# SPDX-License-Identifier: BSD-2-Clause # # Copyright (C) 2019, Raspberry Pi Ltd # # camera tuning tool Macbeth chart locator from ctt_ransac import * from ctt_tools import * import warnings """ NOTE: some custom functions have been used here to make the code more readable. These are defined in tools.py if they are needed for reference. """ """ Some inconsistencies between packages cause runtime warnings when running the clustering algorithm. This catches these warnings so they don't flood the output to the console """ def fxn(): warnings.warn("runtime", RuntimeWarning) """ Define the success message """ success_msg = 'Macbeth chart located successfully' def find_macbeth(Cam, img, mac_config=(0, 0)): small_chart, show = mac_config print('Locating macbeth chart') Cam.log += '\nLocating macbeth chart' """ catch the warnings """ warnings.simplefilter("ignore") fxn() """ Reference macbeth chart is created that will be correlated with the located macbeth chart guess to produce a confidence value for the match. """ ref = cv2.imread(Cam.path + 'ctt_ref.pgm', flags=cv2.IMREAD_GRAYSCALE) ref_w = 120 ref_h = 80 rc1 = (0, 0) rc2 = (0, ref_h) rc3 = (ref_w, ref_h) rc4 = (ref_w, 0) ref_corns = np.array((rc1, rc2, rc3, rc4), np.float32) ref_data = (ref, ref_w, ref_h, ref_corns) """ locate macbeth chart """ cor, mac, coords, msg = get_macbeth_chart(img, ref_data) # Keep a list that will include this and any brightened up versions of # the image for reuse. all_images = [img] """ following bits of code tries to fix common problems with simple techniques. If now or at any point the best correlation is of above 0.75, then nothing more is tried as this is a high enough confidence to ensure reliable macbeth square centre placement. """ """ brighten image 2x """ if cor < 0.75: a = 2 img_br = cv2.convertScaleAbs(img, alpha=a, beta=0) all_images.append(img_br) cor_b, mac_b, coords_b, msg_b = get_macbeth_chart(img_br, ref_data) if cor_b > cor: cor, mac, coords, msg = cor_b, mac_b, coords_b, msg_b """ brighten image 4x """ if cor < 0.75: a = 4 img_br = cv2.convertScaleAbs(img, alpha=a, beta=0) all_images.append(img_br) cor_b, mac_b, coords_b, msg_b = get_macbeth_chart(img_br, ref_data) if cor_b > cor: cor, mac, coords, msg = cor_b, mac_b, coords_b, msg_b """ In case macbeth chart is too small, take a selection of the image and attempt to locate macbeth chart within that. The scale increment is root 2 """ """ These variables will be used to transform the found coordinates at smaller scales back into the original. If ii is still -1 after this section that means it was not successful """ ii = -1 w_best = 0 h_best = 0 d_best = 100 """ d_best records the scale of the best match. Macbeth charts are only looked for at one scale increment smaller than the current best match in order to avoid unecessarily searching for macbeth charts at small scales. If a macbeth chart ha already been found then set d_best to 0 """ if cor != 0: d_best = 0 """ scale 3/2 (approx root2) """ if cor < 0.75: imgs = [] """ get size of image """ shape = list(img.shape[:2]) w, h = shape """ set dimensions of the subselection and the step along each axis between selections """ w_sel = int(2*w/3) h_sel = int(2*h/3) w_inc = int(w/6) h_inc = int(h/6) """ for each subselection, look for a macbeth chart loop over this and any brightened up images that we made to increase the likelihood of success """ for img_br in all_images: for i in range(3): for j in range(3): w_s, h_s = i*w_inc, j*h_inc img_sel = img_br[w_s:w_s+w_sel, h_s:h_s+h_sel] cor_ij, mac_ij, coords_ij, msg_ij = get_macbeth_chart(img_sel, ref_data) """ if the correlation is better than the best then record the scale and current subselection at which macbeth chart was found. Also record the coordinates, macbeth chart and message. """ if cor_ij > cor: cor = cor_ij mac, coords, msg = mac_ij, coords_ij, msg_ij ii, jj = i, j w_best, h_best = w_inc, h_inc d_best = 1 """ /* SPDX-License-Identifier: LGPL-2.1-or-later */ /* * Copyright (C) 2021-2022, Ideas On Board * * blc.h - RkISP1 Black Level Correction control */ #pragma once #include "algorithm.h" namespace libcamera { namespace ipa::rkisp1::algorithms { class BlackLevelCorrection : public Algorithm { public: BlackLevelCorrection(); ~BlackLevelCorrection() = default; int init(IPAContext &context, const YamlObject &tuningData) override; void prepare(IPAContext &context, const uint32_t frame, IPAFrameContext &frameContext, rkisp1_params_cfg *params) override; private: bool tuningParameters_; int16_t blackLevelRed_; int16_t blackLevelGreenR_; int16_t blackLevelGreenB_; int16_t blackLevelBlue_; }; } /* namespace ipa::rkisp1::algorithms */ } /* namespace libcamera */ for a in range(len(coords)): for b in range(len(coords[a][0])): coords[a][0][b][1] += ii*w_best coords[a][0][b][0] += jj*h_best """ initialise coords_fit variable """ coords_fit = None # print('correlation: {}'.format(cor)) """ print error or success message """ print(msg) Cam.log += '\n' + str(msg) if msg == success_msg: coords_fit = coords Cam.log += '\nMacbeth chart vertices:\n' Cam.log += '{}'.format(2*np.round(coords_fit[0][0]), 0) """ if correlation is lower than 0.75 there may be a risk of macbeth chart corners not having been located properly. It might be worth running with show set to true to check where the macbeth chart centres have been located. """ print('Confidence: {:.3f}'.format(cor)) Cam.log += '\nConfidence: {:.3f}'.format(cor) if cor < 0.75: print('Caution: Low confidence guess!') Cam.log += 'WARNING: Low confidence guess!' # cv2.imshow('MacBeth', mac) # represent(mac, 'MacBeth chart') """ extract data from coords_fit and plot on original image """ if show and coords_fit is not None: copy = img.copy() verts = coords_fit[0][0] cents = coords_fit[1][0] """ draw circles at vertices of macbeth chart """ for vert in verts: p = tuple(np.round(vert).astype(np.int32)) cv2.circle(copy, p, 10, 1, -1) """ draw circles at centres of squares """ for i in range(len(cents)): cent = cents[i] p = tuple(np.round(cent).astype(np.int32)) """ draw black circle on white square, white circle on black square an grey circle everywhere else. """ if i == 3: cv2.circle(copy, p, 8, 0, -1) elif i == 23: cv2.circle(copy, p, 8, 1, -1) else: cv2.circle(copy, p, 8, 0.5, -1) copy, _ = reshape(copy, 400) represent(copy) return(coords_fit) def get_macbeth_chart(img, ref_data): """ function returns coordinates of macbeth chart vertices and square centres, along with an error/success message for debugging purposes. Additionally, it scores the match with a confidence value. Brief explanation of the macbeth chart locating algorithm: - Find rectangles within image - Take rectangles within percentage offset of median perimeter. The assumption is that these will be the macbeth squares - For each potential square, find the 24 possible macbeth centre locations that would produce a square in that location - Find clusters of potential macbeth chart centres to find the potential macbeth centres with the most votes, i.e. the most likely ones - For each potential macbeth centre, use the centres of the squares that voted for it to find macbeth chart corners - For each set of corners, transform the possible match into normalised space and correlate with a reference chart to evaluate the match - Select the highest correlation as the macbeth chart match, returning the correlation as the confidence score """ """ get reference macbeth chart data """ (ref, ref_w, ref_h, ref_corns) = ref_data """ the code will raise and catch a MacbethError in case of a problem, trying to give some likely reasons why the problem occred, hence the try/except """ try: """ obtain image, convert to grayscale and normalise """ src = img src, factor = reshape(src, 200) original = src.copy() a = 125/np.average(src) src_norm = cv2.convertScaleAbs(src, alpha=a, beta=0) """ This code checks if there are seperate colour channels. In the past the macbeth locator ran on jpgs and this makes it robust to different filetypes. Note that running it on a jpg has 4x the pixels of the average bayer channel so coordinates must be doubled. This is best done in img_load.py in the get_patches method. The coordinates and image width, height must be divided by two if the macbeth locator has been run on a demosaicked image. """ if len(src_norm.shape) == 3: src_bw = cv2.cvtColor(src_norm, cv2.COLOR_BGR2GRAY) else: src_bw = src_norm original_bw = src_bw.copy() """ obtain image edges """ sigma = 2 src_bw = cv2.GaussianBlur(src_bw, (0, 0), sigma) t1, t2 = 50, 100 edges = cv2.Canny(src_bw, t1, t2) """ dilate edges to prevent self-intersections in contours """ k_size = 2 kernel = np.ones((k_size, k_size)) its = 1 edges = cv2.dilate(edges, kernel, iterations=its) """ find Contours in image """ conts, _ = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) if len(conts) == 0: raise MacbethError( '\nWARNING: No macbeth chart found!' '\nNo contours found in image\n' 'Possible problems:\n' '- Macbeth chart is too dark or bright\n' '- Macbeth chart is occluded\n' ) """ find quadrilateral contours """ epsilon = 0.07 conts_per = [] for i in range(len(conts)): per = cv2.arcLength(conts[i], True) poly = cv2.approxPolyDP(conts[i], epsilon*per, True) if len(poly) == 4 and cv2.isContourConvex(poly): conts_per.append((poly, per)) if len(conts_per) == 0: raise MacbethError( '\nWARNING: No macbeth chart found!' '\nNo quadrilateral contours found' '\nPossible problems:\n' '- Macbeth chart is too dark or bright\n' '- Macbeth chart is occluded\n' '- Macbeth chart is out of camera plane\n' ) """ sort contours by perimeter and get perimeters within percent of median """ conts_per = sorted(conts_per, key=lambda x: x[1]) med_per = conts_per[int(len(conts_per)/2)][1] side = med_per/4 perc = 0.1 med_low, med_high = med_per*(1-perc), med_per*(1+perc) squares = [] for i in conts_per: if med_low <= i[1] and med_high >= i[1]: squares.append(i[0]) """ obtain coordinates of nomralised macbeth and squares """ square_verts, mac_norm = get_square_verts(0.06) """ for each square guess, find 24 possible macbeth chart centres """ mac_mids = [] squares_raw = [] for i in range(len(squares)): square = squares[i] squares_raw.append(square) """ convert quads to rotated rectangles. This is required as the 'squares' are usually quite irregular quadrilaterls, so performing a transform would result in exaggerated warping and inaccurate macbeth chart centre placement """ rect = cv2.minAreaRect(square) square = cv2.boxPoints(rect).astype(np.float32) """ reorder vertices to prevent 'hourglass shape' """ square = sorted(square, key=lambda x: x[0]) square_1 = sorted(square[:2], key=lambda x: x[1]) square_2 = sorted(square[2:], key=lambda x: -x[1]) square = np.array(np.concatenate((square_1, square_2)), np.float32) square = np.reshape(square, (4, 2)).astype(np.float32) squares[i] = square """ find 24 possible macbeth chart centres by trasnforming normalised macbeth square vertices onto candidate square vertices found in image """ for j in range(len(square_verts)): verts = square_verts[j] p_mat = cv2.getPerspectiveTransform(verts, square) mac_guess = cv2.perspectiveTransform(mac_norm, p_mat) mac_guess = np.round(mac_guess).astype(np.int32) """ keep only if candidate macbeth is within image border (deprecated) """ in_border = True # for p in mac_guess[0]: # pptest = cv2.pointPolygonTest( # img_con, # tuple(p), # False # ) # if pptest == -1: # in_border = False # break if in_border: mac_mid = np.mean(mac_guess, axis=1) mac_mids.append([mac_mid, (i, j)]) if len(mac_mids) == 0: raise MacbethError( '\nWARNING: No macbeth chart found!' '\nNo possible macbeth charts found within image' '\nPossible problems:\n' '- Part of the macbeth chart is outside the image\n' '- Quadrilaterals in image background\n' ) """ reshape data """ for i in range(len(mac_mids)): mac_mids[i][0] = mac_mids[i][0][0] """ find where midpoints cluster to identify most likely macbeth centres """ clustering = cluster.AgglomerativeClustering( n_clusters=None, compute_full_tree=True, distance_threshold=side*2 ) mac_mids_list = [x[0] for x in mac_mids] if len(mac_mids_list) == 1: """ special case of only one valid centre found (probably not needed) """ clus_list = [] clus_list.append([mac_mids, len(mac_mids)]) else: clustering.fit(mac_mids_list) # try: # clustering.fit(mac_mids_list) # except RuntimeWarning as error: # return(0, None, None, error) """ create list of all clusters """ clus_list = [] if clustering.n_clusters_ > 1: for i in range(clustering.labels_.max()+1): indices = [j for j, x in enumerate(clustering.labels_) if x == i] clus = [] for index in indices: clus.append(mac_mids[index]) clus_list.append([clus, len(clus)]) clus_list.sort(key=lambda x: -x[1]) elif clustering.n_clusters_ == 1: """ special case of only one cluster found """ # print('only 1 cluster') clus_list.append([mac_mids, len(mac_mids)]) else: raise MacbethError( '\nWARNING: No macebth chart found!' '\nNo clusters found' '\nPossible problems:\n' '- NA\n' ) """ keep only clusters with enough votes """ clus_len_max = clus_list[0][1] clus_tol = 0.7 for i in range(len(clus_list)): if clus_list[i][1] < clus_len_max * clus_tol: clus_list = clus_list[:i] break cent = np.mean(clus_list[i][0], axis=0)[0] clus_list[i].append(cent) """ represent most popular cluster centroids """ # copy = original_bw.copy() # copy = cv2.cvtColor(copy, cv2.COLOR_GRAY2RGB) # copy = cv2.resize(copy, None, fx=2, fy=2) # for clus in clus_list: # centroid = tuple(2*np.round(clus[2]).astype(np.int32)) # cv2.circle(copy, centroid, 7, (255, 0, 0), -1) # cv2.circle(copy, centroid, 2, (0, 0, 255), -1) # represent(copy) """ get centres of each normalised square """ reference = get_square_centres(0.06) """ for each possible macbeth chart, transform image into normalised space and find correlation with reference """ max_cor = 0 best_map = None best_fit = None best_cen_fit = None best_ref_mat = None for clus in clus_list: clus = clus[0] sq_cents = [] ref_cents = [] i_list = [p[1][0] for p in clus] for point in clus: i, j = point[1] """ remove any square that voted for two different points within the same cluster. This causes the same point in the image to be mapped to two different reference square centres, resulting in a very distorted perspective transform since cv2.findHomography simply minimises error. This phenomenon is not particularly likely to occur due to the enforced distance threshold in the clustering fit but it is best to keep this in just in case. """ if i_list.count(i) == 1: square = squares_raw[i] sq_cent = np.mean(square, axis=0) ref_cent = reference[j] sq_cents.append(sq_cent) ref_cents.append(ref_cent) """ At least four squares need to have voted for a centre in order for a transform to be found """ if len(sq_cents) < 4: raise MacbethError( '\nWARNING: No macbeth chart found!' '\nNot enough squares found' '\nPossible problems:\n' '- Macbeth chart is occluded\n' '- Macbeth chart is too dark or bright\n' ) ref_cents = np.array(ref_cents) sq_cents = np.array(sq_cents) """ find best fit transform from normalised centres to image """ h_mat, mask = cv2.findHomography(ref_cents, sq_cents) if 'None' in str(type(h_mat)): raise MacbethError( '\nERROR\n' ) """ transform normalised corners and centres into image space """ mac_fit = cv2.perspectiveTransform(mac_norm, h_mat) mac_cen_fit = cv2.perspectiveTransform(np.array([reference]), h_mat) """ transform located corners into reference space """ ref_mat = cv2.getPerspectiveTransform( mac_fit, np.array([ref_corns]) ) map_to_ref = cv2.warpPerspective( original_bw, ref_mat, (ref_w, ref_h) ) """ normalise brigthness """ a = 125/np.average(map_to_ref) map_to_ref = cv2.convertScaleAbs(map_to_ref, alpha=a, beta=0) """ find correlation with bw reference macbeth """ cor = correlate(map_to_ref, ref) """ keep only if best correlation """ if cor > max_cor: max_cor = cor best_map = map_to_ref best_fit = mac_fit best_cen_fit = mac_cen_fit best_ref_mat = ref_mat """ rotate macbeth by pi and recorrelate in case macbeth chart is upside-down """ mac_fit_inv = np.array( ([[mac_fit[0][2], mac_fit[0][3], mac_fit[0][0], mac_fit[0][1]]]) ) mac_cen_fit_inv = np.flip(mac_cen_fit, axis=1) ref_mat = cv2.getPerspectiveTransform( mac_fit_inv, np.array([ref_corns]) ) map_to_ref = cv2.warpPerspective( original_bw, ref_mat, (ref_w, ref_h) ) a = 125/np.average(map_to_ref) map_to_ref = cv2.convertScaleAbs(map_to_ref, alpha=a, beta=0) cor = correlate(map_to_ref, ref) if cor > max_cor: max_cor = cor best_map = map_to_ref best_fit = mac_fit_inv best_cen_fit = mac_cen_fit_inv best_ref_mat = ref_mat """ Check best match is above threshold """ cor_thresh = 0.6 if max_cor < cor_thresh: raise MacbethError( '\nWARNING: Correlation too low' '\nPossible problems:\n' '- Bad lighting conditions\n' '- Macbeth chart is occluded\n' '- Background is too noisy\n' '- Macbeth chart is out of camera plane\n' ) """ Following code is mostly representation for debugging purposes """ """ draw macbeth corners and centres on image """ copy = original.copy() copy = cv2.resize(original, None, fx=2, fy=2) # print('correlation = {}'.format(round(max_cor, 2))) for point in best_fit[0]: point = np.array(point, np.float32) point = tuple(2*np.round(point).astype(np.int32)) cv2.circle(copy, point, 4, (255, 0, 0), -1) for point in best_cen_fit[0]: point = np.array(point, np.float32) point = tuple(2*np.round(point).astype(np.int32)) cv2.circle(copy, point, 4, (0, 0, 255), -1) copy = copy.copy() cv2.circle(copy, point, 4, (0, 0, 255), -1) """ represent coloured macbeth in reference space """ best_map_col = cv2.warpPerspective( original, best_ref_mat, (ref_w, ref_h) ) best_map_col = cv2.resize( best_map_col, None, fx=4, fy=4 ) a = 125/np.average(best_map_col) best_map_col_norm = cv2.convertScaleAbs( best_map_col, alpha=a, beta=0 ) # cv2.imshow('Macbeth', best_map_col) # represent(copy) """ rescale coordinates to original image size """ fit_coords = (best_fit/factor, best_cen_fit/factor) return(max_cor, best_map_col_norm, fit_coords, success_msg) """ catch macbeth errors and continue with code """ except MacbethError as error: return(0, None, None, error)