summaryrefslogtreecommitdiff
path: root/src/libcamera/pipeline/raspberrypi/raspberrypi.cpp
blob: 21a1d7f7cca32a397ce07dab1c34665bed0fa39b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
/* SPDX-License-Identifier: BSD-2-Clause */
/*
 * Copyright (C) 2019-2020, Raspberry Pi (Trading) Ltd.
 *
 * raspberrypi.cpp - Pipeline handler for Raspberry Pi devices
 */
#include <algorithm>
#include <assert.h>
#include <fcntl.h>
#include <mutex>
#include <queue>
#include <sys/mman.h>

#include <ipa/raspberrypi.h>
#include <libcamera/camera.h>
#include <libcamera/control_ids.h>
#include <libcamera/logging.h>
#include <libcamera/request.h>
#include <libcamera/stream.h>

#include <linux/drm_fourcc.h>
#include <linux/videodev2.h>

#include "camera_sensor.h"
#include "device_enumerator.h"
#include "ipa_manager.h"
#include "media_device.h"
#include "pipeline_handler.h"
#include "staggered_ctrl.h"
#include "utils.h"
#include "v4l2_controls.h"
#include "v4l2_videodevice.h"
#include "vcsm.h"

namespace libcamera {

LOG_DEFINE_CATEGORY(RPI)

using V4L2PixFmtMap = std::map<V4L2PixelFormat, std::vector<SizeRange>>;

namespace {

bool isRaw(PixelFormat &pixFmt)
{
	/*
	 * The isRaw test might be redundant right now the pipeline handler only
	 * supports RAW sensors. Leave it in for now, just as a sanity check.
	 */
	const PixelFormatInfo &info = PixelFormatInfo::info(pixFmt);
	if (!info.isValid())
		return false;

	return info.colourEncoding == PixelFormatInfo::ColourEncodingRAW;
}

double scoreFormat(double desired, double actual)
{
	double score = desired - actual;
	/* Smaller desired dimensions are preferred. */
	if (score < 0.0)
		score = (-score) / 8;
	/* Penalise non-exact matches. */
	if (actual != desired)
		score *= 2;

	return score;
}

V4L2DeviceFormat findBestMode(V4L2PixFmtMap &formatsMap, const Size &req)
{
	double bestScore = 9e9, score;
	V4L2DeviceFormat bestMode = {};

#define PENALTY_AR		1500.0
#define PENALTY_8BIT		2000.0
#define PENALTY_10BIT		1000.0
#define PENALTY_12BIT		   0.0
#define PENALTY_UNPACKED	 500.0

	/* Calculate the closest/best mode from the user requested size. */
	for (const auto &iter : formatsMap) {
		V4L2PixelFormat v4l2Format = iter.first;
		PixelFormat pixelFormat = v4l2Format.toPixelFormat();
		const PixelFormatInfo &info = PixelFormatInfo::info(pixelFormat);

		for (const SizeRange &sz : iter.second) {
			double modeWidth = sz.contains(req) ? req.width : sz.max.width;
			double modeHeight = sz.contains(req) ? req.height : sz.max.height;
			double reqAr = static_cast<double>(req.width) / req.height;
			double modeAr = modeWidth / modeHeight;

			/* Score the dimensions for closeness. */
			score = scoreFormat(req.width, modeWidth);
			score += scoreFormat(req.height, modeHeight);
			score += PENALTY_AR * scoreFormat(reqAr, modeAr);

			/* Add any penalties... this is not an exact science! */
			if (!info.packed)
				score += PENALTY_UNPACKED;

			if (info.bitsPerPixel == 12)
				score += PENALTY_12BIT;
			else if (info.bitsPerPixel == 10)
				score += PENALTY_10BIT;
			else if (info.bitsPerPixel == 8)
				score += PENALTY_8BIT;

			if (score <= bestScore) {
				bestScore = score;
				bestMode.fourcc = v4l2Format;
				bestMode.size = Size(modeWidth, modeHeight);
			}

			LOG(RPI, Info) << "Mode: " << modeWidth << "x" << modeHeight
				       << " fmt " << v4l2Format.toString()
				       << " Score: " << score
				       << " (best " << bestScore << ")";
		}
	}

	return bestMode;
}

} /* namespace */

/*
 * Device stream abstraction for either an internal or external stream.
 * Used for both Unicam and the ISP.
 */
class RPiStream : public Stream
{
public:
	RPiStream()
	{
	}

	RPiStream(const char *name, MediaEntity *dev, bool importOnly = false)
		: external_(false), importOnly_(importOnly), name_(name),
		  dev_(std::make_unique<V4L2VideoDevice>(dev))
	{
	}

	V4L2VideoDevice *dev() const
	{
		return dev_.get();
	}

	void setExternal(bool external)
	{
		external_ = external;
	}

	bool isExternal() const
	{
		/*
		 * Import streams cannot be external.
		 *
		 * RAW capture is a special case where we simply copy the RAW
		 * buffer out of the request. All other buffer handling happens
		 * as if the stream is internal.
		 */
		return external_ && !importOnly_;
	}

	bool isImporter() const
	{
		return importOnly_;
	}

	void reset()
	{
		external_ = false;
		internalBuffers_.clear();
	}

	std::string name() const
	{
		return name_;
	}

	void setExternalBuffers(std::vector<std::unique_ptr<FrameBuffer>> *buffers)
	{
		externalBuffers_ = buffers;
	}

	const std::vector<std::unique_ptr<FrameBuffer>> *getBuffers() const
	{
		return external_ ? externalBuffers_ : &internalBuffers_;
	}

	void releaseBuffers()
	{
		dev_->releaseBuffers();
		if (!external_ && !importOnly_)
			internalBuffers_.clear();
	}

	int importBuffers(unsigned int count)
	{
		return dev_->importBuffers(count);
	}

	int allocateBuffers(unsigned int count)
	{
		return dev_->allocateBuffers(count, &internalBuffers_);
	}

	int queueBuffers()
	{
		if (external_)
			return 0;

		for (auto &b : internalBuffers_) {
			int ret = dev_->queueBuffer(b.get());
			if (ret) {
				LOG(RPI, Error) << "Failed to queue buffers for "
						<< name_;
				return ret;
			}
		}

		return 0;
	}

	bool findFrameBuffer(FrameBuffer *buffer) const
	{
		auto start = external_ ? externalBuffers_->begin() : internalBuffers_.begin();
		auto end = external_ ? externalBuffers_->end() : internalBuffers_.end();

		if (importOnly_)
			return false;

		if (std::find_if(start, end,
				 [buffer](std::unique_ptr<FrameBuffer> const &ref) { return ref.get() == buffer; }) != end)
			return true;

		return false;
	}

private:
	/*
	 * Indicates that this stream is active externally, i.e. the buffers
	 * are provided by the application.
	 */
	bool external_;
	/* Indicates that this stream only imports buffers, e.g. ISP input. */
	bool importOnly_;
	/* Stream name identifier. */
	std::string name_;
	/* The actual device stream. */
	std::unique_ptr<V4L2VideoDevice> dev_;
	/* Internally allocated framebuffers associated with this device stream. */
	std::vector<std::unique_ptr<FrameBuffer>> internalBuffers_;
	/* Externally allocated framebuffers associated with this device stream. */
	std::vector<std::unique_ptr<FrameBuffer>> *externalBuffers_;
};

/*
 * The following class is just a convenient (and typesafe) array of device
 * streams indexed with an enum class.
 */
enum class Unicam : unsigned int { Image, Embedded };
enum class Isp : unsigned int { Input, Output0, Output1, Stats };

template<typename E, std::size_t N>
class RPiDevice : public std::array<class RPiStream, N>
{
private:
	constexpr auto index(E e) const noexcept
	{
		return static_cast<std::underlying_type_t<E>>(e);
	}
public:
	RPiStream &operator[](E e)
	{
		return std::array<class RPiStream, N>::operator[](index(e));
	}
	const RPiStream &operator[](E e) const
	{
		return std::array<class RPiStream, N>::operator[](index(e));
	}
};

class RPiCameraData : public CameraData
{
public:
	RPiCameraData(PipelineHandler *pipe)
		: CameraData(pipe), sensor_(nullptr), lsTable_(nullptr),
		  state_(State::Stopped), dropFrame_(false), ispOutputCount_(0)
	{
	}

	~RPiCameraData()
	{
		/*
		 * Free the LS table if we have allocated one. Another
		 * allocation will occur in applyLS() with the appropriate
		 * size.
		 */
		if (lsTable_) {
			vcsm_.free(lsTable_);
			lsTable_ = nullptr;
		}

		/* Stop the IPA proxy thread. */
		ipa_->stop();
	}

	void frameStarted(uint32_t sequence);

	int loadIPA();
	void queueFrameAction(unsigned int frame, const IPAOperationData &action);

	/* bufferComplete signal handlers. */
	void unicamBufferDequeue(FrameBuffer *buffer);
	void ispInputDequeue(FrameBuffer *buffer);
	void ispOutputDequeue(FrameBuffer *buffer);

	void clearIncompleteRequests();
	void handleStreamBuffer(FrameBuffer *buffer, const RPiStream *stream);
	void handleState();

	CameraSensor *sensor_;
	/* Array of Unicam and ISP device streams and associated buffers/streams. */
	RPiDevice<Unicam, 2> unicam_;
	RPiDevice<Isp, 4> isp_;
	/* The vector below is just for convenience when iterating over all streams. */
	std::vector<RPiStream *> streams_;
	/* Buffers passed to the IPA. */
	std::vector<IPABuffer> ipaBuffers_;

	/* VCSM allocation helper. */
	RPi::Vcsm vcsm_;
	void *lsTable_;

	RPi::StaggeredCtrl staggeredCtrl_;
	uint32_t expectedSequence_;
	bool sensorMetadata_;

	/*
	 * All the functions in this class are called from a single calling
	 * thread. So, we do not need to have any mutex to protect access to any
	 * of the variables below.
	 */
	enum class State { Stopped, Idle, Busy, IpaComplete };
	State state_;
	std::queue<FrameBuffer *> bayerQueue_;
	std::queue<FrameBuffer *> embeddedQueue_;
	std::deque<Request *> requestQueue_;

private:
	void checkRequestCompleted();
	void tryRunPipeline();
	void tryFlushQueues();
	FrameBuffer *updateQueue(std::queue<FrameBuffer *> &q, uint64_t timestamp, V4L2VideoDevice *dev);

	bool dropFrame_;
	int ispOutputCount_;
};

class RPiCameraConfiguration : public CameraConfiguration
{
public:
	RPiCameraConfiguration(const RPiCameraData *data);

	Status validate() override;

private:
	const RPiCameraData *data_;
};

class PipelineHandlerRPi : public PipelineHandler
{
public:
	PipelineHandlerRPi(CameraManager *manager);
	~PipelineHandlerRPi();

	CameraConfiguration *generateConfiguration(Camera *camera, const StreamRoles &roles) override;
	int configure(Camera *camera, CameraConfiguration *config) override;

	int exportFrameBuffers(Camera *camera, Stream *stream,
			       std::vector<std::unique_ptr<FrameBuffer>> *buffers) override;

	int start(Camera *camera) override;
	void stop(Camera *camera) override;

	int queueRequestDevice(Camera *camera, Request *request) override;

	bool match(DeviceEnumerator *enumerator) override;

private:
	RPiCameraData *cameraData(const Camera *camera)
	{
		return static_cast<RPiCameraData *>(PipelineHandler::cameraData(camera));
	}

	int configureIPA(Camera *camera);

	int queueAllBuffers(Camera *camera);
	int prepareBuffers(Camera *camera);
	void freeBuffers(Camera *camera);

	std::shared_ptr<MediaDevice> unicam_;
	std::shared_ptr<MediaDevice> isp_;
};

RPiCameraConfiguration::RPiCameraConfiguration(const RPiCameraData *data)
	: CameraConfiguration(), data_(data)
{
}

CameraConfiguration::Status RPiCameraConfiguration::validate()
{
	Status status = Valid;

	if (config_.empty())
		return Invalid;

	unsigned int rawCount = 0, outCount = 0, count = 0, maxIndex = 0;
	std::pair<int, Size> outSize[2];
	Size maxSize = {};
	for (StreamConfiguration &cfg : config_) {
		if (isRaw(cfg.pixelFormat)) {
			/*
			 * Calculate the best sensor mode we can use based on
			 * the user request.
			 */
			V4L2PixFmtMap fmts = data_->unicam_[Unicam::Image].dev()->formats();
			V4L2DeviceFormat sensorFormat = findBestMode(fmts, cfg.size);
			PixelFormat sensorPixFormat = sensorFormat.fourcc.toPixelFormat();
			if (cfg.size != sensorFormat.size ||
			    cfg.pixelFormat != sensorPixFormat) {
				cfg.size = sensorFormat.size;
				cfg.pixelFormat = sensorPixFormat;
				status = Adjusted;
			}
			rawCount++;
		} else {
			outSize[outCount] = std::make_pair(count, cfg.size);
			/* Record the largest resolution for fixups later. */
			if (maxSize < cfg.size) {
				maxSize = cfg.size;
				maxIndex = outCount;
			}
			outCount++;
		}

		count++;

		/* Can only output 1 RAW stream, or 2 YUV/RGB streams. */
		if (rawCount > 1 || outCount > 2) {
			LOG(RPI, Error) << "Invalid number of streams requested";
			return Invalid;
		}
	}

	/*
	 * Now do any fixups needed. For the two ISP outputs, one stream must be
	 * equal or smaller than the other in all dimensions.
	 */
	for (unsigned int i = 0; i < outCount; i++) {
		outSize[i].second.width = std::min(outSize[i].second.width,
						   maxSize.width);
		outSize[i].second.height = std::min(outSize[i].second.height,
						    maxSize.height);

		if (config_.at(outSize[i].first).size != outSize[i].second) {
			config_.at(outSize[i].first).size = outSize[i].second;
			status = Adjusted;
		}

		/*
		 * Also validate the correct pixel formats here.
		 * Note that Output0 and Output1 support a different
		 * set of formats.
		 *
		 * Output 0 must be for the largest resolution. We will
		 * have that fixed up in the code above.
		 *
		 */
		PixelFormat &cfgPixFmt = config_.at(outSize[i].first).pixelFormat;
		V4L2PixFmtMap fmts;

		if (i == maxIndex)
			fmts = data_->isp_[Isp::Output0].dev()->formats();
		else
			fmts = data_->isp_[Isp::Output1].dev()->formats();

		if (fmts.find(V4L2PixelFormat::fromPixelFormat(cfgPixFmt, false)) == fmts.end()) {
			/* If we cannot find a native format, use a default one. */
			cfgPixFmt = PixelFormat(DRM_FORMAT_NV12);
			status = Adjusted;
		}
	}

	return status;
}

PipelineHandlerRPi::PipelineHandlerRPi(CameraManager *manager)
	: PipelineHandler(manager), unicam_(nullptr), isp_(nullptr)
{
}

PipelineHandlerRPi::~PipelineHandlerRPi()
{
	if (unicam_)
		unicam_->release();

	if (isp_)
		isp_->release();
}

CameraConfiguration *PipelineHandlerRPi::generateConfiguration(Camera *camera,
							       const StreamRoles &roles)
{
	RPiCameraData *data = cameraData(camera);
	CameraConfiguration *config = new RPiCameraConfiguration(data);
	V4L2DeviceFormat sensorFormat;
	V4L2PixFmtMap fmts;

	if (roles.empty())
		return config;

	for (const StreamRole role : roles) {
		StreamConfiguration cfg{};

		switch (role) {
		case StreamRole::StillCaptureRaw:
			cfg.size = data->sensor_->resolution();
			fmts = data->unicam_[Unicam::Image].dev()->formats();
			sensorFormat = findBestMode(fmts, cfg.size);
			cfg.pixelFormat = sensorFormat.fourcc.toPixelFormat();
			ASSERT(cfg.pixelFormat.isValid());
			cfg.bufferCount = 1;
			break;

		case StreamRole::StillCapture:
			cfg.pixelFormat = PixelFormat(DRM_FORMAT_NV12);
			/* Return the largest sensor resolution. */
			cfg.size = data->sensor_->resolution();
			cfg.bufferCount = 1;
			break;

		case StreamRole::VideoRecording:
			cfg.pixelFormat = PixelFormat(DRM_FORMAT_NV12);
			cfg.size = { 1920, 1080 };
			cfg.bufferCount = 4;
			break;

		case StreamRole::Viewfinder:
			cfg.pixelFormat = PixelFormat(DRM_FORMAT_ARGB8888);
			cfg.size = { 800, 600 };
			cfg.bufferCount = 4;
			break;

		default:
			LOG(RPI, Error) << "Requested stream role not supported: "
					<< role;
			break;
		}

		config->addConfiguration(cfg);
	}

	config->validate();

	return config;
}

int PipelineHandlerRPi::configure(Camera *camera, CameraConfiguration *config)
{
	RPiCameraData *data = cameraData(camera);
	int ret;

	/* Start by resetting the Unicam and ISP stream states. */
	for (auto const stream : data->streams_)
		stream->reset();

	Size maxSize = {}, sensorSize = {};
	unsigned int maxIndex = 0;
	bool rawStream = false;

	/*
	 * Look for the RAW stream (if given) size as well as the largest
	 * ISP output size.
	 */
	for (unsigned i = 0; i < config->size(); i++) {
		StreamConfiguration &cfg = config->at(i);

		if (isRaw(cfg.pixelFormat)) {
			/*
			 * If we have been given a RAW stream, use that size
			 * for setting up the sensor.
			 */
			sensorSize = cfg.size;
			rawStream = true;
		} else {
			if (cfg.size > maxSize) {
				maxSize = config->at(i).size;
				maxIndex = i;
			}
		}
	}

	/* First calculate the best sensor mode we can use based on the user request. */
	V4L2PixFmtMap fmts = data->unicam_[Unicam::Image].dev()->formats();
	V4L2DeviceFormat sensorFormat = findBestMode(fmts, rawStream ? sensorSize : maxSize);

	/*
	 * Unicam image output format. The ISP input format gets set at start,
	 * just in case we have swapped bayer orders due to flips.
	 */
	ret = data->unicam_[Unicam::Image].dev()->setFormat(&sensorFormat);
	if (ret)
		return ret;

	LOG(RPI, Info) << "Sensor: " << camera->name()
		       << " - Selected mode: " << sensorFormat.toString();

	/*
	 * This format may be reset on start() if the bayer order has changed
	 * because of flips in the sensor.
	 */
	ret = data->isp_[Isp::Input].dev()->setFormat(&sensorFormat);

	/*
	 * See which streams are requested, and route the user
	 * StreamConfiguration appropriately.
	 */
	V4L2DeviceFormat format = {};
	for (unsigned i = 0; i < config->size(); i++) {
		StreamConfiguration &cfg = config->at(i);

		if (isRaw(cfg.pixelFormat)) {
			cfg.setStream(&data->isp_[Isp::Input]);
			cfg.stride = sensorFormat.planes[0].bpl;
			data->isp_[Isp::Input].setExternal(true);
			continue;
		}

		if (i == maxIndex) {
			/* ISP main output format. */
			V4L2VideoDevice *dev = data->isp_[Isp::Output0].dev();
			V4L2PixelFormat fourcc = dev->toV4L2PixelFormat(cfg.pixelFormat);
			format.size = cfg.size;
			format.fourcc = fourcc;

			ret = dev->setFormat(&format);
			if (ret)
				return -EINVAL;

			if (format.size != cfg.size || format.fourcc != fourcc) {
				LOG(RPI, Error)
					<< "Failed to set format on ISP capture0 device: "
					<< format.toString();
				return -EINVAL;
			}

			cfg.setStream(&data->isp_[Isp::Output0]);
			cfg.stride = format.planes[0].bpl;
			data->isp_[Isp::Output0].setExternal(true);
		}

		/*
		 * ISP second output format. This fallthrough means that if a
		 * second output stream has not been configured, we simply use
		 * the Output0 configuration.
		 */
		V4L2VideoDevice *dev = data->isp_[Isp::Output1].dev();
		format.fourcc = dev->toV4L2PixelFormat(cfg.pixelFormat);
		format.size = cfg.size;

		ret = dev->setFormat(&format);
		if (ret) {
			LOG(RPI, Error)
				<< "Failed to set format on ISP capture1 device: "
				<< format.toString();
			return ret;
		}
		/*
		 * If we have not yet provided a stream for this config, it
		 * means this is to be routed from Output1.
		 */
		if (!cfg.stream()) {
			cfg.setStream(&data->isp_[Isp::Output1]);
			cfg.stride = format.planes[0].bpl;
			data->isp_[Isp::Output1].setExternal(true);
		}
	}

	/* ISP statistics output format. */
	format = {};
	format.fourcc = V4L2PixelFormat(V4L2_META_FMT_BCM2835_ISP_STATS);
	ret = data->isp_[Isp::Stats].dev()->setFormat(&format);
	if (ret) {
		LOG(RPI, Error) << "Failed to set format on ISP stats stream: "
				<< format.toString();
		return ret;
	}

	/* Unicam embedded data output format. */
	format = {};
	format.fourcc = V4L2PixelFormat(V4L2_META_FMT_SENSOR_DATA);
	LOG(RPI, Debug) << "Setting embedded data format.";
	ret = data->unicam_[Unicam::Embedded].dev()->setFormat(&format);
	if (ret) {
		LOG(RPI, Error) << "Failed to set format on Unicam embedded: "
				<< format.toString();
		return ret;
	}

	/* Adjust aspect ratio by providing crops on the input image. */
	Rectangle crop = {
		.x = 0,
		.y = 0,
		.width = sensorFormat.size.width,
		.height = sensorFormat.size.height
	};

	int ar = maxSize.height * sensorFormat.size.width - maxSize.width * sensorFormat.size.height;
	if (ar > 0)
		crop.width = maxSize.width * sensorFormat.size.height / maxSize.height;
	else if (ar < 0)
		crop.height = maxSize.height * sensorFormat.size.width / maxSize.width;

	crop.width &= ~1;
	crop.height &= ~1;

	crop.x = (sensorFormat.size.width - crop.width) >> 1;
	crop.y = (sensorFormat.size.height - crop.height) >> 1;
	data->isp_[Isp::Input].dev()->setSelection(V4L2_SEL_TGT_CROP, &crop);

	ret = configureIPA(camera);
	if (ret)
		LOG(RPI, Error) << "Failed to configure the IPA: " << ret;

	return ret;
}

int PipelineHandlerRPi::exportFrameBuffers(Camera *camera, Stream *stream,
					   std::vector<std::unique_ptr<FrameBuffer>> *buffers)
{
	RPiStream *s = static_cast<RPiStream *>(stream);
	unsigned int count = stream->configuration().bufferCount;
	int ret = s->dev()->exportBuffers(count, buffers);

	s->setExternalBuffers(buffers);

	return ret;
}

int PipelineHandlerRPi::start(Camera *camera)
{
	RPiCameraData *data = cameraData(camera);
	ControlList controls(data->sensor_->controls());
	int ret;

	/* Allocate buffers for internal pipeline usage. */
	ret = prepareBuffers(camera);
	if (ret) {
		LOG(RPI, Error) << "Failed to allocate buffers";
		return ret;
	}

	ret = queueAllBuffers(camera);
	if (ret) {
		LOG(RPI, Error) << "Failed to queue buffers";
		return ret;
	}

	/*
	 * IPA configure may have changed the sensor flips - hence the bayer
	 * order. Get the sensor format and set the ISP input now.
	 */
	V4L2DeviceFormat sensorFormat;
	data->unicam_[Unicam::Image].dev()->getFormat(&sensorFormat);
	ret = data->isp_[Isp::Input].dev()->setFormat(&sensorFormat);
	if (ret)
		return ret;

	/* Enable SOF event generation. */
	data->unicam_[Unicam::Image].dev()->setFrameStartEnabled(true);

	/*
	 * Write the last set of gain and exposure values to the camera before
	 * starting. First check that the staggered ctrl has been initialised
	 * by the IPA action.
	 */
	ASSERT(data->staggeredCtrl_);
	data->staggeredCtrl_.reset();
	data->staggeredCtrl_.write();
	data->expectedSequence_ = 0;

	data->state_ = RPiCameraData::State::Idle;

	/* Start all streams. */
	for (auto const stream : data->streams_) {
		ret = stream->dev()->streamOn();
		if (ret) {
			stop(camera);
			return ret;
		}
	}

	return 0;
}

void PipelineHandlerRPi::stop(Camera *camera)
{
	RPiCameraData *data = cameraData(camera);

	data->state_ = RPiCameraData::State::Stopped;

	/* Disable SOF event generation. */
	data->unicam_[Unicam::Image].dev()->setFrameStartEnabled(false);

	/* This also stops the streams. */
	data->clearIncompleteRequests();
	/* The default std::queue constructor is explicit with gcc 5 and 6. */
	data->bayerQueue_ = std::queue<FrameBuffer *>{};
	data->embeddedQueue_ = std::queue<FrameBuffer *>{};

	freeBuffers(camera);
}

int PipelineHandlerRPi::queueRequestDevice(Camera *camera, Request *request)
{
	RPiCameraData *data = cameraData(camera);

	if (data->state_ == RPiCameraData::State::Stopped)
		return -EINVAL;

	/* Ensure all external streams have associated buffers! */
	for (auto &stream : data->isp_) {
		if (!stream.isExternal())
			continue;

		if (!request->findBuffer(&stream)) {
			LOG(RPI, Error) << "Attempt to queue request with invalid stream.";
			return -ENOENT;
		}
	}

	/* Push the request to the back of the queue. */
	data->requestQueue_.push_back(request);
	data->handleState();

	return 0;
}

bool PipelineHandlerRPi::match(DeviceEnumerator *enumerator)
{
	DeviceMatch unicam("unicam");
	DeviceMatch isp("bcm2835-isp");

	unicam.add("unicam-embedded");
	unicam.add("unicam-image");

	isp.add("bcm2835-isp0-output0"); /* Input */
	isp.add("bcm2835-isp0-capture1"); /* Output 0 */
	isp.add("bcm2835-isp0-capture2"); /* Output 1 */
	isp.add("bcm2835-isp0-capture3"); /* Stats */

	unicam_ = enumerator->search(unicam);
	if (!unicam_)
		return false;

	isp_ = enumerator->search(isp);
	if (!isp_)
		return false;

	unicam_->acquire();
	isp_->acquire();

	std::unique_ptr<RPiCameraData> data = std::make_unique<RPiCameraData>(this);

	/* Locate and open the unicam video streams. */
	data->unicam_[Unicam::Embedded] = RPiStream("Unicam Embedded", unicam_->getEntityByName("unicam-embedded"));
	data->unicam_[Unicam::Image] = RPiStream("Unicam Image", unicam_->getEntityByName("unicam-image"));

	/* Tag the ISP input stream as an import stream. */
	data->isp_[Isp::Input] = RPiStream("ISP Input", isp_->getEntityByName("bcm2835-isp0-output0"), true);
	data->isp_[Isp::Output0] = RPiStream("ISP Output0", isp_->getEntityByName("bcm2835-isp0-capture1"));
	data->isp_[Isp::Output1] = RPiStream("ISP Output1", isp_->getEntityByName("bcm2835-isp0-capture2"));
	data->isp_[Isp::Stats] = RPiStream("ISP Stats", isp_->getEntityByName("bcm2835-isp0-capture3"));

	/* This is just for convenience so that we can easily iterate over all streams. */
	for (auto &stream : data->unicam_)
		data->streams_.push_back(&stream);
	for (auto &stream : data->isp_)
		data->streams_.push_back(&stream);

	/* Open all Unicam and ISP streams. */
	for (auto const stream : data->streams_) {
		if (stream->dev()->open())
			return false;
	}

	/* Wire up all the buffer connections. */
	data->unicam_[Unicam::Image].dev()->frameStart.connect(data.get(), &RPiCameraData::frameStarted);
	data->unicam_[Unicam::Image].dev()->bufferReady.connect(data.get(), &RPiCameraData::unicamBufferDequeue);
	data->unicam_[Unicam::Embedded].dev()->bufferReady.connect(data.get(), &RPiCameraData::unicamBufferDequeue);
	data->isp_[Isp::Input].dev()->bufferReady.connect(data.get(), &RPiCameraData::ispInputDequeue);
	data->isp_[Isp::Output0].dev()->bufferReady.connect(data.get(), &RPiCameraData::ispOutputDequeue);
	data->isp_[Isp::Output1].dev()->bufferReady.connect(data.get(), &RPiCameraData::ispOutputDequeue);
	data->isp_[Isp::Stats].dev()->bufferReady.connect(data.get(), &RPiCameraData::ispOutputDequeue);

	/* Identify the sensor. */
	for (MediaEntity *entity : unicam_->entities()) {
		if (entity->function() == MEDIA_ENT_F_CAM_SENSOR) {
			data->sensor_ = new CameraSensor(entity);
			break;
		}
	}

	if (!data->sensor_)
		return false;

	if (data->sensor_->init())
		return false;

	if (data->loadIPA()) {
		LOG(RPI, Error) << "Failed to load a suitable IPA library";
		return false;
	}

	/* Register the controls that the Raspberry Pi IPA can handle. */
	data->controlInfo_ = RPiControls;
	/* Initialize the camera properties. */
	data->properties_ = data->sensor_->properties();

	/*
	 * List the available output streams.
	 * Currently cannot do Unicam streams!
	 */
	std::set<Stream *> streams;
	streams.insert(&data->isp_[Isp::Input]);
	streams.insert(&data->isp_[Isp::Output0]);
	streams.insert(&data->isp_[Isp::Output1]);
	streams.insert(&data->isp_[Isp::Stats]);

	/* Create and register the camera. */
	std::shared_ptr<Camera> camera = Camera::create(this, data->sensor_->model(), streams);
	registerCamera(std::move(camera), std::move(data));

	return true;
}

int PipelineHandlerRPi::configureIPA(Camera *camera)
{
	std::map<unsigned int, IPAStream> streamConfig;
	std::map<unsigned int, const ControlInfoMap &> entityControls;
	RPiCameraData *data = cameraData(camera);

	/* Get the device format to pass to the IPA. */
	V4L2DeviceFormat sensorFormat;
	data->unicam_[Unicam::Image].dev()->getFormat(&sensorFormat);
	/* Inform IPA of stream configuration and sensor controls. */
	unsigned int i = 0;
	for (auto const &stream : data->isp_) {
		if (stream.isExternal()) {
			streamConfig[i] = {
				.pixelFormat = stream.configuration().pixelFormat,
				.size = stream.configuration().size
			};
		}
	}
	entityControls.emplace(0, data->unicam_[Unicam::Image].dev()->controls());
	entityControls.emplace(1, data->isp_[Isp::Input].dev()->controls());

	/* Allocate the lens shading table via vcsm and pass to the IPA. */
	if (!data->lsTable_) {
		data->lsTable_ = data->vcsm_.alloc("ls_grid", MAX_LS_GRID_SIZE);
		uintptr_t ptr = reinterpret_cast<uintptr_t>(data->lsTable_);

		if (!data->lsTable_)
			return -ENOMEM;

		/*
		 * The vcsm allocation will always be in the memory region
		 * < 32-bits to allow Videocore to access the memory.
		 */
		IPAOperationData op;
		op.operation = RPI_IPA_EVENT_LS_TABLE_ALLOCATION;
		op.data = { static_cast<uint32_t>(ptr & 0xffffffff),
			    data->vcsm_.getVCHandle(data->lsTable_) };
		data->ipa_->processEvent(op);
	}

	CameraSensorInfo sensorInfo = {};
	int ret = data->sensor_->sensorInfo(&sensorInfo);
	if (ret) {
		LOG(RPI, Error) << "Failed to retrieve camera sensor info";
		return ret;
	}

	/* Ready the IPA - it must know about the sensor resolution. */
	data->ipa_->configure(sensorInfo, streamConfig, entityControls);

	return 0;
}

int PipelineHandlerRPi::queueAllBuffers(Camera *camera)
{
	RPiCameraData *data = cameraData(camera);
	int ret;

	for (auto const stream : data->streams_) {
		ret = stream->queueBuffers();
		if (ret < 0)
			return ret;
	}

	return 0;
}

int PipelineHandlerRPi::prepareBuffers(Camera *camera)
{
	RPiCameraData *data = cameraData(camera);
	int count, ret;

	/*
	 * Decide how many internal buffers to allocate. For now, simply look
	 * at how many external buffers will be provided. Will need to improve
	 * this logic.
	 */
	unsigned int maxBuffers = 0;
	for (const Stream *s : camera->streams())
		if (static_cast<const RPiStream *>(s)->isExternal())
			maxBuffers = std::max(maxBuffers, s->configuration().bufferCount);

	for (auto const stream : data->streams_) {
		if (stream->isExternal() || stream->isImporter()) {
			/*
			 * If a stream is marked as external reserve memory to
			 * prepare to import as many buffers are requested in
			 * the stream configuration.
			 *
			 * If a stream is an internal stream with importer
			 * role, reserve as many buffers as possible.
			 */
			unsigned int count = stream->isExternal()
						     ? stream->configuration().bufferCount
						     : maxBuffers;
			ret = stream->importBuffers(count);
			if (ret < 0)
				return ret;
		} else {
			/*
			 * If the stream is an internal exporter allocate and
			 * export as many buffers as possible to its internal
			 * pool.
			 */
			ret = stream->allocateBuffers(maxBuffers);
			if (ret < 0) {
				freeBuffers(camera);
				return ret;
			}
		}
	}

	/*
	 * Add cookies to the ISP Input buffers so that we can link them with
	 * the IPA and RPI_IPA_EVENT_SIGNAL_ISP_PREPARE event.
	 */
	count = 0;
	for (auto const &b : *data->unicam_[Unicam::Image].getBuffers()) {
		b->setCookie(count++);
	}

	/*
	 * Add cookies to the stats and embedded data buffers and link them with
	 * the IPA.
	 */
	count = 0;
	for (auto const &b : *data->isp_[Isp::Stats].getBuffers()) {
		b->setCookie(count++);
		data->ipaBuffers_.push_back({ .id = RPiIpaMask::STATS | b->cookie(),
					      .planes = b->planes() });
	}

	count = 0;
	for (auto const &b : *data->unicam_[Unicam::Embedded].getBuffers()) {
		b->setCookie(count++);
		data->ipaBuffers_.push_back({ .id = RPiIpaMask::EMBEDDED_DATA | b->cookie(),
					      .planes = b->planes() });
	}

	data->ipa_->mapBuffers(data->ipaBuffers_);

	return 0;
}

void PipelineHandlerRPi::freeBuffers(Camera *camera)
{
	RPiCameraData *data = cameraData(camera);

	std::vector<unsigned int> ids;
	for (IPABuffer &ipabuf : data->ipaBuffers_)
		ids.push_back(ipabuf.id);

	data->ipa_->unmapBuffers(ids);
	data->ipaBuffers_.clear();

	for (auto const stream : data->streams_)
		stream->releaseBuffers();
}

void RPiCameraData::frameStarted(uint32_t sequence)
{
	LOG(RPI, Debug) << "frame start " << sequence;

	/* Write any controls for the next frame as soon as we can. */
	staggeredCtrl_.write();
}

int RPiCameraData::loadIPA()
{
	ipa_ = IPAManager::instance()->createIPA(pipe_, 1, 1);
	if (!ipa_)
		return -ENOENT;

	ipa_->queueFrameAction.connect(this, &RPiCameraData::queueFrameAction);

	IPASettings settings{
		.configurationFile = ipa_->configurationFile(sensor_->model() + ".json")
	};

	ipa_->init(settings);

	/*
	 * Startup the IPA thread now. Without this call, none of the IPA API
	 * functions will run.
	 *
	 * It only gets stopped in the class destructor.
	 */
	return ipa_->start();
}

void RPiCameraData::queueFrameAction(unsigned int frame, const IPAOperationData &action)
{
	/*
	 * The following actions can be handled when the pipeline handler is in
	 * a stopped state.
	 */
	switch (action.operation) {
	case RPI_IPA_ACTION_V4L2_SET_STAGGERED: {
		ControlList controls = action.controls[0];
		if (!staggeredCtrl_.set(controls))
			LOG(RPI, Error) << "V4L2 staggered set failed";
		goto done;
	}

	case RPI_IPA_ACTION_SET_SENSOR_CONFIG: {
		/*
		 * Setup our staggered control writer with the sensor default
		 * gain and exposure delays.
		 */
		if (!staggeredCtrl_) {
			staggeredCtrl_.init(unicam_[Unicam::Image].dev(),
					    { { V4L2_CID_ANALOGUE_GAIN, action.data[0] },
					      { V4L2_CID_EXPOSURE, action.data[1] } });
			sensorMetadata_ = action.data[2];
		}

		/* Set the sensor orientation here as well. */
		ControlList controls = action.controls[0];
		unicam_[Unicam::Image].dev()->setControls(&controls);
		goto done;
	}

	case RPI_IPA_ACTION_V4L2_SET_ISP: {
		ControlList controls = action.controls[0];
		isp_[Isp::Input].dev()->setControls(&controls);
		goto done;
	}
	}

	if (state_ == State::Stopped)
		goto done;

	/*
	 * The following actions must not be handled when the pipeline handler
	 * is in a stopped state.
	 */
	switch (action.operation) {
	case RPI_IPA_ACTION_STATS_METADATA_COMPLETE: {
		unsigned int bufferId = action.data[0];
		FrameBuffer *buffer = isp_[Isp::Stats].getBuffers()->at(bufferId).get();

		handleStreamBuffer(buffer, &isp_[Isp::Stats]);
		/* Fill the Request metadata buffer with what the IPA has provided */
		requestQueue_.front()->metadata() = std::move(action.controls[0]);
		state_ = State::IpaComplete;
		break;
	}

	case RPI_IPA_ACTION_EMBEDDED_COMPLETE: {
		unsigned int bufferId = action.data[0];
		FrameBuffer *buffer = unicam_[Unicam::Embedded].getBuffers()->at(bufferId).get();
		handleStreamBuffer(buffer, &unicam_[Unicam::Embedded]);
		break;
	}

	case RPI_IPA_ACTION_RUN_ISP_AND_DROP_FRAME:
	case RPI_IPA_ACTION_RUN_ISP: {
		unsigned int bufferId = action.data[0];
		FrameBuffer *buffer = unicam_[Unicam::Image].getBuffers()->at(bufferId).get();

		LOG(RPI, Debug) << "Input re-queue to ISP, buffer id " << buffer->cookie()
				<< ", timestamp: " << buffer->metadata().timestamp;

		isp_[Isp::Input].dev()->queueBuffer(buffer);
		dropFrame_ = (action.operation == RPI_IPA_ACTION_RUN_ISP_AND_DROP_FRAME) ? true : false;
		ispOutputCount_ = 0;
		break;
	}

	default:
		LOG(RPI, Error) << "Unknown action " << action.operation;
		break;
	}

done:
	handleState();
}

void RPiCameraData::unicamBufferDequeue(FrameBuffer *buffer)
{
	const RPiStream *stream = nullptr;

	if (state_ == State::Stopped)
		return;

	for (RPiStream const &s : unicam_) {
		if (s.findFrameBuffer(buffer)) {
			stream = &s;
			break;
		}
	}

	/* The buffer must belong to one of our streams. */
	ASSERT(stream);

	LOG(RPI, Debug) << "Stream " << stream->name() << " buffer dequeue"
			<< ", buffer id " << buffer->cookie()
			<< ", timestamp: " << buffer->metadata().timestamp;

	if (stream == &unicam_[Unicam::Image]) {
		bayerQueue_.push(buffer);
	} else {
		embeddedQueue_.push(buffer);

		std::unordered_map<uint32_t, int32_t> ctrl;
		int offset = buffer->metadata().sequence - expectedSequence_;
		staggeredCtrl_.get(ctrl, offset);

		expectedSequence_ = buffer->metadata().sequence + 1;

		/*
		 * Sensor metadata is unavailable, so put the expected ctrl
		 * values (accounting for the staggered delays) into the empty
		 * metadata buffer.
		 */
		if (!sensorMetadata_) {
			const FrameBuffer &fb = buffer->planes();
			uint32_t *mem = static_cast<uint32_t *>(::mmap(nullptr, fb.planes()[0].length,
								       PROT_READ | PROT_WRITE,
								       MAP_SHARED,
								       fb.planes()[0].fd.fd(), 0));
			mem[0] = ctrl[V4L2_CID_EXPOSURE];
			mem[1] = ctrl[V4L2_CID_ANALOGUE_GAIN];
			munmap(mem, fb.planes()[0].length);
		}
	}

	handleState();
}

void RPiCameraData::ispInputDequeue(FrameBuffer *buffer)
{
	if (state_ == State::Stopped)
		return;

	handleStreamBuffer(buffer, &unicam_[Unicam::Image]);
	handleState();
}

void RPiCameraData::ispOutputDequeue(FrameBuffer *buffer)
{
	const RPiStream *stream = nullptr;

	if (state_ == State::Stopped)
		return;

	for (RPiStream const &s : isp_) {
		if (s.findFrameBuffer(buffer)) {
			stream = &s;
			break;
		}
	}

	/* The buffer must belong to one of our ISP output streams. */
	ASSERT(stream);

	LOG(RPI, Debug) << "Stream " << stream->name() << " buffer complete"
			<< ", buffer id " << buffer->cookie()
			<< ", timestamp: " << buffer->metadata().timestamp;

	handleStreamBuffer(buffer, stream);

	/*
	 * Increment the number of ISP outputs generated.
	 * This is needed to track dropped frames.
	 */
	ispOutputCount_++;

	/* If this is a stats output, hand it to the IPA now. */
	if (stream == &isp_[Isp::Stats]) {
		IPAOperationData op;
		op.operation = RPI_IPA_EVENT_SIGNAL_STAT_READY;
		op.data = { RPiIpaMask::STATS | buffer->cookie() };
		ipa_->processEvent(op);
	}

	handleState();
}

void RPiCameraData::clearIncompleteRequests()
{
	/*
	 * Queue up any buffers passed in the request.
	 * This is needed because streamOff() will then mark the buffers as
	 * cancelled.
	 */
	for (auto const request : requestQueue_) {
		for (auto const stream : streams_) {
			if (stream->isExternal())
				stream->dev()->queueBuffer(request->findBuffer(stream));
		}
	}

	/* Stop all streams. */
	for (auto const stream : streams_)
		stream->dev()->streamOff();

	/*
	 * All outstanding requests (and associated buffers) must be returned
	 * back to the pipeline. The buffers would have been marked as
	 * cancelled by the call to streamOff() earlier.
	 */
	while (!requestQueue_.empty()) {
		Request *request = requestQueue_.front();
		/*
		 * A request could be partially complete,
		 * i.e. we have returned some buffers, but still waiting
		 * for others or waiting for metadata.
		 */
		for (auto const stream : streams_) {
			if (!stream->isExternal())
				continue;

			FrameBuffer *buffer = request->findBuffer(stream);
			/*
			 * Has the buffer already been handed back to the
			 * request? If not, do so now.
			 */
			if (buffer->request())
				pipe_->completeBuffer(camera_, request, buffer);
		}

		pipe_->completeRequest(camera_, request);
		requestQueue_.pop_front();
	}
}

void RPiCameraData::handleStreamBuffer(FrameBuffer *buffer, const RPiStream *stream)
{
	if (stream->isExternal()) {
		if (!dropFrame_) {
			Request *request = buffer->request();
			pipe_->completeBuffer(camera_, request, buffer);
		}
	} else {
		/* Special handling for RAW buffer Requests.
		 *
		 * The ISP input stream is alway an import stream, but if the
		 * current Request has been made for a buffer on the stream,
		 * simply memcpy to the Request buffer and requeue back to the
		 * device.
		 */
		if (stream == &unicam_[Unicam::Image] && !dropFrame_) {
			const Stream *rawStream = static_cast<const Stream *>(&isp_[Isp::Input]);
			Request *request = requestQueue_.front();
			FrameBuffer *raw = request->findBuffer(const_cast<Stream *>(rawStream));
			if (raw) {
				raw->copyFrom(buffer);
				pipe_->completeBuffer(camera_, request, raw);
			}
		}

		/* Simply requeue the buffer. */
		stream->dev()->queueBuffer(buffer);
	}
}

void RPiCameraData::handleState()
{
	switch (state_) {
	case State::Stopped:
	case State::Busy:
		break;

	case State::IpaComplete:
		/* If the request is completed, we will switch to Idle state. */
		checkRequestCompleted();
		/*
		 * No break here, we want to try running the pipeline again.
		 * The fallthrough clause below suppresses compiler warnings.
		 */
		/* Fall through */

	case State::Idle:
		tryRunPipeline();
		tryFlushQueues();
		break;
	}
}

void RPiCameraData::checkRequestCompleted()
{
	bool requestCompleted = false;
	/*
	 * If we are dropping this frame, do not touch the request, simply
	 * change the state to IDLE when ready.
	 */
	if (!dropFrame_) {
		Request *request = requestQueue_.front();
		if (request->hasPendingBuffers())
			return;

		/* Must wait for metadata to be filled in before completing. */
		if (state_ != State::IpaComplete)
			return;

		pipe_->completeRequest(camera_, request);
		requestQueue_.pop_front();
		requestCompleted = true;
	}

	/*
	 * Make sure we have three outputs completed in the case of a dropped
	 * frame.
	 */
	if (state_ == State::IpaComplete &&
	    ((ispOutputCount_ == 3 && dropFrame_) || requestCompleted)) {
		state_ = State::Idle;
		if (dropFrame_)
			LOG(RPI, Info) << "Dropping frame at the request of the IPA";
	}
}

void RPiCameraData::tryRunPipeline()
{
	FrameBuffer *bayerBuffer, *embeddedBuffer;
	IPAOperationData op;

	/* If any of our request or buffer queues are empty, we cannot proceed. */
	if (state_ != State::Idle || requestQueue_.empty() ||
	    bayerQueue_.empty() || embeddedQueue_.empty())
		return;

	/* Start with the front of the bayer buffer queue. */
	bayerBuffer = bayerQueue_.front();

	/*
	 * Find the embedded data buffer with a matching timestamp to pass to
	 * the IPA. Any embedded buffers with a timestamp lower than the
	 * current bayer buffer will be removed and re-queued to the driver.
	 */
	embeddedBuffer = updateQueue(embeddedQueue_, bayerBuffer->metadata().timestamp,
				     unicam_[Unicam::Embedded].dev());

	if (!embeddedBuffer) {
		LOG(RPI, Debug) << "Could not find matching embedded buffer";

		/*
		 * Look the other way, try to match a bayer buffer with the
		 * first embedded buffer in the queue. This will also do some
		 * housekeeping on the bayer image queue - clear out any
		 * buffers that are older than the first buffer in the embedded
		 * queue.
		 *
		 * But first check if the embedded queue has emptied out.
		 */
		if (embeddedQueue_.empty())
			return;

		embeddedBuffer = embeddedQueue_.front();
		bayerBuffer = updateQueue(bayerQueue_, embeddedBuffer->metadata().timestamp,
					  unicam_[Unicam::Image].dev());

		if (!bayerBuffer) {
			LOG(RPI, Debug) << "Could not find matching bayer buffer - ending.";
			return;
		}
	}

	/*
	 * Take the first request from the queue and action the IPA.
	 * Unicam buffers for the request have already been queued as they come
	 * in.
	 */
	Request *request = requestQueue_.front();

	/*
	 * Process all the user controls by the IPA. Once this is complete, we
	 * queue the ISP output buffer listed in the request to start the HW
	 * pipeline.
	 */
	op.operation = RPI_IPA_EVENT_QUEUE_REQUEST;
	op.controls = { request->controls() };
	ipa_->processEvent(op);

	/* Queue up any ISP buffers passed into the request. */
	for (auto &stream : isp_) {
		if (stream.isExternal())
			stream.dev()->queueBuffer(request->findBuffer(&stream));
	}

	/* Ready to use the buffers, pop them off the queue. */
	bayerQueue_.pop();
	embeddedQueue_.pop();

	/* Set our state to say the pipeline is active. */
	state_ = State::Busy;

	LOG(RPI, Debug) << "Signalling RPI_IPA_EVENT_SIGNAL_ISP_PREPARE:"
			<< " Bayer buffer id: " << bayerBuffer->cookie()
			<< " Embedded buffer id: " << embeddedBuffer->cookie();

	op.operation = RPI_IPA_EVENT_SIGNAL_ISP_PREPARE;
	op.data = { RPiIpaMask::EMBEDDED_DATA | embeddedBuffer->cookie(),
		    RPiIpaMask::BAYER_DATA | bayerBuffer->cookie() };
	ipa_->processEvent(op);
}

void RPiCameraData::tryFlushQueues()
{
	/*
	 * It is possible for us to end up in a situation where all available
	 * Unicam buffers have been dequeued but do not match. This can happen
	 * when the system is heavily loaded and we get out of lock-step with
	 * the two channels.
	 *
	 * In such cases, the best thing to do is the re-queue all the buffers
	 * and give a chance for the hardware to return to lock-step. We do have
	 * to drop all interim frames.
	 */
	if (unicam_[Unicam::Image].getBuffers()->size() == bayerQueue_.size() &&
	    unicam_[Unicam::Embedded].getBuffers()->size() == embeddedQueue_.size()) {
		LOG(RPI, Warning) << "Flushing all buffer queues!";

		while (!bayerQueue_.empty()) {
			unicam_[Unicam::Image].dev()->queueBuffer(bayerQueue_.front());
			bayerQueue_.pop();
		}

		while (!embeddedQueue_.empty()) {
			unicam_[Unicam::Embedded].dev()->queueBuffer(embeddedQueue_.front());
			embeddedQueue_.pop();
		}
	}
}

FrameBuffer *RPiCameraData::updateQueue(std::queue<FrameBuffer *> &q, uint64_t timestamp,
					V4L2VideoDevice *dev)
{
	while (!q.empty()) {
		FrameBuffer *b = q.front();
		if (b->metadata().timestamp < timestamp) {
			q.pop();
			dev->queueBuffer(b);
			LOG(RPI, Error) << "Dropping input frame!";
		} else if (b->metadata().timestamp == timestamp) {
			/* The calling function will pop the item from the queue. */
			return b;
		} else {
			break; /* Only higher timestamps from here. */
		}
	}

	return nullptr;
}

REGISTER_PIPELINE_HANDLER(PipelineHandlerRPi);

} /* namespace libcamera */