summaryrefslogtreecommitdiff
path: root/src/ipa/raspberrypi/controller/rpi/awb.cpp
diff options
context:
space:
mode:
authorNaushir Patuck <naush@raspberrypi.com>2020-05-03 16:48:42 +0100
committerLaurent Pinchart <laurent.pinchart@ideasonboard.com>2020-05-11 23:54:40 +0300
commit0db2c8dc75e466e7648dc1b95380495c6a126349 (patch)
treefc723a251981ded749c900947a2f510ed56e60da /src/ipa/raspberrypi/controller/rpi/awb.cpp
parent740fd1b62f670bd1ad4965ef0866ef5d51bdf947 (diff)
libcamera: ipa: Raspberry Pi IPA
Initial implementation of the Raspberry Pi (BCM2835) libcamera IPA and associated libraries. All code is licensed under the BSD-2-Clause terms. Copyright (c) 2019-2020 Raspberry Pi Trading Ltd. Signed-off-by: Naushir Patuck <naush@raspberrypi.com> Acked-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Diffstat (limited to 'src/ipa/raspberrypi/controller/rpi/awb.cpp')
-rw-r--r--src/ipa/raspberrypi/controller/rpi/awb.cpp608
1 files changed, 608 insertions, 0 deletions
diff --git a/src/ipa/raspberrypi/controller/rpi/awb.cpp b/src/ipa/raspberrypi/controller/rpi/awb.cpp
new file mode 100644
index 00000000..a58fa11d
--- /dev/null
+++ b/src/ipa/raspberrypi/controller/rpi/awb.cpp
@@ -0,0 +1,608 @@
+/* SPDX-License-Identifier: BSD-2-Clause */
+/*
+ * Copyright (C) 2019, Raspberry Pi (Trading) Limited
+ *
+ * awb.cpp - AWB control algorithm
+ */
+
+#include "../logging.hpp"
+#include "../lux_status.h"
+
+#include "awb.hpp"
+
+using namespace RPi;
+
+#define NAME "rpi.awb"
+
+#define AWB_STATS_SIZE_X DEFAULT_AWB_REGIONS_X
+#define AWB_STATS_SIZE_Y DEFAULT_AWB_REGIONS_Y
+
+const double Awb::RGB::INVALID = -1.0;
+
+void AwbMode::Read(boost::property_tree::ptree const &params)
+{
+ ct_lo = params.get<double>("lo");
+ ct_hi = params.get<double>("hi");
+}
+
+void AwbPrior::Read(boost::property_tree::ptree const &params)
+{
+ lux = params.get<double>("lux");
+ prior.Read(params.get_child("prior"));
+}
+
+static void read_ct_curve(Pwl &ct_r, Pwl &ct_b,
+ boost::property_tree::ptree const &params)
+{
+ int num = 0;
+ for (auto it = params.begin(); it != params.end(); it++) {
+ double ct = it->second.get_value<double>();
+ assert(it == params.begin() || ct != ct_r.Domain().end);
+ if (++it == params.end())
+ throw std::runtime_error(
+ "AwbConfig: incomplete CT curve entry");
+ ct_r.Append(ct, it->second.get_value<double>());
+ if (++it == params.end())
+ throw std::runtime_error(
+ "AwbConfig: incomplete CT curve entry");
+ ct_b.Append(ct, it->second.get_value<double>());
+ num++;
+ }
+ if (num < 2)
+ throw std::runtime_error(
+ "AwbConfig: insufficient points in CT curve");
+}
+
+void AwbConfig::Read(boost::property_tree::ptree const &params)
+{
+ RPI_LOG("AwbConfig");
+ bayes = params.get<int>("bayes", 1);
+ frame_period = params.get<uint16_t>("frame_period", 10);
+ startup_frames = params.get<uint16_t>("startup_frames", 10);
+ speed = params.get<double>("speed", 0.05);
+ if (params.get_child_optional("ct_curve"))
+ read_ct_curve(ct_r, ct_b, params.get_child("ct_curve"));
+ if (params.get_child_optional("priors")) {
+ for (auto &p : params.get_child("priors")) {
+ AwbPrior prior;
+ prior.Read(p.second);
+ if (!priors.empty() && prior.lux <= priors.back().lux)
+ throw std::runtime_error(
+ "AwbConfig: Prior must be ordered in increasing lux value");
+ priors.push_back(prior);
+ }
+ if (priors.empty())
+ throw std::runtime_error(
+ "AwbConfig: no AWB priors configured");
+ }
+ if (params.get_child_optional("modes")) {
+ for (auto &p : params.get_child("modes")) {
+ modes[p.first].Read(p.second);
+ if (default_mode == nullptr)
+ default_mode = &modes[p.first];
+ }
+ if (default_mode == nullptr)
+ throw std::runtime_error(
+ "AwbConfig: no AWB modes configured");
+ }
+ min_pixels = params.get<double>("min_pixels", 16.0);
+ min_G = params.get<uint16_t>("min_G", 32);
+ min_regions = params.get<uint32_t>("min_regions", 10);
+ delta_limit = params.get<double>("delta_limit", 0.2);
+ coarse_step = params.get<double>("coarse_step", 0.2);
+ transverse_pos = params.get<double>("transverse_pos", 0.01);
+ transverse_neg = params.get<double>("transverse_neg", 0.01);
+ if (transverse_pos <= 0 || transverse_neg <= 0)
+ throw std::runtime_error(
+ "AwbConfig: transverse_pos/neg must be > 0");
+ sensitivity_r = params.get<double>("sensitivity_r", 1.0);
+ sensitivity_b = params.get<double>("sensitivity_b", 1.0);
+ if (bayes) {
+ if (ct_r.Empty() || ct_b.Empty() || priors.empty() ||
+ default_mode == nullptr) {
+ RPI_WARN(
+ "Bayesian AWB mis-configured - switch to Grey method");
+ bayes = false;
+ }
+ }
+ fast = params.get<int>(
+ "fast", bayes); // default to fast for Bayesian, otherwise slow
+ whitepoint_r = params.get<double>("whitepoint_r", 0.0);
+ whitepoint_b = params.get<double>("whitepoint_b", 0.0);
+ if (bayes == false)
+ sensitivity_r = sensitivity_b =
+ 1.0; // nor do sensitivities make any sense
+}
+
+Awb::Awb(Controller *controller)
+ : AwbAlgorithm(controller)
+{
+ async_abort_ = async_start_ = async_started_ = async_finished_ = false;
+ mode_ = nullptr;
+ manual_r_ = manual_b_ = 0.0;
+ async_thread_ = std::thread(std::bind(&Awb::asyncFunc, this));
+}
+
+Awb::~Awb()
+{
+ {
+ std::lock_guard<std::mutex> lock(mutex_);
+ async_abort_ = true;
+ async_signal_.notify_one();
+ }
+ async_thread_.join();
+}
+
+char const *Awb::Name() const
+{
+ return NAME;
+}
+
+void Awb::Read(boost::property_tree::ptree const &params)
+{
+ config_.Read(params);
+}
+
+void Awb::Initialise()
+{
+ frame_count2_ = frame_count_ = frame_phase_ = 0;
+ // Put something sane into the status that we are filtering towards,
+ // just in case the first few frames don't have anything meaningful in
+ // them.
+ if (!config_.ct_r.Empty() && !config_.ct_b.Empty()) {
+ sync_results_.temperature_K = config_.ct_r.Domain().Clip(4000);
+ sync_results_.gain_r =
+ 1.0 / config_.ct_r.Eval(sync_results_.temperature_K);
+ sync_results_.gain_g = 1.0;
+ sync_results_.gain_b =
+ 1.0 / config_.ct_b.Eval(sync_results_.temperature_K);
+ } else {
+ // random values just to stop the world blowing up
+ sync_results_.temperature_K = 4500;
+ sync_results_.gain_r = sync_results_.gain_g =
+ sync_results_.gain_b = 1.0;
+ }
+ prev_sync_results_ = sync_results_;
+}
+
+void Awb::SetMode(std::string const &mode_name)
+{
+ std::unique_lock<std::mutex> lock(settings_mutex_);
+ mode_name_ = mode_name;
+}
+
+void Awb::SetManualGains(double manual_r, double manual_b)
+{
+ std::unique_lock<std::mutex> lock(settings_mutex_);
+ // If any of these are 0.0, we swich back to auto.
+ manual_r_ = manual_r;
+ manual_b_ = manual_b;
+}
+
+void Awb::fetchAsyncResults()
+{
+ RPI_LOG("Fetch AWB results");
+ async_finished_ = false;
+ async_started_ = false;
+ sync_results_ = async_results_;
+}
+
+void Awb::restartAsync(StatisticsPtr &stats, std::string const &mode_name,
+ double lux)
+{
+ RPI_LOG("Starting AWB thread");
+ // this makes a new reference which belongs to the asynchronous thread
+ statistics_ = stats;
+ // store the mode as it could technically change
+ auto m = config_.modes.find(mode_name);
+ mode_ = m != config_.modes.end()
+ ? &m->second
+ : (mode_ == nullptr ? config_.default_mode : mode_);
+ lux_ = lux;
+ frame_phase_ = 0;
+ async_start_ = true;
+ async_started_ = true;
+ size_t len = mode_name.copy(async_results_.mode,
+ sizeof(async_results_.mode) - 1);
+ async_results_.mode[len] = '\0';
+ async_signal_.notify_one();
+}
+
+void Awb::Prepare(Metadata *image_metadata)
+{
+ if (frame_count_ < (int)config_.startup_frames)
+ frame_count_++;
+ double speed = frame_count_ < (int)config_.startup_frames
+ ? 1.0
+ : config_.speed;
+ RPI_LOG("Awb: frame_count " << frame_count_ << " speed " << speed);
+ {
+ std::unique_lock<std::mutex> lock(mutex_);
+ if (async_started_ && async_finished_) {
+ RPI_LOG("AWB thread finished");
+ fetchAsyncResults();
+ }
+ }
+ // Finally apply IIR filter to results and put into metadata.
+ memcpy(prev_sync_results_.mode, sync_results_.mode,
+ sizeof(prev_sync_results_.mode));
+ prev_sync_results_.temperature_K =
+ speed * sync_results_.temperature_K +
+ (1.0 - speed) * prev_sync_results_.temperature_K;
+ prev_sync_results_.gain_r = speed * sync_results_.gain_r +
+ (1.0 - speed) * prev_sync_results_.gain_r;
+ prev_sync_results_.gain_g = speed * sync_results_.gain_g +
+ (1.0 - speed) * prev_sync_results_.gain_g;
+ prev_sync_results_.gain_b = speed * sync_results_.gain_b +
+ (1.0 - speed) * prev_sync_results_.gain_b;
+ image_metadata->Set("awb.status", prev_sync_results_);
+ RPI_LOG("Using AWB gains r " << prev_sync_results_.gain_r << " g "
+ << prev_sync_results_.gain_g << " b "
+ << prev_sync_results_.gain_b);
+}
+
+void Awb::Process(StatisticsPtr &stats, Metadata *image_metadata)
+{
+ // Count frames since we last poked the async thread.
+ if (frame_phase_ < (int)config_.frame_period)
+ frame_phase_++;
+ if (frame_count2_ < (int)config_.startup_frames)
+ frame_count2_++;
+ RPI_LOG("Awb: frame_phase " << frame_phase_);
+ if (frame_phase_ >= (int)config_.frame_period ||
+ frame_count2_ < (int)config_.startup_frames) {
+ // Update any settings and any image metadata that we need.
+ std::string mode_name;
+ {
+ std::unique_lock<std::mutex> lock(settings_mutex_);
+ mode_name = mode_name_;
+ }
+ struct LuxStatus lux_status = {};
+ lux_status.lux = 400; // in case no metadata
+ if (image_metadata->Get("lux.status", lux_status) != 0)
+ RPI_LOG("No lux metadata found");
+ RPI_LOG("Awb lux value is " << lux_status.lux);
+
+ std::unique_lock<std::mutex> lock(mutex_);
+ if (async_started_ == false) {
+ RPI_LOG("AWB thread starting");
+ restartAsync(stats, mode_name, lux_status.lux);
+ }
+ }
+}
+
+void Awb::asyncFunc()
+{
+ while (true) {
+ {
+ std::unique_lock<std::mutex> lock(mutex_);
+ async_signal_.wait(lock, [&] {
+ return async_start_ || async_abort_;
+ });
+ async_start_ = false;
+ if (async_abort_)
+ break;
+ }
+ doAwb();
+ {
+ std::lock_guard<std::mutex> lock(mutex_);
+ async_finished_ = true;
+ sync_signal_.notify_one();
+ }
+ }
+}
+
+static void generate_stats(std::vector<Awb::RGB> &zones,
+ bcm2835_isp_stats_region *stats, double min_pixels,
+ double min_G)
+{
+ for (int i = 0; i < AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y; i++) {
+ Awb::RGB zone; // this is "invalid", unless R gets overwritten later
+ double counted = stats[i].counted;
+ if (counted >= min_pixels) {
+ zone.G = stats[i].g_sum / counted;
+ if (zone.G >= min_G) {
+ zone.R = stats[i].r_sum / counted;
+ zone.B = stats[i].b_sum / counted;
+ }
+ }
+ zones.push_back(zone);
+ }
+}
+
+void Awb::prepareStats()
+{
+ zones_.clear();
+ // LSC has already been applied to the stats in this pipeline, so stop
+ // any LSC compensation. We also ignore config_.fast in this version.
+ generate_stats(zones_, statistics_->awb_stats, config_.min_pixels,
+ config_.min_G);
+ // we're done with these; we may as well relinquish our hold on the
+ // pointer.
+ statistics_.reset();
+ // apply sensitivities, so values appear to come from our "canonical"
+ // sensor.
+ for (auto &zone : zones_)
+ zone.R *= config_.sensitivity_r,
+ zone.B *= config_.sensitivity_b;
+}
+
+double Awb::computeDelta2Sum(double gain_r, double gain_b)
+{
+ // Compute the sum of the squared colour error (non-greyness) as it
+ // appears in the log likelihood equation.
+ double delta2_sum = 0;
+ for (auto &z : zones_) {
+ double delta_r = gain_r * z.R - 1 - config_.whitepoint_r;
+ double delta_b = gain_b * z.B - 1 - config_.whitepoint_b;
+ double delta2 = delta_r * delta_r + delta_b * delta_b;
+ //RPI_LOG("delta_r " << delta_r << " delta_b " << delta_b << " delta2 " << delta2);
+ delta2 = std::min(delta2, config_.delta_limit);
+ delta2_sum += delta2;
+ }
+ return delta2_sum;
+}
+
+Pwl Awb::interpolatePrior()
+{
+ // Interpolate the prior log likelihood function for our current lux
+ // value.
+ if (lux_ <= config_.priors.front().lux)
+ return config_.priors.front().prior;
+ else if (lux_ >= config_.priors.back().lux)
+ return config_.priors.back().prior;
+ else {
+ int idx = 0;
+ // find which two we lie between
+ while (config_.priors[idx + 1].lux < lux_)
+ idx++;
+ double lux0 = config_.priors[idx].lux,
+ lux1 = config_.priors[idx + 1].lux;
+ return Pwl::Combine(config_.priors[idx].prior,
+ config_.priors[idx + 1].prior,
+ [&](double /*x*/, double y0, double y1) {
+ return y0 + (y1 - y0) *
+ (lux_ - lux0) / (lux1 - lux0);
+ });
+ }
+}
+
+static double interpolate_quadatric(Pwl::Point const &A, Pwl::Point const &B,
+ Pwl::Point const &C)
+{
+ // Given 3 points on a curve, find the extremum of the function in that
+ // interval by fitting a quadratic.
+ const double eps = 1e-3;
+ Pwl::Point CA = C - A, BA = B - A;
+ double denominator = 2 * (BA.y * CA.x - CA.y * BA.x);
+ if (abs(denominator) > eps) {
+ double numerator = BA.y * CA.x * CA.x - CA.y * BA.x * BA.x;
+ double result = numerator / denominator + A.x;
+ return std::max(A.x, std::min(C.x, result));
+ }
+ // has degenerated to straight line segment
+ return A.y < C.y - eps ? A.x : (C.y < A.y - eps ? C.x : B.x);
+}
+
+double Awb::coarseSearch(Pwl const &prior)
+{
+ points_.clear(); // assume doesn't deallocate memory
+ size_t best_point = 0;
+ double t = mode_->ct_lo;
+ int span_r = 0, span_b = 0;
+ // Step down the CT curve evaluating log likelihood.
+ while (true) {
+ double r = config_.ct_r.Eval(t, &span_r);
+ double b = config_.ct_b.Eval(t, &span_b);
+ double gain_r = 1 / r, gain_b = 1 / b;
+ double delta2_sum = computeDelta2Sum(gain_r, gain_b);
+ double prior_log_likelihood =
+ prior.Eval(prior.Domain().Clip(t));
+ double final_log_likelihood = delta2_sum - prior_log_likelihood;
+ RPI_LOG("t: " << t << " gain_r " << gain_r << " gain_b "
+ << gain_b << " delta2_sum " << delta2_sum
+ << " prior " << prior_log_likelihood << " final "
+ << final_log_likelihood);
+ points_.push_back(Pwl::Point(t, final_log_likelihood));
+ if (points_.back().y < points_[best_point].y)
+ best_point = points_.size() - 1;
+ if (t == mode_->ct_hi)
+ break;
+ // for even steps along the r/b curve scale them by the current t
+ t = std::min(t + t / 10 * config_.coarse_step,
+ mode_->ct_hi);
+ }
+ t = points_[best_point].x;
+ RPI_LOG("Coarse search found CT " << t);
+ // We have the best point of the search, but refine it with a quadratic
+ // interpolation around its neighbours.
+ if (points_.size() > 2) {
+ unsigned long bp = std::min(best_point, points_.size() - 2);
+ best_point = std::max(1UL, bp);
+ t = interpolate_quadatric(points_[best_point - 1],
+ points_[best_point],
+ points_[best_point + 1]);
+ RPI_LOG("After quadratic refinement, coarse search has CT "
+ << t);
+ }
+ return t;
+}
+
+void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior)
+{
+ int span_r, span_b;
+ config_.ct_r.Eval(t, &span_r);
+ config_.ct_b.Eval(t, &span_b);
+ double step = t / 10 * config_.coarse_step * 0.1;
+ int nsteps = 5;
+ double r_diff = config_.ct_r.Eval(t + nsteps * step, &span_r) -
+ config_.ct_r.Eval(t - nsteps * step, &span_r);
+ double b_diff = config_.ct_b.Eval(t + nsteps * step, &span_b) -
+ config_.ct_b.Eval(t - nsteps * step, &span_b);
+ Pwl::Point transverse(b_diff, -r_diff);
+ if (transverse.Len2() < 1e-6)
+ return;
+ // unit vector orthogonal to the b vs. r function (pointing outwards
+ // with r and b increasing)
+ transverse = transverse / transverse.Len();
+ double best_log_likelihood = 0, best_t = 0, best_r = 0, best_b = 0;
+ double transverse_range =
+ config_.transverse_neg + config_.transverse_pos;
+ const int MAX_NUM_DELTAS = 12;
+ // a transverse step approximately every 0.01 r/b units
+ int num_deltas = floor(transverse_range * 100 + 0.5) + 1;
+ num_deltas = num_deltas < 3 ? 3 :
+ (num_deltas > MAX_NUM_DELTAS ? MAX_NUM_DELTAS : num_deltas);
+ // Step down CT curve. March a bit further if the transverse range is
+ // large.
+ nsteps += num_deltas;
+ for (int i = -nsteps; i <= nsteps; i++) {
+ double t_test = t + i * step;
+ double prior_log_likelihood =
+ prior.Eval(prior.Domain().Clip(t_test));
+ double r_curve = config_.ct_r.Eval(t_test, &span_r);
+ double b_curve = config_.ct_b.Eval(t_test, &span_b);
+ // x will be distance off the curve, y the log likelihood there
+ Pwl::Point points[MAX_NUM_DELTAS];
+ int best_point = 0;
+ // Take some measurements transversely *off* the CT curve.
+ for (int j = 0; j < num_deltas; j++) {
+ points[j].x = -config_.transverse_neg +
+ (transverse_range * j) / (num_deltas - 1);
+ Pwl::Point rb_test = Pwl::Point(r_curve, b_curve) +
+ transverse * points[j].x;
+ double r_test = rb_test.x, b_test = rb_test.y;
+ double gain_r = 1 / r_test, gain_b = 1 / b_test;
+ double delta2_sum = computeDelta2Sum(gain_r, gain_b);
+ points[j].y = delta2_sum - prior_log_likelihood;
+ RPI_LOG("At t " << t_test << " r " << r_test << " b "
+ << b_test << ": " << points[j].y);
+ if (points[j].y < points[best_point].y)
+ best_point = j;
+ }
+ // We have NUM_DELTAS points transversely across the CT curve,
+ // now let's do a quadratic interpolation for the best result.
+ best_point = std::max(1, std::min(best_point, num_deltas - 2));
+ Pwl::Point rb_test =
+ Pwl::Point(r_curve, b_curve) +
+ transverse *
+ interpolate_quadatric(points[best_point - 1],
+ points[best_point],
+ points[best_point + 1]);
+ double r_test = rb_test.x, b_test = rb_test.y;
+ double gain_r = 1 / r_test, gain_b = 1 / b_test;
+ double delta2_sum = computeDelta2Sum(gain_r, gain_b);
+ double final_log_likelihood = delta2_sum - prior_log_likelihood;
+ RPI_LOG("Finally "
+ << t_test << " r " << r_test << " b " << b_test << ": "
+ << final_log_likelihood
+ << (final_log_likelihood < best_log_likelihood ? " BEST"
+ : ""));
+ if (best_t == 0 || final_log_likelihood < best_log_likelihood)
+ best_log_likelihood = final_log_likelihood,
+ best_t = t_test, best_r = r_test, best_b = b_test;
+ }
+ t = best_t, r = best_r, b = best_b;
+ RPI_LOG("Fine search found t " << t << " r " << r << " b " << b);
+}
+
+void Awb::awbBayes()
+{
+ // May as well divide out G to save computeDelta2Sum from doing it over
+ // and over.
+ for (auto &z : zones_)
+ z.R = z.R / (z.G + 1), z.B = z.B / (z.G + 1);
+ // Get the current prior, and scale according to how many zones are
+ // valid... not entirely sure about this.
+ Pwl prior = interpolatePrior();
+ prior *= zones_.size() / (double)(AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y);
+ prior.Map([](double x, double y) {
+ RPI_LOG("(" << x << "," << y << ")");
+ });
+ double t = coarseSearch(prior);
+ double r = config_.ct_r.Eval(t);
+ double b = config_.ct_b.Eval(t);
+ RPI_LOG("After coarse search: r " << r << " b " << b << " (gains r "
+ << 1 / r << " b " << 1 / b << ")");
+ // Not entirely sure how to handle the fine search yet. Mostly the
+ // estimated CT is already good enough, but the fine search allows us to
+ // wander transverely off the CT curve. Under some illuminants, where
+ // there may be more or less green light, this may prove beneficial,
+ // though I probably need more real datasets before deciding exactly how
+ // this should be controlled and tuned.
+ fineSearch(t, r, b, prior);
+ RPI_LOG("After fine search: r " << r << " b " << b << " (gains r "
+ << 1 / r << " b " << 1 / b << ")");
+ // Write results out for the main thread to pick up. Remember to adjust
+ // the gains from the ones that the "canonical sensor" would require to
+ // the ones needed by *this* sensor.
+ async_results_.temperature_K = t;
+ async_results_.gain_r = 1.0 / r * config_.sensitivity_r;
+ async_results_.gain_g = 1.0;
+ async_results_.gain_b = 1.0 / b * config_.sensitivity_b;
+}
+
+void Awb::awbGrey()
+{
+ RPI_LOG("Grey world AWB");
+ // Make a separate list of the derivatives for each of red and blue, so
+ // that we can sort them to exclude the extreme gains. We could
+ // consider some variations, such as normalising all the zones first, or
+ // doing an L2 average etc.
+ std::vector<RGB> &derivs_R(zones_);
+ std::vector<RGB> derivs_B(derivs_R);
+ std::sort(derivs_R.begin(), derivs_R.end(),
+ [](RGB const &a, RGB const &b) {
+ return a.G * b.R < b.G * a.R;
+ });
+ std::sort(derivs_B.begin(), derivs_B.end(),
+ [](RGB const &a, RGB const &b) {
+ return a.G * b.B < b.G * a.B;
+ });
+ // Average the middle half of the values.
+ int discard = derivs_R.size() / 4;
+ RGB sum_R(0, 0, 0), sum_B(0, 0, 0);
+ for (auto ri = derivs_R.begin() + discard,
+ bi = derivs_B.begin() + discard;
+ ri != derivs_R.end() - discard; ri++, bi++)
+ sum_R += *ri, sum_B += *bi;
+ double gain_r = sum_R.G / (sum_R.R + 1),
+ gain_b = sum_B.G / (sum_B.B + 1);
+ async_results_.temperature_K = 4500; // don't know what it is
+ async_results_.gain_r = gain_r;
+ async_results_.gain_g = 1.0;
+ async_results_.gain_b = gain_b;
+}
+
+void Awb::doAwb()
+{
+ if (manual_r_ != 0.0 && manual_b_ != 0.0) {
+ async_results_.temperature_K = 4500; // don't know what it is
+ async_results_.gain_r = manual_r_;
+ async_results_.gain_g = 1.0;
+ async_results_.gain_b = manual_b_;
+ RPI_LOG("Using manual white balance: gain_r "
+ << async_results_.gain_r << " gain_b "
+ << async_results_.gain_b);
+ } else {
+ prepareStats();
+ RPI_LOG("Valid zones: " << zones_.size());
+ if (zones_.size() > config_.min_regions) {
+ if (config_.bayes)
+ awbBayes();
+ else
+ awbGrey();
+ RPI_LOG("CT found is "
+ << async_results_.temperature_K
+ << " with gains r " << async_results_.gain_r
+ << " and b " << async_results_.gain_b);
+ }
+ }
+}
+
+// Register algorithm with the system.
+static Algorithm *Create(Controller *controller)
+{
+ return (Algorithm *)new Awb(controller);
+}
+static RegisterAlgorithm reg(NAME, &Create);