1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2021, Ideas On Board
*
* awb.cpp - AWB control algorithm
*/
#include "awb.h"
#include <algorithm>
#include <cmath>
#include <libcamera/base/log.h>
namespace libcamera {
namespace ipa::ipu3::algorithms {
LOG_DEFINE_CATEGORY(IPU3Awb)
static constexpr uint32_t kMinGreenLevelInZone = 32;
/**
* \struct Accumulator
* \brief RGB statistics for a given zone
*
* - Cells are defined in Pixels
* - Zones are defined in Cells
*
* 80 cells
* /───────────── 1280 pixels ───────────\
* 16 zones
* 16
* ┌────┬────┬────┬────┬────┬─ ──────┬────┐ \
* │Cell│ │ │ │ │ | │ │ │
* 16 │ px │ │ │ │ │ | │ │ │
* ├────┼────┼────┼────┼────┼─ ──────┼────┤ │
* │ │ │ │ │ │ | │ │
* │ │ │ │ │ │ | │ │ 7
* │ ── │ ── │ ── │ ── │ ── │ ── ── ─┤ ── │ 1 2 4
* │ │ │ │ │ │ | │ │ 2 0 5
*
* │ │ │ │ │ │ | │ │ z p c
* ├────┼────┼────┼────┼────┼─ ──────┼────┤ o i e
* │ │ │ │ │ │ | │ │ n x l
* │ │ | │ │ e e l
* ├─── ───┼─ ──────┼────┤ s l s
* │ │ | │ │ s
* │ │ | │ │
* ├─── Zone of Cells ───┼─ ──────┼────┤ │
* │ (5 x 4) │ | │ │ │
* │ │ | │ │ │
* ├── ───┼─ ──────┼────┤ │
* │ │ │ | │ │ │
* │ │ │ │ │ │ | │ │ │
* └────┴────┴────┴────┴────┴─ ──────┴────┘ /
*
*
* The algorithm works with a fixed number of zones \a kAwbStatsSizeX x
* \a kAwbStatsSizeY. For example, a frame of 1280x720 is divided into 80x45
* cells of [16x16] pixels. In the case of \a kAwbStatsSizeX=16 and
* \a kAwbStatsSizeY=12 the zones are made of [5x4] cells. The cells are
* left-aligned and calculated by IPAIPU3::calculateBdsGrid().
*
* Each statistics cell represents the average value of the pixels in that cell
* split by colour components.
*
* The Accumulator structure stores the sum of the average of each cell in a
* zone of the image, as well as the number of cells which were unsaturated and
* therefore included in the average.
* \todo move this description and structure into a common header
*
* Cells which are saturated beyond the threshold defined in
* ipu3_uapi_awb_config_s are not included in the average.
*
* \var Accumulator::counted
* \brief Number of unsaturated cells used to calculate the sums
*
* \var Accumulator::sum
* \brief A structure containing the average red, green and blue sums
*
* \var Accumulator::sum.red
* \brief Sum of the average red values of each unsaturated cell in the zone
*
* \var Accumulator::sum.green
* \brief Sum of the average green values of each unsaturated cell in the zone
*
* \var Accumulator::sum.blue
* \brief Sum of the average blue values of each unsaturated cell in the zone
*/
/**
* \struct AwbStatus
* \brief AWB parameters calculated
*
* The AwbStatus structure is intended to store the AWB
* parameters calculated by the algorithm
*
* \var AwbStatus::temperatureK
* \brief Color temperature calculated
*
* \var AwbStatus::redGain
* \brief Gain calculated for the red channel
*
* \var AwbStatus::greenGain
* \brief Gain calculated for the green channel
*
* \var AwbStatus::blueGain
* \brief Gain calculated for the blue channel
*/
/* Default settings for Bayer noise reduction replicated from the Kernel */
static const struct ipu3_uapi_bnr_static_config imguCssBnrDefaults = {
.wb_gains = { 16, 16, 16, 16 },
.wb_gains_thr = { 255, 255, 255, 255 },
.thr_coeffs = { 1700, 0, 31, 31, 0, 16 },
.thr_ctrl_shd = { 26, 26, 26, 26 },
.opt_center = { -648, 0, -366, 0 },
.lut = {
{ 17, 23, 28, 32, 36, 39, 42, 45,
48, 51, 53, 55, 58, 60, 62, 64,
66, 68, 70, 72, 73, 75, 77, 78,
80, 82, 83, 85, 86, 88, 89, 90 } },
.bp_ctrl = { 20, 0, 1, 40, 0, 6, 0, 6, 0 },
.dn_detect_ctrl = { 9, 3, 4, 0, 8, 0, 1, 1, 1, 1, 0 },
.column_size = 1296,
.opt_center_sqr = { 419904, 133956 },
};
/* Default color correction matrix defined as an identity matrix */
static const struct ipu3_uapi_ccm_mat_config imguCssCcmDefault = {
8191, 0, 0, 0,
0, 8191, 0, 0,
0, 0, 8191, 0
};
Awb::Awb()
: Algorithm()
{
asyncResults_.blueGain = 1.0;
asyncResults_.greenGain = 1.0;
asyncResults_.redGain = 1.0;
asyncResults_.temperatureK = 4500;
zones_.reserve(kAwbStatsSizeX * kAwbStatsSizeY);
}
Awb::~Awb() = default;
int Awb::configure(IPAContext &context,
[[maybe_unused]] const IPAConfigInfo &configInfo)
{
const ipu3_uapi_grid_config &grid = context.configuration.grid.bdsGrid;
stride_ = context.configuration.grid.stride;
cellsPerZoneX_ = std::round(grid.width / static_cast<double>(kAwbStatsSizeX));
cellsPerZoneY_ = std::round(grid.height / static_cast<double>(kAwbStatsSizeY));
/*
* Configure the minimum proportion of cells counted within a zone
* for it to be relevant for the grey world algorithm.
* \todo This proportion could be configured.
*/
cellsPerZoneThreshold_ = cellsPerZoneX_ * cellsPerZoneY_ * 80 / 100;
return 0;
}
/**
* The function estimates the correlated color temperature using
* from RGB color space input.
* In physics and color science, the Planckian locus or black body locus is
* the path or locus that the color of an incandescent black body would take
* in a particular chromaticity space as the blackbody temperature changes.
*
* If a narrow range of color temperatures is considered (those encapsulating
* daylight being the most practical case) one can approximate the Planckian
* locus in order to calculate the CCT in terms of chromaticity coordinates.
*
* More detailed information can be found in:
* https://en.wikipedia.org/wiki/Color_temperature#Approximation
*/
uint32_t Awb::estimateCCT(double red, double green, double blue)
{
/* Convert the RGB values to CIE tristimulus values (XYZ) */
double X = (-0.14282) * (red) + (1.54924) * (green) + (-0.95641) * (blue);
double Y = (-0.32466) * (red) + (1.57837) * (green) + (-0.73191) * (blue);
double Z = (-0.68202) * (red) + (0.77073) * (green) + (0.56332) * (blue);
/* Calculate the normalized chromaticity values */
double x = X / (X + Y + Z);
double y = Y / (X + Y + Z);
/* Calculate CCT */
double n = (x - 0.3320) / (0.1858 - y);
return 449 * n * n * n + 3525 * n * n + 6823.3 * n + 5520.33;
}
/* Generate an RGB vector with the average values for each zone */
void Awb::generateZones()
{
zones_.clear();
for (unsigned int i = 0; i < kAwbStatsSizeX * kAwbStatsSizeY; i++) {
RGB zone;
double counted = awbStats_[i].counted;
if (counted >= cellsPerZoneThreshold_) {
zone.G = awbStats_[i].sum.green / counted;
if (zone.G >= kMinGreenLevelInZone) {
zone.R = awbStats_[i].sum.red / counted;
zone.B = awbStats_[i].sum.blue / counted;
zones_.push_back(zone);
}
}
}
}
/* Translate the IPU3 statistics into the default statistics zone array */
void Awb::generateAwbStats(const ipu3_uapi_stats_3a *stats)
{
/*
* Generate a (kAwbStatsSizeX x kAwbStatsSizeY) array from the IPU3 grid which is
* (grid.width x grid.height).
*/
for (unsigned int cellY = 0; cellY < kAwbStatsSizeY * cellsPerZoneY_; cellY++) {
for (unsigned int cellX = 0; cellX < kAwbStatsSizeX * cellsPerZoneX_; cellX++) {
uint32_t cellPosition = cellY * stride_ + cellX;
uint32_t zoneX = cellX / cellsPerZoneX_;
uint32_t zoneY = cellY / cellsPerZoneY_;
uint32_t awbZonePosition = zoneY * kAwbStatsSizeX + zoneX;
/* Cast the initial IPU3 structure to simplify the reading */
const ipu3_uapi_awb_set_item *currentCell =
reinterpret_cast<const ipu3_uapi_awb_set_item *>(
&stats->awb_raw_buffer.meta_data[cellPosition]
);
if (currentCell->sat_ratio == 0) {
/* The cell is not saturated, use the current cell */
awbStats_[awbZonePosition].counted++;
uint32_t greenValue = currentCell->Gr_avg + currentCell->Gb_avg;
awbStats_[awbZonePosition].sum.green += greenValue / 2;
awbStats_[awbZonePosition].sum.red += currentCell->R_avg;
awbStats_[awbZonePosition].sum.blue += currentCell->B_avg;
}
}
}
}
void Awb::clearAwbStats()
{
for (unsigned int i = 0; i < kAwbStatsSizeX * kAwbStatsSizeY; i++) {
awbStats_[i].sum.blue = 0;
awbStats_[i].sum.red = 0;
awbStats_[i].sum.green = 0;
awbStats_[i].counted = 0;
}
}
void Awb::awbGreyWorld()
{
LOG(IPU3Awb, Debug) << "Grey world AWB";
/*
* Make a separate list of the derivatives for each of red and blue, so
* that we can sort them to exclude the extreme gains. We could
* consider some variations, such as normalising all the zones first, or
* doing an L2 average etc.
*/
std::vector<RGB> &redDerivative(zones_);
std::vector<RGB> blueDerivative(redDerivative);
std::sort(redDerivative.begin(), redDerivative.end(),
[](RGB const &a, RGB const &b) {
return a.G * b.R < b.G * a.R;
});
std::sort(blueDerivative.begin(), blueDerivative.end(),
[](RGB const &a, RGB const &b) {
return a.G * b.B < b.G * a.B;
});
/* Average the middle half of the values. */
int discard = redDerivative.size() / 4;
RGB sumRed(0, 0, 0);
RGB sumBlue(0, 0, 0);
for (auto ri = redDerivative.begin() + discard,
bi = blueDerivative.begin() + discard;
ri != redDerivative.end() - discard; ri++, bi++)
sumRed += *ri, sumBlue += *bi;
double redGain = sumRed.G / (sumRed.R + 1),
blueGain = sumBlue.G / (sumBlue.B + 1);
/* Color temperature is not relevant in Grey world but still useful to estimate it :-) */
asyncResults_.temperatureK = estimateCCT(sumRed.R, sumRed.G, sumBlue.B);
asyncResults_.redGain = redGain;
/* Hardcode the green gain to 1.0. */
asyncResults_.greenGain = 1.0;
asyncResults_.blueGain = blueGain;
}
void Awb::calculateWBGains(const ipu3_uapi_stats_3a *stats)
{
ASSERT(stats->stats_3a_status.awb_en);
clearAwbStats();
generateAwbStats(stats);
generateZones();
LOG(IPU3Awb, Debug) << "Valid zones: " << zones_.size();
if (zones_.size() > 10) {
awbGreyWorld();
LOG(IPU3Awb, Debug) << "Gain found for red: " << asyncResults_.redGain
<< " and for blue: " << asyncResults_.blueGain;
}
}
void Awb::process(IPAContext &context, const ipu3_uapi_stats_3a *stats)
{
calculateWBGains(stats);
/*
* Gains are only recalculated if enough zones were detected.
* The results are cached, so if no results were calculated, we set the
* cached values from asyncResults_ here.
*/
context.frameContext.awb.gains.blue = asyncResults_.blueGain;
context.frameContext.awb.gains.green = asyncResults_.greenGain;
context.frameContext.awb.gains.red = asyncResults_.redGain;
}
void Awb::prepare(IPAContext &context, ipu3_uapi_params *params)
{
params->acc_param.awb.config.rgbs_thr_gr = 8191;
params->acc_param.awb.config.rgbs_thr_r = 8191;
params->acc_param.awb.config.rgbs_thr_gb = 8191;
params->acc_param.awb.config.rgbs_thr_b = IPU3_UAPI_AWB_RGBS_THR_B_INCL_SAT
| IPU3_UAPI_AWB_RGBS_THR_B_EN
| 8191;
const ipu3_uapi_grid_config &grid = context.configuration.grid.bdsGrid;
params->acc_param.awb.config.grid = context.configuration.grid.bdsGrid;
/*
* Optical center is column start (respectively row start) of the
* cell of interest minus its X center (respectively Y center).
*
* For the moment use BDS as a first approximation, but it should
* be calculated based on Shading (SHD) parameters.
*/
params->acc_param.bnr = imguCssBnrDefaults;
Size &bdsOutputSize = context.configuration.grid.bdsOutputSize;
params->acc_param.bnr.column_size = bdsOutputSize.width;
params->acc_param.bnr.opt_center.x_reset = grid.x_start - (bdsOutputSize.width / 2);
params->acc_param.bnr.opt_center.y_reset = grid.y_start - (bdsOutputSize.height / 2);
params->acc_param.bnr.opt_center_sqr.x_sqr_reset = params->acc_param.bnr.opt_center.x_reset
* params->acc_param.bnr.opt_center.x_reset;
params->acc_param.bnr.opt_center_sqr.y_sqr_reset = params->acc_param.bnr.opt_center.y_reset
* params->acc_param.bnr.opt_center.y_reset;
/* Convert to u3.13 fixed point values */
params->acc_param.bnr.wb_gains.gr = 8192 * context.frameContext.awb.gains.green;
params->acc_param.bnr.wb_gains.r = 8192 * context.frameContext.awb.gains.red;
params->acc_param.bnr.wb_gains.b = 8192 * context.frameContext.awb.gains.blue;
params->acc_param.bnr.wb_gains.gb = 8192 * context.frameContext.awb.gains.green;
LOG(IPU3Awb, Debug) << "Color temperature estimated: " << asyncResults_.temperatureK;
/* The CCM matrix may change when color temperature will be used */
params->acc_param.ccm = imguCssCcmDefault;
params->use.acc_awb = 1;
params->use.acc_bnr = 1;
params->use.acc_ccm = 1;
}
} /* namespace ipa::ipu3::algorithms */
} /* namespace libcamera */
|