diff options
author | Naushir Patuck <naush@raspberrypi.com> | 2020-05-03 16:48:42 +0100 |
---|---|---|
committer | Laurent Pinchart <laurent.pinchart@ideasonboard.com> | 2020-05-11 23:54:40 +0300 |
commit | 0db2c8dc75e466e7648dc1b95380495c6a126349 (patch) | |
tree | fc723a251981ded749c900947a2f510ed56e60da /src/ipa/raspberrypi/controller/rpi/awb.cpp | |
parent | 740fd1b62f670bd1ad4965ef0866ef5d51bdf947 (diff) |
libcamera: ipa: Raspberry Pi IPA
Initial implementation of the Raspberry Pi (BCM2835) libcamera IPA and
associated libraries.
All code is licensed under the BSD-2-Clause terms.
Copyright (c) 2019-2020 Raspberry Pi Trading Ltd.
Signed-off-by: Naushir Patuck <naush@raspberrypi.com>
Acked-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Diffstat (limited to 'src/ipa/raspberrypi/controller/rpi/awb.cpp')
-rw-r--r-- | src/ipa/raspberrypi/controller/rpi/awb.cpp | 608 |
1 files changed, 608 insertions, 0 deletions
diff --git a/src/ipa/raspberrypi/controller/rpi/awb.cpp b/src/ipa/raspberrypi/controller/rpi/awb.cpp new file mode 100644 index 00000000..a58fa11d --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/awb.cpp @@ -0,0 +1,608 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * awb.cpp - AWB control algorithm + */ + +#include "../logging.hpp" +#include "../lux_status.h" + +#include "awb.hpp" + +using namespace RPi; + +#define NAME "rpi.awb" + +#define AWB_STATS_SIZE_X DEFAULT_AWB_REGIONS_X +#define AWB_STATS_SIZE_Y DEFAULT_AWB_REGIONS_Y + +const double Awb::RGB::INVALID = -1.0; + +void AwbMode::Read(boost::property_tree::ptree const ¶ms) +{ + ct_lo = params.get<double>("lo"); + ct_hi = params.get<double>("hi"); +} + +void AwbPrior::Read(boost::property_tree::ptree const ¶ms) +{ + lux = params.get<double>("lux"); + prior.Read(params.get_child("prior")); +} + +static void read_ct_curve(Pwl &ct_r, Pwl &ct_b, + boost::property_tree::ptree const ¶ms) +{ + int num = 0; + for (auto it = params.begin(); it != params.end(); it++) { + double ct = it->second.get_value<double>(); + assert(it == params.begin() || ct != ct_r.Domain().end); + if (++it == params.end()) + throw std::runtime_error( + "AwbConfig: incomplete CT curve entry"); + ct_r.Append(ct, it->second.get_value<double>()); + if (++it == params.end()) + throw std::runtime_error( + "AwbConfig: incomplete CT curve entry"); + ct_b.Append(ct, it->second.get_value<double>()); + num++; + } + if (num < 2) + throw std::runtime_error( + "AwbConfig: insufficient points in CT curve"); +} + +void AwbConfig::Read(boost::property_tree::ptree const ¶ms) +{ + RPI_LOG("AwbConfig"); + bayes = params.get<int>("bayes", 1); + frame_period = params.get<uint16_t>("frame_period", 10); + startup_frames = params.get<uint16_t>("startup_frames", 10); + speed = params.get<double>("speed", 0.05); + if (params.get_child_optional("ct_curve")) + read_ct_curve(ct_r, ct_b, params.get_child("ct_curve")); + if (params.get_child_optional("priors")) { + for (auto &p : params.get_child("priors")) { + AwbPrior prior; + prior.Read(p.second); + if (!priors.empty() && prior.lux <= priors.back().lux) + throw std::runtime_error( + "AwbConfig: Prior must be ordered in increasing lux value"); + priors.push_back(prior); + } + if (priors.empty()) + throw std::runtime_error( + "AwbConfig: no AWB priors configured"); + } + if (params.get_child_optional("modes")) { + for (auto &p : params.get_child("modes")) { + modes[p.first].Read(p.second); + if (default_mode == nullptr) + default_mode = &modes[p.first]; + } + if (default_mode == nullptr) + throw std::runtime_error( + "AwbConfig: no AWB modes configured"); + } + min_pixels = params.get<double>("min_pixels", 16.0); + min_G = params.get<uint16_t>("min_G", 32); + min_regions = params.get<uint32_t>("min_regions", 10); + delta_limit = params.get<double>("delta_limit", 0.2); + coarse_step = params.get<double>("coarse_step", 0.2); + transverse_pos = params.get<double>("transverse_pos", 0.01); + transverse_neg = params.get<double>("transverse_neg", 0.01); + if (transverse_pos <= 0 || transverse_neg <= 0) + throw std::runtime_error( + "AwbConfig: transverse_pos/neg must be > 0"); + sensitivity_r = params.get<double>("sensitivity_r", 1.0); + sensitivity_b = params.get<double>("sensitivity_b", 1.0); + if (bayes) { + if (ct_r.Empty() || ct_b.Empty() || priors.empty() || + default_mode == nullptr) { + RPI_WARN( + "Bayesian AWB mis-configured - switch to Grey method"); + bayes = false; + } + } + fast = params.get<int>( + "fast", bayes); // default to fast for Bayesian, otherwise slow + whitepoint_r = params.get<double>("whitepoint_r", 0.0); + whitepoint_b = params.get<double>("whitepoint_b", 0.0); + if (bayes == false) + sensitivity_r = sensitivity_b = + 1.0; // nor do sensitivities make any sense +} + +Awb::Awb(Controller *controller) + : AwbAlgorithm(controller) +{ + async_abort_ = async_start_ = async_started_ = async_finished_ = false; + mode_ = nullptr; + manual_r_ = manual_b_ = 0.0; + async_thread_ = std::thread(std::bind(&Awb::asyncFunc, this)); +} + +Awb::~Awb() +{ + { + std::lock_guard<std::mutex> lock(mutex_); + async_abort_ = true; + async_signal_.notify_one(); + } + async_thread_.join(); +} + +char const *Awb::Name() const +{ + return NAME; +} + +void Awb::Read(boost::property_tree::ptree const ¶ms) +{ + config_.Read(params); +} + +void Awb::Initialise() +{ + frame_count2_ = frame_count_ = frame_phase_ = 0; + // Put something sane into the status that we are filtering towards, + // just in case the first few frames don't have anything meaningful in + // them. + if (!config_.ct_r.Empty() && !config_.ct_b.Empty()) { + sync_results_.temperature_K = config_.ct_r.Domain().Clip(4000); + sync_results_.gain_r = + 1.0 / config_.ct_r.Eval(sync_results_.temperature_K); + sync_results_.gain_g = 1.0; + sync_results_.gain_b = + 1.0 / config_.ct_b.Eval(sync_results_.temperature_K); + } else { + // random values just to stop the world blowing up + sync_results_.temperature_K = 4500; + sync_results_.gain_r = sync_results_.gain_g = + sync_results_.gain_b = 1.0; + } + prev_sync_results_ = sync_results_; +} + +void Awb::SetMode(std::string const &mode_name) +{ + std::unique_lock<std::mutex> lock(settings_mutex_); + mode_name_ = mode_name; +} + +void Awb::SetManualGains(double manual_r, double manual_b) +{ + std::unique_lock<std::mutex> lock(settings_mutex_); + // If any of these are 0.0, we swich back to auto. + manual_r_ = manual_r; + manual_b_ = manual_b; +} + +void Awb::fetchAsyncResults() +{ + RPI_LOG("Fetch AWB results"); + async_finished_ = false; + async_started_ = false; + sync_results_ = async_results_; +} + +void Awb::restartAsync(StatisticsPtr &stats, std::string const &mode_name, + double lux) +{ + RPI_LOG("Starting AWB thread"); + // this makes a new reference which belongs to the asynchronous thread + statistics_ = stats; + // store the mode as it could technically change + auto m = config_.modes.find(mode_name); + mode_ = m != config_.modes.end() + ? &m->second + : (mode_ == nullptr ? config_.default_mode : mode_); + lux_ = lux; + frame_phase_ = 0; + async_start_ = true; + async_started_ = true; + size_t len = mode_name.copy(async_results_.mode, + sizeof(async_results_.mode) - 1); + async_results_.mode[len] = '\0'; + async_signal_.notify_one(); +} + +void Awb::Prepare(Metadata *image_metadata) +{ + if (frame_count_ < (int)config_.startup_frames) + frame_count_++; + double speed = frame_count_ < (int)config_.startup_frames + ? 1.0 + : config_.speed; + RPI_LOG("Awb: frame_count " << frame_count_ << " speed " << speed); + { + std::unique_lock<std::mutex> lock(mutex_); + if (async_started_ && async_finished_) { + RPI_LOG("AWB thread finished"); + fetchAsyncResults(); + } + } + // Finally apply IIR filter to results and put into metadata. + memcpy(prev_sync_results_.mode, sync_results_.mode, + sizeof(prev_sync_results_.mode)); + prev_sync_results_.temperature_K = + speed * sync_results_.temperature_K + + (1.0 - speed) * prev_sync_results_.temperature_K; + prev_sync_results_.gain_r = speed * sync_results_.gain_r + + (1.0 - speed) * prev_sync_results_.gain_r; + prev_sync_results_.gain_g = speed * sync_results_.gain_g + + (1.0 - speed) * prev_sync_results_.gain_g; + prev_sync_results_.gain_b = speed * sync_results_.gain_b + + (1.0 - speed) * prev_sync_results_.gain_b; + image_metadata->Set("awb.status", prev_sync_results_); + RPI_LOG("Using AWB gains r " << prev_sync_results_.gain_r << " g " + << prev_sync_results_.gain_g << " b " + << prev_sync_results_.gain_b); +} + +void Awb::Process(StatisticsPtr &stats, Metadata *image_metadata) +{ + // Count frames since we last poked the async thread. + if (frame_phase_ < (int)config_.frame_period) + frame_phase_++; + if (frame_count2_ < (int)config_.startup_frames) + frame_count2_++; + RPI_LOG("Awb: frame_phase " << frame_phase_); + if (frame_phase_ >= (int)config_.frame_period || + frame_count2_ < (int)config_.startup_frames) { + // Update any settings and any image metadata that we need. + std::string mode_name; + { + std::unique_lock<std::mutex> lock(settings_mutex_); + mode_name = mode_name_; + } + struct LuxStatus lux_status = {}; + lux_status.lux = 400; // in case no metadata + if (image_metadata->Get("lux.status", lux_status) != 0) + RPI_LOG("No lux metadata found"); + RPI_LOG("Awb lux value is " << lux_status.lux); + + std::unique_lock<std::mutex> lock(mutex_); + if (async_started_ == false) { + RPI_LOG("AWB thread starting"); + restartAsync(stats, mode_name, lux_status.lux); + } + } +} + +void Awb::asyncFunc() +{ + while (true) { + { + std::unique_lock<std::mutex> lock(mutex_); + async_signal_.wait(lock, [&] { + return async_start_ || async_abort_; + }); + async_start_ = false; + if (async_abort_) + break; + } + doAwb(); + { + std::lock_guard<std::mutex> lock(mutex_); + async_finished_ = true; + sync_signal_.notify_one(); + } + } +} + +static void generate_stats(std::vector<Awb::RGB> &zones, + bcm2835_isp_stats_region *stats, double min_pixels, + double min_G) +{ + for (int i = 0; i < AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y; i++) { + Awb::RGB zone; // this is "invalid", unless R gets overwritten later + double counted = stats[i].counted; + if (counted >= min_pixels) { + zone.G = stats[i].g_sum / counted; + if (zone.G >= min_G) { + zone.R = stats[i].r_sum / counted; + zone.B = stats[i].b_sum / counted; + } + } + zones.push_back(zone); + } +} + +void Awb::prepareStats() +{ + zones_.clear(); + // LSC has already been applied to the stats in this pipeline, so stop + // any LSC compensation. We also ignore config_.fast in this version. + generate_stats(zones_, statistics_->awb_stats, config_.min_pixels, + config_.min_G); + // we're done with these; we may as well relinquish our hold on the + // pointer. + statistics_.reset(); + // apply sensitivities, so values appear to come from our "canonical" + // sensor. + for (auto &zone : zones_) + zone.R *= config_.sensitivity_r, + zone.B *= config_.sensitivity_b; +} + +double Awb::computeDelta2Sum(double gain_r, double gain_b) +{ + // Compute the sum of the squared colour error (non-greyness) as it + // appears in the log likelihood equation. + double delta2_sum = 0; + for (auto &z : zones_) { + double delta_r = gain_r * z.R - 1 - config_.whitepoint_r; + double delta_b = gain_b * z.B - 1 - config_.whitepoint_b; + double delta2 = delta_r * delta_r + delta_b * delta_b; + //RPI_LOG("delta_r " << delta_r << " delta_b " << delta_b << " delta2 " << delta2); + delta2 = std::min(delta2, config_.delta_limit); + delta2_sum += delta2; + } + return delta2_sum; +} + +Pwl Awb::interpolatePrior() +{ + // Interpolate the prior log likelihood function for our current lux + // value. + if (lux_ <= config_.priors.front().lux) + return config_.priors.front().prior; + else if (lux_ >= config_.priors.back().lux) + return config_.priors.back().prior; + else { + int idx = 0; + // find which two we lie between + while (config_.priors[idx + 1].lux < lux_) + idx++; + double lux0 = config_.priors[idx].lux, + lux1 = config_.priors[idx + 1].lux; + return Pwl::Combine(config_.priors[idx].prior, + config_.priors[idx + 1].prior, + [&](double /*x*/, double y0, double y1) { + return y0 + (y1 - y0) * + (lux_ - lux0) / (lux1 - lux0); + }); + } +} + +static double interpolate_quadatric(Pwl::Point const &A, Pwl::Point const &B, + Pwl::Point const &C) +{ + // Given 3 points on a curve, find the extremum of the function in that + // interval by fitting a quadratic. + const double eps = 1e-3; + Pwl::Point CA = C - A, BA = B - A; + double denominator = 2 * (BA.y * CA.x - CA.y * BA.x); + if (abs(denominator) > eps) { + double numerator = BA.y * CA.x * CA.x - CA.y * BA.x * BA.x; + double result = numerator / denominator + A.x; + return std::max(A.x, std::min(C.x, result)); + } + // has degenerated to straight line segment + return A.y < C.y - eps ? A.x : (C.y < A.y - eps ? C.x : B.x); +} + +double Awb::coarseSearch(Pwl const &prior) +{ + points_.clear(); // assume doesn't deallocate memory + size_t best_point = 0; + double t = mode_->ct_lo; + int span_r = 0, span_b = 0; + // Step down the CT curve evaluating log likelihood. + while (true) { + double r = config_.ct_r.Eval(t, &span_r); + double b = config_.ct_b.Eval(t, &span_b); + double gain_r = 1 / r, gain_b = 1 / b; + double delta2_sum = computeDelta2Sum(gain_r, gain_b); + double prior_log_likelihood = + prior.Eval(prior.Domain().Clip(t)); + double final_log_likelihood = delta2_sum - prior_log_likelihood; + RPI_LOG("t: " << t << " gain_r " << gain_r << " gain_b " + << gain_b << " delta2_sum " << delta2_sum + << " prior " << prior_log_likelihood << " final " + << final_log_likelihood); + points_.push_back(Pwl::Point(t, final_log_likelihood)); + if (points_.back().y < points_[best_point].y) + best_point = points_.size() - 1; + if (t == mode_->ct_hi) + break; + // for even steps along the r/b curve scale them by the current t + t = std::min(t + t / 10 * config_.coarse_step, + mode_->ct_hi); + } + t = points_[best_point].x; + RPI_LOG("Coarse search found CT " << t); + // We have the best point of the search, but refine it with a quadratic + // interpolation around its neighbours. + if (points_.size() > 2) { + unsigned long bp = std::min(best_point, points_.size() - 2); + best_point = std::max(1UL, bp); + t = interpolate_quadatric(points_[best_point - 1], + points_[best_point], + points_[best_point + 1]); + RPI_LOG("After quadratic refinement, coarse search has CT " + << t); + } + return t; +} + +void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior) +{ + int span_r, span_b; + config_.ct_r.Eval(t, &span_r); + config_.ct_b.Eval(t, &span_b); + double step = t / 10 * config_.coarse_step * 0.1; + int nsteps = 5; + double r_diff = config_.ct_r.Eval(t + nsteps * step, &span_r) - + config_.ct_r.Eval(t - nsteps * step, &span_r); + double b_diff = config_.ct_b.Eval(t + nsteps * step, &span_b) - + config_.ct_b.Eval(t - nsteps * step, &span_b); + Pwl::Point transverse(b_diff, -r_diff); + if (transverse.Len2() < 1e-6) + return; + // unit vector orthogonal to the b vs. r function (pointing outwards + // with r and b increasing) + transverse = transverse / transverse.Len(); + double best_log_likelihood = 0, best_t = 0, best_r = 0, best_b = 0; + double transverse_range = + config_.transverse_neg + config_.transverse_pos; + const int MAX_NUM_DELTAS = 12; + // a transverse step approximately every 0.01 r/b units + int num_deltas = floor(transverse_range * 100 + 0.5) + 1; + num_deltas = num_deltas < 3 ? 3 : + (num_deltas > MAX_NUM_DELTAS ? MAX_NUM_DELTAS : num_deltas); + // Step down CT curve. March a bit further if the transverse range is + // large. + nsteps += num_deltas; + for (int i = -nsteps; i <= nsteps; i++) { + double t_test = t + i * step; + double prior_log_likelihood = + prior.Eval(prior.Domain().Clip(t_test)); + double r_curve = config_.ct_r.Eval(t_test, &span_r); + double b_curve = config_.ct_b.Eval(t_test, &span_b); + // x will be distance off the curve, y the log likelihood there + Pwl::Point points[MAX_NUM_DELTAS]; + int best_point = 0; + // Take some measurements transversely *off* the CT curve. + for (int j = 0; j < num_deltas; j++) { + points[j].x = -config_.transverse_neg + + (transverse_range * j) / (num_deltas - 1); + Pwl::Point rb_test = Pwl::Point(r_curve, b_curve) + + transverse * points[j].x; + double r_test = rb_test.x, b_test = rb_test.y; + double gain_r = 1 / r_test, gain_b = 1 / b_test; + double delta2_sum = computeDelta2Sum(gain_r, gain_b); + points[j].y = delta2_sum - prior_log_likelihood; + RPI_LOG("At t " << t_test << " r " << r_test << " b " + << b_test << ": " << points[j].y); + if (points[j].y < points[best_point].y) + best_point = j; + } + // We have NUM_DELTAS points transversely across the CT curve, + // now let's do a quadratic interpolation for the best result. + best_point = std::max(1, std::min(best_point, num_deltas - 2)); + Pwl::Point rb_test = + Pwl::Point(r_curve, b_curve) + + transverse * + interpolate_quadatric(points[best_point - 1], + points[best_point], + points[best_point + 1]); + double r_test = rb_test.x, b_test = rb_test.y; + double gain_r = 1 / r_test, gain_b = 1 / b_test; + double delta2_sum = computeDelta2Sum(gain_r, gain_b); + double final_log_likelihood = delta2_sum - prior_log_likelihood; + RPI_LOG("Finally " + << t_test << " r " << r_test << " b " << b_test << ": " + << final_log_likelihood + << (final_log_likelihood < best_log_likelihood ? " BEST" + : "")); + if (best_t == 0 || final_log_likelihood < best_log_likelihood) + best_log_likelihood = final_log_likelihood, + best_t = t_test, best_r = r_test, best_b = b_test; + } + t = best_t, r = best_r, b = best_b; + RPI_LOG("Fine search found t " << t << " r " << r << " b " << b); +} + +void Awb::awbBayes() +{ + // May as well divide out G to save computeDelta2Sum from doing it over + // and over. + for (auto &z : zones_) + z.R = z.R / (z.G + 1), z.B = z.B / (z.G + 1); + // Get the current prior, and scale according to how many zones are + // valid... not entirely sure about this. + Pwl prior = interpolatePrior(); + prior *= zones_.size() / (double)(AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y); + prior.Map([](double x, double y) { + RPI_LOG("(" << x << "," << y << ")"); + }); + double t = coarseSearch(prior); + double r = config_.ct_r.Eval(t); + double b = config_.ct_b.Eval(t); + RPI_LOG("After coarse search: r " << r << " b " << b << " (gains r " + << 1 / r << " b " << 1 / b << ")"); + // Not entirely sure how to handle the fine search yet. Mostly the + // estimated CT is already good enough, but the fine search allows us to + // wander transverely off the CT curve. Under some illuminants, where + // there may be more or less green light, this may prove beneficial, + // though I probably need more real datasets before deciding exactly how + // this should be controlled and tuned. + fineSearch(t, r, b, prior); + RPI_LOG("After fine search: r " << r << " b " << b << " (gains r " + << 1 / r << " b " << 1 / b << ")"); + // Write results out for the main thread to pick up. Remember to adjust + // the gains from the ones that the "canonical sensor" would require to + // the ones needed by *this* sensor. + async_results_.temperature_K = t; + async_results_.gain_r = 1.0 / r * config_.sensitivity_r; + async_results_.gain_g = 1.0; + async_results_.gain_b = 1.0 / b * config_.sensitivity_b; +} + +void Awb::awbGrey() +{ + RPI_LOG("Grey world AWB"); + // Make a separate list of the derivatives for each of red and blue, so + // that we can sort them to exclude the extreme gains. We could + // consider some variations, such as normalising all the zones first, or + // doing an L2 average etc. + std::vector<RGB> &derivs_R(zones_); + std::vector<RGB> derivs_B(derivs_R); + std::sort(derivs_R.begin(), derivs_R.end(), + [](RGB const &a, RGB const &b) { + return a.G * b.R < b.G * a.R; + }); + std::sort(derivs_B.begin(), derivs_B.end(), + [](RGB const &a, RGB const &b) { + return a.G * b.B < b.G * a.B; + }); + // Average the middle half of the values. + int discard = derivs_R.size() / 4; + RGB sum_R(0, 0, 0), sum_B(0, 0, 0); + for (auto ri = derivs_R.begin() + discard, + bi = derivs_B.begin() + discard; + ri != derivs_R.end() - discard; ri++, bi++) + sum_R += *ri, sum_B += *bi; + double gain_r = sum_R.G / (sum_R.R + 1), + gain_b = sum_B.G / (sum_B.B + 1); + async_results_.temperature_K = 4500; // don't know what it is + async_results_.gain_r = gain_r; + async_results_.gain_g = 1.0; + async_results_.gain_b = gain_b; +} + +void Awb::doAwb() +{ + if (manual_r_ != 0.0 && manual_b_ != 0.0) { + async_results_.temperature_K = 4500; // don't know what it is + async_results_.gain_r = manual_r_; + async_results_.gain_g = 1.0; + async_results_.gain_b = manual_b_; + RPI_LOG("Using manual white balance: gain_r " + << async_results_.gain_r << " gain_b " + << async_results_.gain_b); + } else { + prepareStats(); + RPI_LOG("Valid zones: " << zones_.size()); + if (zones_.size() > config_.min_regions) { + if (config_.bayes) + awbBayes(); + else + awbGrey(); + RPI_LOG("CT found is " + << async_results_.temperature_K + << " with gains r " << async_results_.gain_r + << " and b " << async_results_.gain_b); + } + } +} + +// Register algorithm with the system. +static Algorithm *Create(Controller *controller) +{ + return (Algorithm *)new Awb(controller); +} +static RegisterAlgorithm reg(NAME, &Create); |