summaryrefslogtreecommitdiff
path: root/meson_options.txt
diff options
context:
space:
mode:
authorLaurent Pinchart <laurent.pinchart@ideasonboard.com>2020-02-07 17:57:42 +0200
committerLaurent Pinchart <laurent.pinchart@ideasonboard.com>2020-04-15 19:51:56 +0300
commit26d1a0b60801350cd2f6ae465ba6be9f12492a04 (patch)
tree2b3303cbd863ca2eb4fa71e353942c7a94783e63 /meson_options.txt
parent74ec442f3986183ec3981b5c074810da2e338365 (diff)
licenses: Remove unused LGPL-2.1
No source is licensed under the LGPL-2.1, we only use LGPL-2.1-or-later. Remove the corresponding license file. Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
Diffstat (limited to 'meson_options.txt')
0 files changed, 0 insertions, 0 deletions
'#n73'>73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
/* SPDX-License-Identifier: BSD-2-Clause */
/*
 * Copyright (C) 2019, Raspberry Pi (Trading) Limited
 *
 * alsc.cpp - ALSC (auto lens shading correction) control algorithm
 */
#include <math.h>

#include "../awb_status.h"
#include "alsc.hpp"

// Raspberry Pi ALSC (Auto Lens Shading Correction) algorithm.

using namespace RPiController;

#define NAME "rpi.alsc"

static const int X = ALSC_CELLS_X;
static const int Y = ALSC_CELLS_Y;
static const int XY = X * Y;
static const double INSUFFICIENT_DATA = -1.0;

Alsc::Alsc(Controller *controller)
	: Algorithm(controller)
{
	async_abort_ = async_start_ = async_started_ = async_finished_ = false;
	async_thread_ = std::thread(std::bind(&Alsc::asyncFunc, this));
}

Alsc::~Alsc()
{
	{
		std::lock_guard<std::mutex> lock(mutex_);
		async_abort_ = true;
	}
	async_signal_.notify_one();
	async_thread_.join();
}

char const *Alsc::Name() const
{
	return NAME;
}

static void generate_lut(double *lut, boost::property_tree::ptree const &params)
{
	double cstrength = params.get<double>("corner_strength", 2.0);
	if (cstrength <= 1.0)
		throw std::runtime_error("Alsc: corner_strength must be > 1.0");
	double asymmetry = params.get<double>("asymmetry", 1.0);
	if (asymmetry < 0)
		throw std::runtime_error("Alsc: asymmetry must be >= 0");
	double f1 = cstrength - 1, f2 = 1 + sqrt(cstrength);
	double R2 = X * Y / 4 * (1 + asymmetry * asymmetry);
	int num = 0;
	for (int y = 0; y < Y; y++) {
		for (int x = 0; x < X; x++) {
			double dy = y - Y / 2 + 0.5,
			       dx = (x - X / 2 + 0.5) * asymmetry;
			double r2 = (dx * dx + dy * dy) / R2;
			lut[num++] =
				(f1 * r2 + f2) * (f1 * r2 + f2) /
				(f2 * f2); // this reproduces the cos^4 rule
		}
	}
}

static void read_lut(double *lut, boost::property_tree::ptree const &params)
{
	int num = 0;
	const int max_num = XY;
	for (auto &p : params) {
		if (num == max_num)
			throw std::runtime_error(
				"Alsc: too many entries in LSC table");
		lut[num++] = p.second.get_value<double>();
	}
	if (num < max_num)
		throw std::runtime_error("Alsc: too few entries in LSC table");
}

static void read_calibrations(std::vector<AlscCalibration> &calibrations,
			      boost::property_tree::ptree const &params,
			      std::string const &name)
{
	if (params.get_child_optional(name)) {
		double last_ct = 0;
		for (auto &p : params.get_child(name)) {
			double ct = p.second.get<double>("ct");
			if (ct <= last_ct)
				throw std::runtime_error(
					"Alsc: entries in " + name +
					" must be in increasing ct order");
			AlscCalibration calibration;
			calibration.ct = last_ct = ct;
			boost::property_tree::ptree const &table =
				p.second.get_child("table");
			int num = 0;
			for (auto it = table.begin(); it != table.end(); it++) {
				if (num == XY)
					throw std::runtime_error(
						"Alsc: too many values for ct " +
						std::to_string(ct) + " in " +
						name);
				calibration.table[num++] =
					it->second.get_value<double>();
			}
			if (num != XY)
				throw std::runtime_error(
					"Alsc: too few values for ct " +
					std::to_string(ct) + " in " + name);
			calibrations.push_back(calibration);
			RPI_LOG("Read " << name << " calibration for ct "
					<< ct);
		}
	}
}

void Alsc::Read(boost::property_tree::ptree const &params)
{
	RPI_LOG("Alsc");
	config_.frame_period = params.get<uint16_t>("frame_period", 12);
	config_.startup_frames = params.get<uint16_t>("startup_frames", 10);
	config_.speed = params.get<double>("speed", 0.05);
	double sigma = params.get<double>("sigma", 0.01);
	config_.sigma_Cr = params.get<double>("sigma_Cr", sigma);
	config_.sigma_Cb = params.get<double>("sigma_Cb", sigma);
	config_.min_count = params.get<double>("min_count", 10.0);
	config_.min_G = params.get<uint16_t>("min_G", 50);
	config_.omega = params.get<double>("omega", 1.3);
	config_.n_iter = params.get<uint32_t>("n_iter", X + Y);
	config_.luminance_strength =
		params.get<double>("luminance_strength", 1.0);
	for (int i = 0; i < XY; i++)
		config_.luminance_lut[i] = 1.0;
	if (params.get_child_optional("corner_strength"))
		generate_lut(config_.luminance_lut, params);
	else if (params.get_child_optional("luminance_lut"))
		read_lut(config_.luminance_lut,
			 params.get_child("luminance_lut"));
	else
		RPI_WARN("Alsc: no luminance table - assume unity everywhere");
	read_calibrations(config_.calibrations_Cr, params, "calibrations_Cr");
	read_calibrations(config_.calibrations_Cb, params, "calibrations_Cb");
	config_.default_ct = params.get<double>("default_ct", 4500.0);
	config_.threshold = params.get<double>("threshold", 1e-3);
}

static void get_cal_table(double ct,
			  std::vector<AlscCalibration> const &calibrations,
			  double cal_table[XY]);
static void resample_cal_table(double const cal_table_in[XY],
			       CameraMode const &camera_mode,
			       double cal_table_out[XY]);
static void compensate_lambdas_for_cal(double const cal_table[XY],
				       double const old_lambdas[XY],
				       double new_lambdas[XY]);
static void add_luminance_to_tables(double results[3][Y][X],
				    double const lambda_r[XY], double lambda_g,
				    double const lambda_b[XY],
				    double const luminance_lut[XY],
				    double luminance_strength);

void Alsc::Initialise()
{
	RPI_LOG("Alsc");
	frame_count2_ = frame_count_ = frame_phase_ = 0;
	first_time_ = true;
	ct_ = config_.default_ct;
	// The lambdas are initialised in the SwitchMode.
}

void Alsc::waitForAysncThread()
{
	if (async_started_) {
		async_started_ = false;
		std::unique_lock<std::mutex> lock(mutex_);
		sync_signal_.wait(lock, [&] {
			return async_finished_;
		});
		async_finished_ = false;
	}
}

static bool compare_modes(CameraMode const &cm0, CameraMode const &cm1)
{
	// Return true if the modes crop from the sensor significantly differently,
	// or if the user transform has changed.
	if (cm0.transform != cm1.transform)
		return true;
	int left_diff = abs(cm0.crop_x - cm1.crop_x);
	int top_diff = abs(cm0.crop_y - cm1.crop_y);
	int right_diff = fabs(cm0.crop_x + cm0.scale_x * cm0.width -
			      cm1.crop_x - cm1.scale_x * cm1.width);
	int bottom_diff = fabs(cm0.crop_y + cm0.scale_y * cm0.height -
			       cm1.crop_y - cm1.scale_y * cm1.height);
	// These thresholds are a rather arbitrary amount chosen to trigger
	// when carrying on with the previously calculated tables might be
	// worse than regenerating them (but without the adaptive algorithm).
	int threshold_x = cm0.sensor_width >> 4;
	int threshold_y = cm0.sensor_height >> 4;
	return left_diff > threshold_x || right_diff > threshold_x ||
	       top_diff > threshold_y || bottom_diff > threshold_y;
}

void Alsc::SwitchMode(CameraMode const &camera_mode,
		      [[maybe_unused]] Metadata *metadata)
{
	// We're going to start over with the tables if there's any "significant"
	// change.
	bool reset_tables = first_time_ || compare_modes(camera_mode_, camera_mode);

	// Ensure the other thread isn't running while we do this.
	waitForAysncThread();

	camera_mode_ = camera_mode;

	// We must resample the luminance table like we do the others, but it's
	// fixed so we can simply do it up front here.
	resample_cal_table(config_.luminance_lut, camera_mode_, luminance_table_);

	if (reset_tables) {
		// Upon every "table reset", arrange for something sensible to be
		// generated. Construct the tables for the previous recorded colour
		// temperature. In order to start over from scratch we initialise
		// the lambdas, but the rest of this code then echoes the code in
		// doAlsc, without the adaptive algorithm.
		for (int i = 0; i < XY; i++)
			lambda_r_[i] = lambda_b_[i] = 1.0;
		double cal_table_r[XY], cal_table_b[XY], cal_table_tmp[XY];
		get_cal_table(ct_, config_.calibrations_Cr, cal_table_tmp);
		resample_cal_table(cal_table_tmp, camera_mode_, cal_table_r);
		get_cal_table(ct_, config_.calibrations_Cb, cal_table_tmp);
		resample_cal_table(cal_table_tmp, camera_mode_, cal_table_b);
		compensate_lambdas_for_cal(cal_table_r, lambda_r_,
					   async_lambda_r_);
		compensate_lambdas_for_cal(cal_table_b, lambda_b_,
					   async_lambda_b_);
		add_luminance_to_tables(sync_results_, async_lambda_r_, 1.0,
					async_lambda_b_, luminance_table_,
					config_.luminance_strength);
		memcpy(prev_sync_results_, sync_results_,
		       sizeof(prev_sync_results_));
		frame_phase_ = config_.frame_period; // run the algo again asap
		first_time_ = false;
	}
}

void Alsc::fetchAsyncResults()
{
	RPI_LOG("Fetch ALSC results");
	async_finished_ = false;
	async_started_ = false;
	memcpy(sync_results_, async_results_, sizeof(sync_results_));
}

static double get_ct(Metadata *metadata, double default_ct)
{
	AwbStatus awb_status;
	awb_status.temperature_K = default_ct; // in case nothing found
	if (metadata->Get("awb.status", awb_status) != 0)
		RPI_WARN("Alsc: no AWB results found, using "
			 << awb_status.temperature_K);
	else
		RPI_LOG("Alsc: AWB results found, using "
			<< awb_status.temperature_K);
	return awb_status.temperature_K;
}

static void copy_stats(bcm2835_isp_stats_region regions[XY], StatisticsPtr &stats,
		       AlscStatus const &status)
{
	bcm2835_isp_stats_region *input_regions = stats->awb_stats;
	double *r_table = (double *)status.r;
	double *g_table = (double *)status.g;
	double *b_table = (double *)status.b;
	for (int i = 0; i < XY; i++) {
		regions[i].r_sum = input_regions[i].r_sum / r_table[i];
		regions[i].g_sum = input_regions[i].g_sum / g_table[i];
		regions[i].b_sum = input_regions[i].b_sum / b_table[i];
		regions[i].counted = input_regions[i].counted;
		// (don't care about the uncounted value)
	}
}

void Alsc::restartAsync(StatisticsPtr &stats, Metadata *image_metadata)
{
	RPI_LOG("Starting ALSC thread");
	// Get the current colour temperature. It's all we need from the
	// metadata. Default to the last CT value (which could be the default).
	ct_ = get_ct(image_metadata, ct_);
	// We have to copy the statistics here, dividing out our best guess of
	// the LSC table that the pipeline applied to them.
	AlscStatus alsc_status;
	if (image_metadata->Get("alsc.status", alsc_status) != 0) {
		RPI_WARN("No ALSC status found for applied gains!");
		for (int y = 0; y < Y; y++)
			for (int x = 0; x < X; x++) {
				alsc_status.r[y][x] = 1.0;
				alsc_status.g[y][x] = 1.0;
				alsc_status.b[y][x] = 1.0;
			}
	}
	copy_stats(statistics_, stats, alsc_status);
	frame_phase_ = 0;
	async_started_ = true;
	{
		std::lock_guard<std::mutex> lock(mutex_);
		async_start_ = true;
	}
	async_signal_.notify_one();
}

void Alsc::Prepare(Metadata *image_metadata)
{
	// Count frames since we started, and since we last poked the async
	// thread.
	if (frame_count_ < (int)config_.startup_frames)
		frame_count_++;
	double speed = frame_count_ < (int)config_.startup_frames
			       ? 1.0
			       : config_.speed;
	RPI_LOG("Alsc: frame_count " << frame_count_ << " speed " << speed);
	{
		std::unique_lock<std::mutex> lock(mutex_);
		if (async_started_ && async_finished_) {
			RPI_LOG("ALSC thread finished");
			fetchAsyncResults();
		}
	}
	// Apply IIR filter to results and program into the pipeline.
	double *ptr = (double *)sync_results_,
	       *pptr = (double *)prev_sync_results_;
	for (unsigned int i = 0;
	     i < sizeof(sync_results_) / sizeof(double); i++)
		pptr[i] = speed * ptr[i] + (1.0 - speed) * pptr[i];
	// Put output values into status metadata.
	AlscStatus status;
	memcpy(status.r, prev_sync_results_[0], sizeof(status.r));
	memcpy(status.g, prev_sync_results_[1], sizeof(status.g));
	memcpy(status.b, prev_sync_results_[2], sizeof(status.b));
	image_metadata->Set("alsc.status", status);
}

void Alsc::Process(StatisticsPtr &stats, Metadata *image_metadata)
{
	// Count frames since we started, and since we last poked the async
	// thread.
	if (frame_phase_ < (int)config_.frame_period)
		frame_phase_++;
	if (frame_count2_ < (int)config_.startup_frames)
		frame_count2_++;
	RPI_LOG("Alsc: frame_phase " << frame_phase_);
	if (frame_phase_ >= (int)config_.frame_period ||
	    frame_count2_ < (int)config_.startup_frames) {
		if (async_started_ == false) {
			RPI_LOG("ALSC thread starting");
			restartAsync(stats, image_metadata);
		}
	}
}

void Alsc::asyncFunc()
{
	while (true) {
		{
			std::unique_lock<std::mutex> lock(mutex_);
			async_signal_.wait(lock, [&] {
				return async_start_ || async_abort_;
			});
			async_start_ = false;
			if (async_abort_)
				break;
		}
		doAlsc();
		{
			std::lock_guard<std::mutex> lock(mutex_);
			async_finished_ = true;
		}
		sync_signal_.notify_one();
	}
}

void get_cal_table(double ct, std::vector<AlscCalibration> const &calibrations,
		   double cal_table[XY])
{
	if (calibrations.empty()) {
		for (int i = 0; i < XY; i++)
			cal_table[i] = 1.0;
		RPI_LOG("Alsc: no calibrations found");
	} else if (ct <= calibrations.front().ct) {
		memcpy(cal_table, calibrations.front().table,
		       XY * sizeof(double));
		RPI_LOG("Alsc: using calibration for "
			<< calibrations.front().ct);
	} else if (ct >= calibrations.back().ct) {
		memcpy(cal_table, calibrations.back().table,
		       XY * sizeof(double));
		RPI_LOG("Alsc: using calibration for "
			<< calibrations.front().ct);
	} else {
		int idx = 0;
		while (ct > calibrations[idx + 1].ct)
			idx++;
		double ct0 = calibrations[idx].ct,
		       ct1 = calibrations[idx + 1].ct;
		RPI_LOG("Alsc: ct is " << ct << ", interpolating between "
				       << ct0 << " and " << ct1);
		for (int i = 0; i < XY; i++)
			cal_table[i] =
				(calibrations[idx].table[i] * (ct1 - ct) +
				 calibrations[idx + 1].table[i] * (ct - ct0)) /
				(ct1 - ct0);
	}
}

void resample_cal_table(double const cal_table_in[XY],
			CameraMode const &camera_mode, double cal_table_out[XY])
{
	// Precalculate and cache the x sampling locations and phases to save
	// recomputing them on every row.
	int x_lo[X], x_hi[X];
	double xf[X];
	double scale_x = camera_mode.sensor_width /
			 (camera_mode.width * camera_mode.scale_x);
	double x_off = camera_mode.crop_x / (double)camera_mode.sensor_width;
	double x = .5 / scale_x + x_off * X - .5;
	double x_inc = 1 / scale_x;
	for (int i = 0; i < X; i++, x += x_inc) {
		x_lo[i] = floor(x);
		xf[i] = x - x_lo[i];
		x_hi[i] = std::min(x_lo[i] + 1, X - 1);
		x_lo[i] = std::max(x_lo[i], 0);
		if (!!(camera_mode.transform & libcamera::Transform::HFlip)) {
			x_lo[i] = X - 1 - x_lo[i];
			x_hi[i] = X - 1 - x_hi[i];
		}
	}
	// Now march over the output table generating the new values.
	double scale_y = camera_mode.sensor_height /
			 (camera_mode.height * camera_mode.scale_y);
	double y_off = camera_mode.crop_y / (double)camera_mode.sensor_height;
	double y = .5 / scale_y + y_off * Y - .5;
	double y_inc = 1 / scale_y;
	for (int j = 0; j < Y; j++, y += y_inc) {
		int y_lo = floor(y);
		double yf = y - y_lo;
		int y_hi = std::min(y_lo + 1, Y - 1);
		y_lo = std::max(y_lo, 0);
		if (!!(camera_mode.transform & libcamera::Transform::VFlip)) {
			y_lo = Y - 1 - y_lo;
			y_hi = Y - 1 - y_hi;
		}
		double const *row_above = cal_table_in + X * y_lo;
		double const *row_below = cal_table_in + X * y_hi;
		for (int i = 0; i < X; i++) {
			double above = row_above[x_lo[i]] * (1 - xf[i]) +
				       row_above[x_hi[i]] * xf[i];
			double below = row_below[x_lo[i]] * (1 - xf[i]) +
				       row_below[x_hi[i]] * xf[i];
			*(cal_table_out++) = above * (1 - yf) + below * yf;
		}
	}
}

// Calculate chrominance statistics (R/G and B/G) for each region.
static_assert(XY == AWB_REGIONS, "ALSC/AWB statistics region mismatch");
static void calculate_Cr_Cb(bcm2835_isp_stats_region *awb_region, double Cr[XY],
			    double Cb[XY], uint32_t min_count, uint16_t min_G)
{
	for (int i = 0; i < XY; i++) {
		bcm2835_isp_stats_region &zone = awb_region[i];
		if (zone.counted <= min_count ||
		    zone.g_sum / zone.counted <= min_G) {
			Cr[i] = Cb[i] = INSUFFICIENT_DATA;
			continue;
		}
		Cr[i] = zone.r_sum / (double)zone.g_sum;
		Cb[i] = zone.b_sum / (double)zone.g_sum;
	}
}

static void apply_cal_table(double const cal_table[XY], double C[XY])
{
	for (int i = 0; i < XY; i++)
		if (C[i] != INSUFFICIENT_DATA)
			C[i] *= cal_table[i];
}

void compensate_lambdas_for_cal(double const cal_table[XY],
				double const old_lambdas[XY],
				double new_lambdas[XY])
{
	double min_new_lambda = std::numeric_limits<double>::max();
	for (int i = 0; i < XY; i++) {
		new_lambdas[i] = old_lambdas[i] * cal_table[i];
		min_new_lambda = std::min(min_new_lambda, new_lambdas[i]);
	}
	for (int i = 0; i < XY; i++)
		new_lambdas[i] /= min_new_lambda;
}

[[maybe_unused]] static void print_cal_table(double const C[XY])
{
	printf("table: [\n");
	for (int j = 0; j < Y; j++) {
		for (int i = 0; i < X; i++) {
			printf("%5.3f", 1.0 / C[j * X + i]);
			if (i != X - 1 || j != Y - 1)
				printf(",");
		}
		printf("\n");
	}
	printf("]\n");
}

// Compute weight out of 1.0 which reflects how similar we wish to make the
// colours of these two regions.
static double compute_weight(double C_i, double C_j, double sigma)
{
	if (C_i == INSUFFICIENT_DATA || C_j == INSUFFICIENT_DATA)
		return 0;
	double diff = (C_i - C_j) / sigma;
	return exp(-diff * diff / 2);
}

// Compute all weights.
static void compute_W(double const C[XY], double sigma, double W[XY][4])
{
	for (int i = 0; i < XY; i++) {
		// Start with neighbour above and go clockwise.
		W[i][0] = i >= X ? compute_weight(C[i], C[i - X], sigma) : 0;
		W[i][1] = i % X < X - 1 ? compute_weight(C[i], C[i + 1], sigma)
					: 0;
		W[i][2] =
			i < XY - X ? compute_weight(C[i], C[i + X], sigma) : 0;
		W[i][3] = i % X ? compute_weight(C[i], C[i - 1], sigma) : 0;
	}
}

// Compute M, the large but sparse matrix such that M * lambdas = 0.
static void construct_M(double const C[XY], double const W[XY][4],
			double M[XY][4])
{
	double epsilon = 0.001;
	for (int i = 0; i < XY; i++) {
		// Note how, if C[i] == INSUFFICIENT_DATA, the weights will all
		// be zero so the equation is still set up correctly.
		int m = !!(i >= X) + !!(i % X < X - 1) + !!(i < XY - X) +
			!!(i % X); // total number of neighbours
		// we'll divide the diagonal out straight away
		double diagonal =
			(epsilon + W[i][0] + W[i][1] + W[i][2] + W[i][3]) *
			C[i];
		M[i][0] = i >= X ? (W[i][0] * C[i - X] + epsilon / m * C[i]) /
					   diagonal
				 : 0;
		M[i][1] = i % X < X - 1
				  ? (W[i][1] * C[i + 1] + epsilon / m * C[i]) /
					    diagonal
				  : 0;
		M[i][2] = i < XY - X
				  ? (W[i][2] * C[i + X] + epsilon / m * C[i]) /
					    diagonal
				  : 0;
		M[i][3] = i % X ? (W[i][3] * C[i - 1] + epsilon / m * C[i]) /
					  diagonal
				: 0;
	}
}

// In the compute_lambda_ functions, note that the matrix coefficients for the
// left/right neighbours are zero down the left/right edges, so we don't need
// need to test the i value to exclude them.
static double compute_lambda_bottom(int i, double const M[XY][4],
				    double lambda[XY])
{
	return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + X] +
	       M[i][3] * lambda[i - 1];
}
static double compute_lambda_bottom_start(int i, double const M[XY][4],
					  double lambda[XY])
{
	return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + X];
}
static double compute_lambda_interior(int i, double const M[XY][4],
				      double lambda[XY])
{
	return M[i][0] * lambda[i - X] + M[i][1] * lambda[i + 1] +
	       M[i][2] * lambda[i + X] + M[i][3] * lambda[i - 1];
}
static double compute_lambda_top(int i, double const M[XY][4],
				 double lambda[XY])
{
	return M[i][0] * lambda[i - X] + M[i][1] * lambda[i + 1] +
	       M[i][3] * lambda[i - 1];
}
static double compute_lambda_top_end(int i, double const M[XY][4],
				     double lambda[XY])
{
	return M[i][0] * lambda[i - X] + M[i][3] * lambda[i - 1];
}

// Gauss-Seidel iteration with over-relaxation.
static double gauss_seidel2_SOR(double const M[XY][4], double omega,
				double lambda[XY])
{
	double old_lambda[XY];
	int i;
	for (i = 0; i < XY; i++)
		old_lambda[i] = lambda[i];
	lambda[0] = compute_lambda_bottom_start(0, M, lambda);
	for (i = 1; i < X; i++)
		lambda[i] = compute_lambda_bottom(i, M, lambda);
	for (; i < XY - X; i++)
		lambda[i] = compute_lambda_interior(i, M, lambda);
	for (; i < XY - 1; i++)
		lambda[i] = compute_lambda_top(i, M, lambda);
	lambda[i] = compute_lambda_top_end(i, M, lambda);
	// Also solve the system from bottom to top, to help spread the updates
	// better.
	lambda[i] = compute_lambda_top_end(i, M, lambda);
	for (i = XY - 2; i >= XY - X; i--)
		lambda[i] = compute_lambda_top(i, M, lambda);
	for (; i >= X; i--)
		lambda[i] = compute_lambda_interior(i, M, lambda);
	for (; i >= 1; i--)
		lambda[i] = compute_lambda_bottom(i, M, lambda);
	lambda[0] = compute_lambda_bottom_start(0, M, lambda);
	double max_diff = 0;
	for (i = 0; i < XY; i++) {
		lambda[i] = old_lambda[i] + (lambda[i] - old_lambda[i]) * omega;
		if (fabs(lambda[i] - old_lambda[i]) > fabs(max_diff))
			max_diff = lambda[i] - old_lambda[i];
	}
	return max_diff;
}

// Normalise the values so that the smallest value is 1.
static void normalise(double *ptr, size_t n)
{
	double minval = ptr[0];
	for (size_t i = 1; i < n; i++)
		minval = std::min(minval, ptr[i]);
	for (size_t i = 0; i < n; i++)
		ptr[i] /= minval;
}

static void run_matrix_iterations(double const C[XY], double lambda[XY],
				  double const W[XY][4], double omega,
				  int n_iter, double threshold)
{
	double M[XY][4];
	construct_M(C, W, M);
	double last_max_diff = std::numeric_limits<double>::max();
	for (int i = 0; i < n_iter; i++) {
		double max_diff = fabs(gauss_seidel2_SOR(M, omega, lambda));
		if (max_diff < threshold) {
			RPI_LOG("Stop after " << i + 1 << " iterations");
			break;
		}
		// this happens very occasionally (so make a note), though
		// doesn't seem to matter
		if (max_diff > last_max_diff)
			RPI_LOG("Iteration " << i << ": max_diff gone up "
					     << last_max_diff << " to "
					     << max_diff);
		last_max_diff = max_diff;
	}
	// We're going to normalise the lambdas so the smallest is 1. Not sure
	// this is really necessary as they get renormalised later, but I
	// suppose it does stop these quantities from wandering off...
	normalise(lambda, XY);
}

static void add_luminance_rb(double result[XY], double const lambda[XY],
			     double const luminance_lut[XY],
			     double luminance_strength)
{
	for (int i = 0; i < XY; i++)
		result[i] = lambda[i] *
			    ((luminance_lut[i] - 1) * luminance_strength + 1);
}

static void add_luminance_g(double result[XY], double lambda,
			    double const luminance_lut[XY],
			    double luminance_strength)
{
	for (int i = 0; i < XY; i++)
		result[i] = lambda *
			    ((luminance_lut[i] - 1) * luminance_strength + 1);
}

void add_luminance_to_tables(double results[3][Y][X], double const lambda_r[XY],
			     double lambda_g, double const lambda_b[XY],
			     double const luminance_lut[XY],
			     double luminance_strength)
{
	add_luminance_rb((double *)results[0], lambda_r, luminance_lut,
			 luminance_strength);
	add_luminance_g((double *)results[1], lambda_g, luminance_lut,
			luminance_strength);
	add_luminance_rb((double *)results[2], lambda_b, luminance_lut,
			 luminance_strength);
	normalise((double *)results, 3 * XY);
}

void Alsc::doAlsc()
{
	double Cr[XY], Cb[XY], Wr[XY][4], Wb[XY][4], cal_table_r[XY],
		cal_table_b[XY], cal_table_tmp[XY];
	// Calculate our R/B ("Cr"/"Cb") colour statistics, and assess which are
	// usable.
	calculate_Cr_Cb(statistics_, Cr, Cb, config_.min_count, config_.min_G);
	// Fetch the new calibrations (if any) for this CT. Resample them in
	// case the camera mode is not full-frame.
	get_cal_table(ct_, config_.calibrations_Cr, cal_table_tmp);
	resample_cal_table(cal_table_tmp, camera_mode_, cal_table_r);
	get_cal_table(ct_, config_.calibrations_Cb, cal_table_tmp);
	resample_cal_table(cal_table_tmp, camera_mode_, cal_table_b);
	// You could print out the cal tables for this image here, if you're
	// tuning the algorithm...
	// Apply any calibration to the statistics, so the adaptive algorithm
	// makes only the extra adjustments.
	apply_cal_table(cal_table_r, Cr);
	apply_cal_table(cal_table_b, Cb);
	// Compute weights between zones.
	compute_W(Cr, config_.sigma_Cr, Wr);
	compute_W(Cb, config_.sigma_Cb, Wb);
	// Run Gauss-Seidel iterations over the resulting matrix, for R and B.
	run_matrix_iterations(Cr, lambda_r_, Wr, config_.omega, config_.n_iter,
			      config_.threshold);
	run_matrix_iterations(Cb, lambda_b_, Wb, config_.omega, config_.n_iter,
			      config_.threshold);
	// Fold the calibrated gains into our final lambda values. (Note that on
	// the next run, we re-start with the lambda values that don't have the
	// calibration gains included.)
	compensate_lambdas_for_cal(cal_table_r, lambda_r_, async_lambda_r_);
	compensate_lambdas_for_cal(cal_table_b, lambda_b_, async_lambda_b_);
	// Fold in the luminance table at the appropriate strength.
	add_luminance_to_tables(async_results_, async_lambda_r_, 1.0,
				async_lambda_b_, luminance_table_,
				config_.luminance_strength);
}

// Register algorithm with the system.
static Algorithm *Create(Controller *controller)
{
	return (Algorithm *)new Alsc(controller);
}
static RegisterAlgorithm reg(NAME, &Create);