPiAlsc, Debug)
<< "ct is " << ct << ", interpolating between "
<< ct0 << " and " << ct1;
- for (int i = 0; i < XY; i++)
+ for (unsigned int i = 0; i < calTable.size(); i++)
calTable[i] =
(calibrations[idx].table[i] * (ct1 - ct) +
calibrations[idx + 1].table[i] * (ct - ct0)) /
@@ -462,9 +486,13 @@ void getCalTable(double ct, std::vector<AlscCalibration> const &calibrations,
}
}
-void resampleCalTable(double const calTableIn[XY],
- CameraMode const &cameraMode, double calTableOut[XY])
+void resampleCalTable(const std::vector<double> &calTableIn,
+ CameraMode const &cameraMode, const Size &size,
+ std::vector<double> &calTableOut)
{
+ int X = size.width;
+ int Y = size.height;
+
/*
* Precalculate and cache the x sampling locations and phases to save
* recomputing them on every row.
@@ -501,23 +529,24 @@ void resampleCalTable(double const calTableIn[XY],
yLo = Y - 1 - yLo;
yHi = Y - 1 - yHi;
}
- double const *rowAbove = calTableIn + X * yLo;
- double const *rowBelow = calTableIn + X * yHi;
+ double const *rowAbove = calTableIn.data() + X * yLo;
+ double const *rowBelow = calTableIn.data() + X * yHi;
+ double *out = calTableOut.data() + X * j;
for (int i = 0; i < X; i++) {
double above = rowAbove[xLo[i]] * (1 - xf[i]) +
rowAbove[xHi[i]] * xf[i];
double below = rowBelow[xLo[i]] * (1 - xf[i]) +
rowBelow[xHi[i]] * xf[i];
- *(calTableOut++) = above * (1 - yf) + below * yf;
+ *(out++) = above * (1 - yf) + below * yf;
}
}
}
/* Calculate chrominance statistics (R/G and B/G) for each region. */
-static void calculateCrCb(const RgbyRegions &awbRegion, double cr[XY],
- double cb[XY], uint32_t minCount, uint16_t minG)
+static void calculateCrCb(const RgbyRegions &awbRegion, std::vector<double> &cr,
+ std::vector<double> &cb, uint32_t minCount, uint16_t minG)
{
- for (int i = 0; i < XY; i++) {
+ for (unsigned int i = 0; i < cr.size(); i++) {
auto s = awbRegion.get(i);
if (s.counted <= minCount || s.val.gSum / s.counted <= minG) {
@@ -530,33 +559,34 @@ static void calculateCrCb(const RgbyRegions &awbRegion, double cr[XY],
}
}
-static void applyCalTable(double const calTable[XY], double C[XY])
+static void applyCalTable(const std::vector<double> &calTable, std::vector<double> &C)
{
- for (int i = 0; i < XY; i++)
+ for (unsigned int i = 0; i < C.size(); i++)
if (C[i] != InsufficientData)
C[i] *= calTable[i];
}
-void compensateLambdasForCal(double const calTable[XY],
- double const oldLambdas[XY],
- double newLambdas[XY])
+void compensateLambdasForCal(const std::vector<double> &calTable,
+ const std::vector<double> &oldLambdas,
+ std::vector<double> &newLambdas)
{
double minNewLambda = std::numeric_limits<double>::max();
- for (int i = 0; i < XY; i++) {
+ for (unsigned int i = 0; i < newLambdas.size(); i++) {
newLambdas[i] = oldLambdas[i] * calTable[i];
minNewLambda = std::min(minNewLambda, newLambdas[i]);
}
- for (int i = 0; i < XY; i++)
+ for (unsigned int i = 0; i < newLambdas.size(); i++)
newLambdas[i] /= minNewLambda;
}
-[[maybe_unused]] static void printCalTable(double const C[XY])
+[[maybe_unused]] static void printCalTable(const std::vector<double> &C,
+ const Size &size)
{
printf("table: [\n");
- for (int j = 0; j < Y; j++) {
- for (int i = 0; i < X; i++) {
- printf("%5.3f", 1.0 / C[j * X + i]);
- if (i != X - 1 || j != Y - 1)
+ for (unsigned int j = 0; j < size.height; j++) {
+ for (unsigned int i = 0; i < size.width; i++) {
+ printf("%5.3f", 1.0 / C[j * size.width + i]);
+ if (i != size.width - 1 || j != size.height - 1)
printf(",");
}
printf("\n");
@@ -577,9 +607,13 @@ static double computeWeight(double Ci, double Cj, double sigma)
}
/* Compute all weights. */
-static void computeW(double const C[XY], double sigma, double W[XY][4])
+static void computeW(const std::vector<double> &C, double sigma,
+ std::vector<std::array<double, 4>> &W, const Size &size)
{
- for (int i = 0; i < XY; i++) {
+ size_t XY = size.width * size.height;
+ size_t X = size.width;
+
+ for (unsigned int i = 0; i < XY; i++) {
/* Start with neighbour above and go clockwise. */
W[i][0] = i >= X ? computeWeight(C[i], C[i - X], sigma) : 0;
W[i][1] = i % X < X - 1 ? computeWeight(C[i], C[i + 1], sigma) : 0;
@@ -589,11 +623,16 @@ static void computeW(double const C[XY], double sigma, double W[XY][4])
}
/* Compute M, the large but sparse matrix such that M * lambdas = 0. */
-static void constructM(double const C[XY], double const W[XY][4],
- double M[XY][4])
+static void constructM(const std::vector<double> &C,
+ const std::vector<std::array<double, 4>> &W,
+ std::vector<std::array<double, 4>> &M,
+ const Size &size)
{
+ size_t XY = size.width * size.height;
+ size_t X = size.width;
+
double epsilon = 0.001;
- for (int i = 0; i < XY; i++) {
+ for (unsigned int i = 0; i < XY; i++) {
/*
* Note how, if C[i] == INSUFFICIENT_DATA, the weights will all
* be zero so the equation is still set up correctly.
@@ -614,79 +653,80 @@ static void constructM(double const C[XY], double const W[XY][4],
* left/right neighbours are zero down the left/right edges, so we don't need
* need to test the i value to exclude them.
*/
-static double computeLambdaBottom(int i, double const M[XY][4],
- double lambda[XY])
+static double computeLambdaBottom(int i, const std::vector<std::array<double, 4>> &M,
+ std::vector<double> &lambda, const Size &size)
{
- return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + X] +
+ return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + size.width] +
M[i][3] * lambda[i - 1];
}
-static double computeLambdaBottomStart(int i, double const M[XY][4],
- double lambda[XY])
+static double computeLambdaBottomStart(int i, const std::vector<std::array<double, 4>> &M,
+ std::vector<double> &lambda, const Size &size)
{
- return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + X];
+ return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + size.width];
}
-static double computeLambdaInterior(int i, double const M[XY][4],
- double lambda[XY])
+static double computeLambdaInterior(int i, const std::vector<std::array<double, 4>> &M,
+ std::vector<double> &lambda, const Size &size)
{
- return M[i][0] * lambda[i - X] + M[i][1] * lambda[i + 1] +
- M[i][2] * lambda[i + X] + M[i][3] * lambda[i - 1];
+ return M[i][0] * lambda[i - size.width] + M[i][1] * lambda[i + 1] +
+ M[i][2] * lambda[i + size.width] + M[i][3] * lambda[i - 1];
}
-static double computeLambdaTop(int i, double const M[XY][4],
- double lambda[XY])
+static double computeLambdaTop(int i, const std::vector<std::array<double, 4>> &M,
+ std::vector<double> &lambda, const Size &size)
{
- return M[i][0] * lambda[i - X] + M[i][1] * lambda[i + 1] +
+ return M[i][0] * lambda[i - size.width] + M[i][1] * lambda[i + 1] +
M[i][3] * lambda[i - 1];
}
-static double computeLambdaTopEnd(int i, double const M[XY][4],
- double lambda[XY])
+static double computeLambdaTopEnd(int i, const std::vector<std::array<double, 4>> &M,
+ std::vector<double> &lambda, const Size &size)
{
- return M[i][0] * lambda[i - X] + M[i][3] * lambda[i - 1];
+ return M[i][0] * lambda[i - size.width] + M[i][3] * lambda[i - 1];
}
/* Gauss-Seidel iteration with over-relaxation. */
-static double gaussSeidel2Sor(double const M[XY][4], double omega,
- double lambda[XY], double lambdaBound)
+static double gaussSeidel2Sor(const std::vector<std::array<double, 4>> &M, double omega,
+ std::vector<double> &lambda, double lambdaBound,
+ const Size &size)
{
+ int XY = size.width * size.height;
+ int X = size.width;
const double min = 1 - lambdaBound, max = 1 + lambdaBound;
- double oldLambda[XY];
+ std::vector<double> oldLambda = lambda;
int i;
- for (i = 0; i < XY; i++)
- oldLambda[i] = lambda[i];
- lambda[0] = computeLambdaBottomStart(0, M, lambda);
+ lambda[0] = computeLambdaBottomStart(0, M, lambda, size);
lambda[0] = std::clamp(lambda[0], min, max);
for (i = 1; i < X; i++) {
- lambda[i] = computeLambdaBottom(i, M, lambda);
+ lambda[i] = computeLambdaBottom(i, M, lambda, size);
lambda[i] = std::clamp(lambda[i], min, max);
}
for (; i < XY - X; i++) {
- lambda[i] = computeLambdaInterior(i, M, lambda);
+ lambda[i] = computeLambdaInterior(i, M, lambda, size);
lambda[i] = std::clamp(lambda[i], min, max);
}
for (; i < XY - 1; i++) {
- lambda[i] = computeLambdaTop(i, M, lambda);
+ lambda[i] = computeLambdaTop(i, M, lambda, size);
lambda[i] = std::clamp(lambda[i], min, max);
}
- lambda[i] = computeLambdaTopEnd(i, M, lambda);
+ lambda[i] = computeLambdaTopEnd(i, M, lambda, size);
lambda[i] = std::clamp(lambda[i], min, max);
/*
* Also solve the system from bottom to top, to help spread the updates
* better.
*/
- lambda[i] = computeLambdaTopEnd(i, M, lambda);
+ lambda[i] = computeLambdaTopEnd(i, M, lambda, size);
lambda[i] = std::clamp(lambda[i], min, max);
for (i = XY - 2; i >= XY - X; i--) {
- lambda[i] = computeLambdaTop(i, M, lambda);
+ lambda[i] = computeLambdaTop(i, M, lambda, size);
lambda[i] = std::clamp(lambda[i], min, max);
}
for (; i >= X; i--) {
- lambda[i] = computeLambdaInterior(i, M, lambda);
+ lambda[i] = computeLambdaInterior(i, M, lambda, size);
lambda[i] = std::clamp(lambda[i], min, max);
}
for (; i >= 1; i--) {
- lambda[i] = computeLambdaBottom(i, M, lambda);
+ lambda[i] = computeLambdaBottom(i, M, lambda, size);
lambda[i] = std::clamp(lambda[i], min, max);
}
- lambda[0] = computeLambdaBottomStart(0, M, lambda);
+ lambda[0] = computeLambdaBottomStart(0, M, lambda, size);
lambda[0] = std::clamp(lambda[0], min, max);
double maxDiff = 0;
for (i = 0; i < XY; i++) {
@@ -698,33 +738,33 @@ static double gaussSeidel2Sor(double const M[XY][4], double omega,
}
/* Normalise the values so that the smallest value is 1. */
-static void normalise(double *ptr, size_t n)
+static void normalise(std::vector<double> &results)
{
- double minval = ptr[0];
- for (size_t i = 1; i < n; i++)
- minval = std::min(minval, ptr[i]);
- for (size_t i = 0; i < n; i++)
- ptr[i] /= minval;
+ double minval = *std::min_element(results.begin(), results.end());
+ std::for_each(results.begin(), results.end(),
+ [minval](double val) { return val / minval; });
}
/* Rescale the values so that the average value is 1. */
-static void reaverage(Span<double> data)
+static void reaverage(std::vector<double> &data)
{
double sum = std::accumulate(data.begin(), data.end(), 0.0);
double ratio = 1 / (sum / data.size());
- for (double &d : data)
- d *= ratio;
+ std::for_each(data.begin(), data.end(),
+ [ratio](double val) { return val * ratio; });
}
-static void runMatrixIterations(double const C[XY], double lambda[XY],
- double const W[XY][4], double omega,
- int nIter, double threshold, double lambdaBound)
+static void runMatrixIterations(const std::vector<double> &C,
+ std::vector<double> &lambda,
+ const std::vector<std::array<double, 4>> &W,
+ std::vector<std::array<double, 4>> &M, double omega,
+ unsigned int nIter, double threshold, double lambdaBound,
+ const Size &size)
{
- double M[XY][4];
- constructM(C, W, M);
+ constructM(C, W, M, size);
double lastMaxDiff = std::numeric_limits<double>::max();
- for (int i = 0; i < nIter; i++) {
- double maxDiff = fabs(gaussSeidel2Sor(M, omega, lambda, lambdaBound));
+ for (unsigned int i = 0; i < nIter; i++) {
+ double maxDiff = fabs(gaussSeidel2Sor(M, omega, lambda, lambdaBound, size));
if (maxDiff < threshold) {
LOG(RPiAlsc, Debug)
<< "Stop after " << i + 1 << " iterations";
@@ -741,39 +781,44 @@ static void runMatrixIterations(double const C[XY], double lambda[XY],
lastMaxDiff = maxDiff;
}
/* We're going to normalise the lambdas so the total average is 1. */
- reaverage({ lambda, XY });
+ reaverage(lambda);
}
-static void addLuminanceRb(double result[XY], double const lambda[XY],
- double const luminanceLut[XY],
+static void addLuminanceRb(std::vector<double> &result, const std::vector<double> &lambda,
+ const std::vector<double> &luminanceLut,
double luminanceStrength)
{
- for (int i = 0; i < XY; i++)
+ for (unsigned int i = 0; i < result.size(); i++)
result[i] = lambda[i] * ((luminanceLut[i] - 1) * luminanceStrength + 1);
}
-static void addLuminanceG(double result[XY], double lambda,
- double const luminanceLut[XY],
+static void addLuminanceG(std::vector<double> &result, double lambda,
+ const std::vector<double> &luminanceLut,
double luminanceStrength)
{
- for (int i = 0; i < XY; i++)
+ for (unsigned int i = 0; i < result.size(); i++)
result[i] = lambda * ((luminanceLut[i] - 1) * luminanceStrength + 1);
}
-void addLuminanceToTables(double results[3][Y][X], double const lambdaR[XY],
- double lambdaG, double const lambdaB[XY],
- double const luminanceLut[XY],
+void addLuminanceToTables(std::array<std::vector<double>, 3> &results,
+ const std::vector<double> &lambdaR,
+ double lambdaG, const std::vector<double> &lambdaB,
+ const std::vector<double> &luminanceLut,
double luminanceStrength)
{
- addLuminanceRb((double *)results[0], lambdaR, luminanceLut, luminanceStrength);
- addLuminanceG((double *)results[1], lambdaG, luminanceLut, luminanceStrength);
- addLuminanceRb((double *)results[2], lambdaB, luminanceLut, luminanceStrength);
- normalise((double *)results, 3 * XY);
+ addLuminanceRb(results[0], lambdaR, luminanceLut, luminanceStrength);
+ addLuminanceG(results[1], lambdaG, luminanceLut, luminanceStrength);
+ addLuminanceRb(results[2], lambdaB, luminanceLut, luminanceStrength);
+ for (auto &r : results)
+ normalise(r);
}
void Alsc::doAlsc()
{
- double cr[XY], cb[XY], wr[XY][4], wb[XY][4], calTableR[XY], calTableB[XY], calTableTmp[XY];
+ std::vector<double> &cr = tmpC_[0], &cb = tmpC_[1], &calTableR = tmpC_[2],
+ &calTableB = tmpC_[3], &calTableTmp = tmpC_[4];
+ std::vector<std::array<double, 4>> &wr = tmpM_[0], &wb = tmpM_[1], &M = tmpM_[2];
+
/*
* Calculate our R/B ("Cr"/"Cb") colour statistics, and assess which are
* usable.
@@ -784,9 +829,9 @@ void Alsc::doAlsc()
* case the camera mode is not full-frame.
*/
getCalTable(ct_, config_.calibrationsCr, calTableTmp);
- resampleCalTable(calTableTmp, cameraMode_, calTableR);
+ resampleCalTable(calTableTmp, cameraMode_, config_.tableSize, calTableR);
getCalTable(ct_, config_.calibrationsCb, calTableTmp);
- resampleCalTable(calTableTmp, cameraMode_, calTableB);
+ resampleCalTable(calTableTmp, cameraMode_, config_.tableSize, calTableB);
/*
* You could print out the cal tables for this image here, if you're
* tuning the algorithm...
@@ -796,13 +841,13 @@ void Alsc::doAlsc()
applyCalTable(calTableR, cr);
applyCalTable(calTableB, cb);
/* Compute weights between zones. */
- computeW(cr, config_.sigmaCr, wr);
- computeW(cb, config_.sigmaCb, wb);
+ computeW(cr, config_.sigmaCr, wr, config_.tableSize);
+ computeW(cb, config_.sigmaCb, wb, config_.tableSize);
/* Run Gauss-Seidel iterations over the resulting matrix, for R and B. */
- runMatrixIterations(cr, lambdaR_, wr, config_.omega, config_.nIter,
- config_.threshold, config_.lambdaBound);
- runMatrixIterations(cb, lambdaB_, wb, config_.omega, config_.nIter,
- config_.threshold, config_.lambdaBound);
+ runMatrixIterations(cr, lambdaR_, wr, M, config_.omega, config_.nIter,
+ config_.threshold, config_.lambdaBound, config_.tableSize);
+ runMatrixIterations(cb, lambdaB_, wb, M, config_.omega, config_.nIter,
+ config_.threshold, config_.lambdaBound, config_.tableSize);
/*
* Fold the calibrated gains into our final lambda values. (Note that on
* the next run, we re-start with the lambda values that don't have the
diff --git a/src/ipa/raspberrypi/controller/rpi/alsc.h b/src/ipa/raspberrypi/controller/rpi/alsc.h
index 9167c9ff..85e998db 100644
--- a/src/ipa/raspberrypi/controller/rpi/alsc.h
+++ b/src/ipa/raspberrypi/controller/rpi/alsc.h
@@ -6,9 +6,13 @@
*/
#pragma once
+#include <array>
#include <mutex>
#include <condition_variable>
#include <thread>
+#include <vector>
+
+#include <libcamera/geometry.h>
#include "../algorithm.h"
#include "../alsc_status.h"
@@ -20,7 +24,7 @@ namespace RPiController {
struct AlscCalibration {
double ct;
- double table[AlscCellsX * AlscCellsY];
+ std::vector<double> table;
};
struct AlscConfig {
@@ -36,13 +40,14 @@ struct AlscConfig {
uint16_t minG;
double omega;
uint32_t nIter;
- double luminanceLut[AlscCellsX * AlscCellsY];
+ std::vector<double> luminanceLut;
double luminanceStrength;
std::vector<AlscCalibration> calibrationsCr;
std::vector<AlscCalibration> calibrationsCb;
double defaultCt; /* colour temperature if no metadata found */
double threshold; /* iteration termination threshold */
double lambdaBound; /* upper/lower bound for lambda from a value of 1 */
+ libcamera::Size tableSize;
};
class Alsc : public Algorithm
@@ -62,7 +67,7 @@ private:
AlscConfig config_;
bool firstTime_;
CameraMode cameraMode_;
- double luminanceTable_[AlscCellsX * AlscCellsY];
+ std::vector<double> luminanceTable_;
std::thread asyncThread_;
void asyncFunc(); /* asynchronous thread function */
std::mutex mutex_;
@@ -88,8 +93,8 @@ private:
int frameCount_;
/* counts up to startupFrames for Process function */
int frameCount2_;
- double syncResults_[3][AlscCellsY][AlscCellsX];
- double prevSyncResults_[3][AlscCellsY][AlscCellsX];
+ std::array<std::vector<double>, 3> syncResults_;
+ std::array<std::vector<double>, 3> prevSyncResults_;
void waitForAysncThread();
/*
* The following are for the asynchronous thread to use, though the main
@@ -100,12 +105,16 @@ private:
void fetchAsyncResults();
double ct_;
RgbyRegions statistics_;
- double asyncResults_[3][AlscCellsY][AlscCellsX];
- double asyncLambdaR_[AlscCellsX * AlscCellsY];
- double asyncLambdaB_[AlscCellsX * AlscCellsY];
+ std::array<std::vector<double>, 3> asyncResults_;
+ std::vector<double> asyncLambdaR_;
+ std::vector<double> asyncLambdaB_;
void doAlsc();
- double lambdaR_[AlscCellsX * AlscCellsY];
- double lambdaB_[AlscCellsX * AlscCellsY];
+ std::vector<double> lambdaR_;
+ std::vector<double> lambdaB_;
+
+ /* Temporaries for the computations */
+ std::array<std::vector<double>, 5> tmpC_;
+ std::array<std::vector<std::array<double, 4>>, 3> tmpM_;
};
} /* namespace RPiController */
diff --git a/src/ipa/raspberrypi/raspberrypi.cpp b/src/ipa/raspberrypi/raspberrypi.cpp
index e2452992..c74558f1 100644
--- a/src/ipa/raspberrypi/raspberrypi.cpp
+++ b/src/ipa/raspberrypi/raspberrypi.cpp
@@ -14,6 +14,7 @@
#include <stdint.h>
#include <string.h>
#include <sys/mman.h>
+#include <vector>
#include <linux/bcm2835-isp.h>
@@ -174,7 +175,7 @@ private:
void applyDPC(const struct DpcStatus *dpcStatus, ControlList &ctrls);
void applyLS(const struct AlscStatus *lsStatus, ControlList &ctrls);
void applyAF(const struct AfStatus *afStatus, ControlList &lensCtrls);
- void resampleTable(uint16_t dest[], double const src[12][16], int destW, int destH);
+ void resampleTable(uint16_t dest[], const std::vector<double> &src, int destW, int destH);
std::map<unsigned int, MappedFrameBuffer> buffers_;
@@ -1769,7 +1770,7 @@ void IPARPi::applyAF(const struct AfStatus *afStatus, ControlList &lensCtrls)
* Resamples a 16x12 table with central sampling to destW x destH with corner
* sampling.
*/
-void IPARPi::resampleTable(uint16_t dest[], double const src[12][16],
+void IPARPi::resampleTable(uint16_t dest[], const std::vector<double> &src,
int destW, int destH)
{
/*
@@ -1794,8 +1795,8 @@ void IPARPi::resampleTable(uint16_t dest[], double const src[12][16],
double yf = y - yLo;
int yHi = yLo < 11 ? yLo + 1 : 11;
yLo = yLo > 0 ? yLo : 0;
- double const *rowAbove = src[yLo];
- double const *rowBelow = src[yHi];
+ double const *rowAbove = src.data() + yLo * 16;
+ double const *rowBelow = src.data() + yHi * 16;
for (int i = 0; i < destW; i++) {
double above = rowAbove[xLo[i]] * (1 - xf[i]) + rowAbove[xHi[i]] * xf[i];
double below = rowBelow[xLo[i]] * (1 - xf[i]) + rowBelow[xHi[i]] * xf[i];