summaryrefslogtreecommitdiff
ModeNameSize
-rw-r--r--.clang-format3850logplain
-rw-r--r--.gitignore79logplain
d---------.reuse32logplain
d---------Documentation341logplain
d---------LICENSES518logplain
-rw-r--r--README.rst2681logplain
d---------include141logplain
-rw-r--r--meson.build4389logplain
-rw-r--r--meson_options.txt966logplain
d---------package / gentoo / media-libs / libcamera33logplain
d---------src267logplain
d---------test1377logplain
d---------utils256logplain
/a> 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2020, Laurent Pinchart
 * Copyright (C) 2019, Martijn Braam
 *
 * Pipeline handler for simple pipelines
 */

#include <algorithm>
#include <iterator>
#include <list>
#include <map>
#include <memory>
#include <queue>
#include <set>
#include <string.h>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>

#include <linux/media-bus-format.h>

#include <libcamera/base/log.h>

#include <libcamera/camera.h>
#include <libcamera/control_ids.h>
#include <libcamera/request.h>
#include <libcamera/stream.h>

#include "libcamera/internal/camera.h"
#include "libcamera/internal/camera_sensor.h"
#include "libcamera/internal/converter.h"
#include "libcamera/internal/device_enumerator.h"
#include "libcamera/internal/media_device.h"
#include "libcamera/internal/pipeline_handler.h"
#include "libcamera/internal/software_isp/software_isp.h"
#include "libcamera/internal/v4l2_subdevice.h"
#include "libcamera/internal/v4l2_videodevice.h"

namespace libcamera {

LOG_DEFINE_CATEGORY(SimplePipeline)

/* -----------------------------------------------------------------------------
 *
 * Overview
 * --------
 *
 * The SimplePipelineHandler relies on generic kernel APIs to control a camera
 * device, without any device-specific code and with limited device-specific
 * static data.
 *
 * To qualify for support by the simple pipeline handler, a device shall
 *
 * - be supported by V4L2 drivers, exposing the Media Controller API, the V4L2
 *   subdev APIs and the media bus format-based enumeration extension for the
 *   VIDIOC_ENUM_FMT ioctl ;
 * - not expose any device-specific API from drivers to userspace ;
 * - include one or more camera sensor media entities and one or more video
 *   capture devices ;
 * - have a capture pipeline with linear paths from the camera sensors to the
 *   video capture devices ; and
 * - have an optional memory-to-memory device to perform format conversion
 *   and/or scaling, exposed as a V4L2 M2M device.
 *
 * As devices that require a specific pipeline handler may still match the
 * above characteristics, the simple pipeline handler doesn't attempt to
 * automatically determine which devices it can support. It instead relies on
 * an explicit list of supported devices, provided in the supportedDevices
 * array.
 *
 * When matching a device, the pipeline handler enumerates all camera sensors
 * and attempts, for each of them, to find a path to a video capture video node.
 * It does so by using a breadth-first search to find the shortest path from the
 * sensor device to a valid capture device. This is guaranteed to produce a
 * valid path on devices with one only option and is a good heuristic on more
 * complex devices to skip paths that aren't suitable for the simple pipeline
 * handler. For instance, on the IPU-based i.MX6, the shortest path will skip
 * encoders and image converters, and it will end in a CSI capture device.
 * A more complex graph search algorithm could be implemented if a device that
 * would otherwise be compatible with the pipeline handler isn't correctly
 * handled by this heuristic.
 *
 * Once the camera data instances have been created, the match() function
 * creates a V4L2VideoDevice or V4L2Subdevice instance for each entity used by
 * any of the cameras and stores them in SimplePipelineHandler::entities_,
 * accessible by the SimpleCameraData class through the
 * SimplePipelineHandler::subdev() and SimplePipelineHandler::video() functions.
 * This avoids duplication of subdev instances between different cameras when
 * the same entity is used in multiple paths.
 *
 * Finally, all camera data instances are initialized to gather information
 * about the possible pipeline configurations for the corresponding camera. If
 * valid pipeline configurations are found, a Camera is registered for the
 * SimpleCameraData instance.
 *
 * Pipeline Traversal
 * ------------------
 *
 * During the breadth-first search, the pipeline is traversed from entity to
 * entity, by following media graph links from source to sink, starting at the
 * camera sensor.
 *
 * When reaching an entity (on its sink side), if the entity is a V4L2 subdev
 * that supports the streams API, the subdev internal routes are followed to
 * find the connected source pads. Otherwise all of the entity's source pads
 * are considered to continue the graph traversal. The pipeline handler
 * currently considers the default internal routes only and doesn't attempt to
 * setup custom routes. This can be extended if needed.
 *
 * The shortest path between the camera sensor and a video node is stored in
 * SimpleCameraData::entities_ as a list of SimpleCameraData::Entity structures,
 * ordered along the data path from the camera sensor to the video node. The
 * Entity structure stores a pointer to the MediaEntity, as well as information
 * about how it is connected in that particular path for later usage when
 * configuring the pipeline.
 *
 * Pipeline Configuration
 * ----------------------
 *
 * The simple pipeline handler configures the pipeline by propagating V4L2
 * subdev formats from the camera sensor to the video node. The format is first
 * set on the camera sensor's output, picking a resolution supported by the
 * sensor that best matches the needs of the requested streams. Then, on every
 * link in the pipeline, the format is retrieved on the link source and set
 * unmodified on the link sink.
 *
 * The best sensor resolution is selected using a heuristic that tries to
 * minimize the required bus and memory bandwidth, as the simple pipeline
 * handler is typically used on smaller, less powerful systems. To avoid the
 * need to upscale, the pipeline handler picks the smallest sensor resolution
 * large enough to accommodate the need of all streams. Resolutions that
 * significantly restrict the field of view are ignored.
 *
 * When initializating the camera data, the above format propagation procedure
 * is repeated for every media bus format and size supported by the camera
 * sensor. Upon reaching the video node, the pixel formats compatible with the
 * media bus format are enumerated. Each combination of the input media bus
 * format, output pixel format and output size are recorded in an instance of
 * the SimpleCameraData::Configuration structure, stored in the
 * SimpleCameraData::configs_ vector.
 *
 * Format Conversion and Scaling
 * -----------------------------
 *
 * The capture pipeline isn't expected to include a scaler, and if a scaler is
 * available, it is ignored when configuring the pipeline. However, the simple
 * pipeline handler supports optional memory-to-memory converters to scale the
 * image and convert it to a different pixel format. If such a converter is
 * present, the pipeline handler enumerates, for each pipeline configuration,
 * the pixel formats and sizes that the converter can produce for the output of
 * the capture video node, and stores the information in the outputFormats and
 * outputSizes of the SimpleCameraData::Configuration structure.
 *
 * Concurrent Access to Cameras
 * ----------------------------
 *
 * The cameras created by the same pipeline handler instance may share hardware
 * resources. For instances, a platform may have multiple CSI-2 receivers but a
 * single DMA engine, prohibiting usage of multiple cameras concurrently. This
 * depends heavily on the hardware architecture, which the simple pipeline
 * handler has no a priori knowledge of. The pipeline handler thus implements a
 * heuristic to handle sharing of hardware resources in a generic fashion.
 *
 * Two cameras are considered to be mutually exclusive if their share common
 * pads along the pipeline from the camera sensor to the video node. An entity
 * can thus be used concurrently by multiple cameras, as long as pads are
 * distinct.
 *
 * A resource reservation mechanism is implemented by the SimplePipelineHandler
 * acquirePipeline() and releasePipeline() functions to manage exclusive access
 * to pads. A camera reserves all the pads present in its pipeline when it is
 * started, and the start() function returns an error if any of the required
 * pads is already in use. When the camera is stopped, the pads it has reserved
 * are released.
 */

class SimplePipelineHandler;

struct SimplePipelineInfo {
	const char *driver;
	/*
	 * Each converter in the list contains the name
	 * and the number of streams it supports.
	 */
	std::vector<std::pair<const char *, unsigned int>> converters;
	/*
	 * Using Software ISP is to be enabled per driver.
	 *
	 * The Software ISP can't be used together with the converters.
	 */
	bool swIspEnabled;
};

namespace {

static const SimplePipelineInfo supportedDevices[] = {
	{ "dcmipp", {}, false },
	{ "imx7-csi", { { "pxp", 1 } }, false },
	{ "intel-ipu6", {}, true },
	{ "j721e-csi2rx", {}, false },
	{ "mtk-seninf", { { "mtk-mdp", 3 } }, false },
	{ "mxc-isi", {}, false },
	{ "qcom-camss", {}, true },
	{ "sun6i-csi", {}, false },
};

} /* namespace */

class SimpleCameraData : public Camera::Private
{
public:
	SimpleCameraData(SimplePipelineHandler *pipe,
			 unsigned int numStreams,
			 MediaEntity *sensor);

	bool isValid() const { return sensor_ != nullptr; }
	SimplePipelineHandler *pipe();

	int init();
	int setupLinks();
	int setupFormats(V4L2SubdeviceFormat *format,
			 V4L2Subdevice::Whence whence,
			 Transform transform = Transform::Identity);
	void bufferReady(FrameBuffer *buffer);

	unsigned int streamIndex(const Stream *stream) const
	{
		return stream - &streams_.front();
	}

	struct Entity {
		/* The media entity, always valid. */
		MediaEntity *entity;
		/*
		 * Whether or not the entity is a subdev that supports the
		 * routing API.
		 */
		bool supportsRouting;
		/*
		 * The local sink pad connected to the upstream entity, null for
		 * the camera sensor at the beginning of the pipeline.
		 */
		const MediaPad *sink;
		/*
		 * The local source pad connected to the downstream entity, null
		 * for the video node at the end of the pipeline.
		 */
		const MediaPad *source;
		/*
		 * The link on the source pad, to the downstream entity, null
		 * for the video node at the end of the pipeline.
		 */
		MediaLink *sourceLink;
	};

	struct Configuration {
		uint32_t code;
		Size sensorSize;
		PixelFormat captureFormat;
		Size captureSize;
		std::vector<PixelFormat> outputFormats;
		SizeRange outputSizes;
	};

	std::vector<Stream> streams_;

	/*
	 * All entities in the pipeline, from the camera sensor to the video
	 * node.
	 */
	std::list<Entity> entities_;
	std::unique_ptr<CameraSensor> sensor_;
	V4L2VideoDevice *video_;

	std::vector<Configuration> configs_;
	std::map<PixelFormat, std::vector<const Configuration *>> formats_;

	std::vector<std::unique_ptr<FrameBuffer>> conversionBuffers_;
	std::queue<std::map<const Stream *, FrameBuffer *>> conversionQueue_;
	bool useConversion_;

	std::unique_ptr<Converter> converter_;
	std::unique_ptr<SoftwareIsp> swIsp_;

private:
	void tryPipeline(unsigned int code, const Size &size);
	static std::vector<const MediaPad *> routedSourcePads(MediaPad *sink);

	void conversionInputDone(FrameBuffer *buffer);
	void conversionOutputDone(FrameBuffer *buffer);

	void ispStatsReady();
	void setSensorControls(const ControlList &sensorControls);
};

class SimpleCameraConfiguration : public CameraConfiguration
{
public:
	SimpleCameraConfiguration(Camera *camera, SimpleCameraData *data);

	Status validate() override;

	const SimpleCameraData::Configuration *pipeConfig() const
	{
		return pipeConfig_;
	}

	bool needConversion() const { return needConversion_; }
	const Transform &combinedTransform() const { return combinedTransform_; }

private:
	/*
	 * The SimpleCameraData instance is guaranteed to be valid as long as
	 * the corresponding Camera instance is valid. In order to borrow a
	 * reference to the camera data, store a new reference to the camera.
	 */
	std::shared_ptr<Camera> camera_;
	SimpleCameraData *data_;

	const SimpleCameraData::Configuration *pipeConfig_;
	bool needConversion_;
	Transform combinedTransform_;
};

class SimplePipelineHandler : public PipelineHandler
{
public:
	SimplePipelineHandler(CameraManager *manager);

	std::unique_ptr<CameraConfiguration> generateConfiguration(Camera *camera,
								   Span<const StreamRole> roles) override;
	int configure(Camera *camera, CameraConfiguration *config) override;

	int exportFrameBuffers(Camera *camera, Stream *stream,
			       std::vector<std::unique_ptr<FrameBuffer>> *buffers) override;

	int start(Camera *camera, const ControlList *controls) override;
	void stopDevice(Camera *camera) override;

	bool match(DeviceEnumerator *enumerator) override;

	V4L2VideoDevice *video(const MediaEntity *entity);
	V4L2Subdevice *subdev(const MediaEntity *entity);
	MediaDevice *converter() { return converter_; }
	bool swIspEnabled() const { return swIspEnabled_; }

protected:
	int queueRequestDevice(Camera *camera, Request *request) override;

private:
	static constexpr unsigned int kNumInternalBuffers = 3;

	struct EntityData {
		std::unique_ptr<V4L2VideoDevice> video;
		std::unique_ptr<V4L2Subdevice> subdev;
		std::map<const MediaPad *, SimpleCameraData *> owners;
	};

	SimpleCameraData *cameraData(Camera *camera)
	{
		return static_cast<SimpleCameraData *>(camera->_d());
	}

	std::vector<MediaEntity *> locateSensors();
	static int resetRoutingTable(V4L2Subdevice *subdev);

	const MediaPad *acquirePipeline(SimpleCameraData *data);
	void releasePipeline(SimpleCameraData *data);

	MediaDevice *media_;
	std::map<const MediaEntity *, EntityData> entities_;

	MediaDevice *converter_;
	bool swIspEnabled_;
};

/* -----------------------------------------------------------------------------
 * Camera Data
 */

SimpleCameraData::SimpleCameraData(SimplePipelineHandler *pipe,
				   unsigned int numStreams,
				   MediaEntity *sensor)
	: Camera::Private(pipe), streams_(numStreams)
{
	int ret;

	/*
	 * Find the shortest path from the camera sensor to a video capture
	 * device using the breadth-first search algorithm. This heuristic will
	 * be most likely to skip paths that aren't suitable for the simple
	 * pipeline handler on more complex devices, and is guaranteed to
	 * produce a valid path on all devices that have a single option.
	 *
	 * For instance, on the IPU-based i.MX6Q, the shortest path will skip
	 * encoders and image converters, and will end in a CSI capture device.
	 */
	std::unordered_set<MediaEntity *> visited;
	std::queue<std::tuple<MediaEntity *, MediaPad *>> queue;

	/* Remember at each entity where we came from. */
	std::unordered_map<MediaEntity *, Entity> parents;
	MediaEntity *entity = nullptr;
	MediaEntity *video = nullptr;
	MediaPad *sinkPad;

	queue.push({ sensor, nullptr });

	while (!queue.empty()) {
		std::tie(entity, sinkPad) = queue.front();
		queue.pop();

		/* Found the capture device. */
		if (entity->function() == MEDIA_ENT_F_IO_V4L) {
			LOG(SimplePipeline, Debug)
				<< "Found capture device " << entity->name();
			video = entity;
			break;
		}

		visited.insert(entity);

		/*
		 * Add direct downstream entities to the search queue. If the
		 * current entity supports the subdev internal routing API,
		 * restrict the search to downstream entities reachable through
		 * active routes.
		 */

		std::vector<const MediaPad *> pads;
		bool supportsRouting = false;

		if (sinkPad) {
			pads = routedSourcePads(sinkPad);
			if (!pads.empty())
				supportsRouting = true;
		}

		if (pads.empty()) {
			for (const MediaPad *pad : entity->pads()) {
				if (!(pad->flags() & MEDIA_PAD_FL_SOURCE))
					continue;
				pads.push_back(pad);
			}
		}

		for (const MediaPad *pad : pads) {
			for (MediaLink *link : pad->links()) {
				MediaEntity *next = link->sink()->entity();
				if (visited.find(next) == visited.end()) {
					queue.push({ next, link->sink() });

					Entity e{ entity, supportsRouting, sinkPad, pad, link };
					parents.insert({ next, e });
				}
			}
		}
	}

	if (!video)
		return;

	/*
	 * With the parents, we can follow back our way from the capture device
	 * to the sensor. Store all the entities in the pipeline, from the
	 * camera sensor to the video node, in entities_.
	 */
	entities_.push_front({ entity, false, sinkPad, nullptr, nullptr });

	for (auto it = parents.find(entity); it != parents.end();
	     it = parents.find(entity)) {
		const Entity &e = it->second;
		entities_.push_front(e);
		entity = e.entity;
	}

	/* Finally also remember the sensor. */
	sensor_ = std::make_unique<CameraSensor>(sensor);
	ret = sensor_->init();
	if (ret) {
		sensor_.reset();
		return;
	}

	LOG(SimplePipeline, Debug)
		<< "Found pipeline: "
		<< utils::join(entities_, " -> ",
			       [](const Entity &e) {
				       std::string s = "[";
				       if (e.sink)
					       s += std::to_string(e.sink->index()) + "|";
				       s += e.entity->name();
				       if (e.source)
					       s += "|" + std::to_string(e.source->index());
				       s += "]";
				       return s;
			       });
}

SimplePipelineHandler *SimpleCameraData::pipe()
{
	return static_cast<SimplePipelineHandler *>(Camera::Private::pipe());
}

int SimpleCameraData::init()
{
	SimplePipelineHandler *pipe = SimpleCameraData::pipe();
	int ret;

	/* Open the converter, if any. */
	MediaDevice *converter = pipe->converter();
	if (converter) {
		converter_ = ConverterFactoryBase::create(converter);
		if (!converter_) {
			LOG(SimplePipeline, Warning)
				<< "Failed to create converter, disabling format conversion";
			converter_.reset();
		} else {
			converter_->inputBufferReady.connect(this, &SimpleCameraData::conversionInputDone);
			converter_->outputBufferReady.connect(this, &SimpleCameraData::conversionOutputDone);
		}
	}

	/*
	 * Instantiate Soft ISP if this is enabled for the given driver and no converter is used.
	 */
	if (!converter_ && pipe->swIspEnabled()) {
		swIsp_ = std::make_unique<SoftwareIsp>(pipe, sensor_.get());
		if (!swIsp_->isValid()) {
			LOG(SimplePipeline, Warning)
				<< "Failed to create software ISP, disabling software debayering";
			swIsp_.reset();
		} else {
			/*
			 * The inputBufferReady signal is emitted from the soft ISP thread,
			 * and needs to be handled in the pipeline handler thread. Signals
			 * implement queued delivery, but this works transparently only if
			 * the receiver is bound to the target thread. As the
			 * SimpleCameraData class doesn't inherit from the Object class, it
			 * is not bound to any thread, and the signal would be delivered
			 * synchronously. Instead, connect the signal to a lambda function
			 * bound explicitly to the pipe, which is bound to the pipeline
			 * handler thread. The function then simply forwards the call to
			 * conversionInputDone().
			 */
			swIsp_->inputBufferReady.connect(pipe, [this](FrameBuffer *buffer) {
				this->conversionInputDone(buffer);
			});
			swIsp_->outputBufferReady.connect(this, &SimpleCameraData::conversionOutputDone);
			swIsp_->ispStatsReady.connect(this, &SimpleCameraData::ispStatsReady);
			swIsp_->setSensorControls.connect(this, &SimpleCameraData::setSensorControls);
		}
	}

	video_ = pipe->video(entities_.back().entity);
	ASSERT(video_);

	/*
	 * Setup links first as some subdev drivers take active links into
	 * account to propagate TRY formats. Such is life :-(
	 */
	ret = setupLinks();
	if (ret < 0)
		return ret;

	/*
	 * Generate the list of possible pipeline configurations by trying each
	 * media bus format and size supported by the sensor.
	 */
	for (unsigned int code : sensor_->mbusCodes()) {
		for (const Size &size : sensor_->sizes(code))
			tryPipeline(code, size);
	}

	if (configs_.empty()) {
		LOG(SimplePipeline, Error) << "No valid configuration found";
		return -EINVAL;
	}

	/* Map the pixel formats to configurations. */
	for (const Configuration &config : configs_) {
		formats_[config.captureFormat].push_back(&config);

		for (PixelFormat fmt : config.outputFormats)
			formats_[fmt].push_back(&config);
	}

	properties_ = sensor_->properties();

	return 0;
}

/*
 * Generate a list of supported pipeline configurations for a sensor media bus
 * code and size.
 *
 * First propagate the media bus code and size through the pipeline from the
 * camera sensor to the video node. Then, query the video node for all supported
 * pixel formats compatible with the media bus code. For each pixel format, store
 * a full pipeline configuration in the configs_ vector.
 */
void SimpleCameraData::tryPipeline(unsigned int code, const Size &size)
{
	/*
	 * Propagate the format through the pipeline, and enumerate the
	 * corresponding possible V4L2 pixel formats on the video node.
	 */
	V4L2SubdeviceFormat format{};
	format.code = code;
	format.size = size;

	int ret = setupFormats(&format, V4L2Subdevice::TryFormat);
	if (ret < 0) {
		/* Pipeline configuration failed, skip this configuration. */
		format.code = code;
		format.size = size;
		LOG(SimplePipeline, Debug)
			<< "Sensor format " << format
			<< " not supported for this pipeline";
		return;
	}

	V4L2VideoDevice::Formats videoFormats = video_->formats(format.code);

	LOG(SimplePipeline, Debug)
		<< "Adding configuration for " << format.size
		<< " in pixel formats [ "
		<< utils::join(videoFormats, ", ",
			       [](const auto &f) {
				       return f.first.toString();
			       })
		<< " ]";

	for (const auto &videoFormat : videoFormats) {
		PixelFormat pixelFormat = videoFormat.first.toPixelFormat();
		if (!pixelFormat)
			continue;

		Configuration config;
		config.code = code;
		config.sensorSize = size;
		config.captureFormat = pixelFormat;
		config.captureSize = format.size;

		if (converter_) {
			config.outputFormats = converter_->formats(pixelFormat);
			config.outputSizes = converter_->sizes(format.size);
		} else if (swIsp_) {
			config.outputFormats = swIsp_->formats(pixelFormat);
			config.outputSizes = swIsp_->sizes(pixelFormat, format.size);
			if (config.outputFormats.empty()) {
				/* Do not use swIsp for unsupported pixelFormat's. */
				config.outputFormats = { pixelFormat };
				config.outputSizes = config.captureSize;
			}
		} else {
			config.outputFormats = { pixelFormat };
			config.outputSizes = config.captureSize;
		}

		configs_.push_back(config);
	}
}

int SimpleCameraData::setupLinks()
{
	int ret;

	/*
	 * Configure all links along the pipeline. Some entities may not allow
	 * multiple sink links to be enabled together, even on different sink
	 * pads. We must thus start by disabling all sink links (but the one we
	 * want to enable) before enabling the pipeline link.
	 *
	 * The entities_ list stores entities along with their source link. We
	 * need to process the link in the context of the sink entity, so
	 * record the source link of the current entity as the sink link of the
	 * next entity, and skip the first entity in the loop.
	 */
	MediaLink *sinkLink = nullptr;

	for (SimpleCameraData::Entity &e : entities_) {
		if (!sinkLink) {
			sinkLink = e.sourceLink;
			continue;
		}

		for (MediaPad *pad : e.entity->pads()) {
			/*
			 * If the entity supports the V4L2 internal routing API,
			 * assume that it may carry multiple independent streams
			 * concurrently, and only disable links on the sink and
			 * source pads used by the pipeline.
			 */
			if (e.supportsRouting && pad != e.sink && pad != e.source)
				continue;

			for (MediaLink *link : pad->links()) {
				if (link == sinkLink)
					continue;

				if ((link->flags() & MEDIA_LNK_FL_ENABLED) &&
				    !(link->flags() & MEDIA_LNK_FL_IMMUTABLE)) {
					ret = link->setEnabled(false);
					if (ret < 0)
						return ret;
				}
			}
		}

		if (!(sinkLink->flags() & MEDIA_LNK_FL_ENABLED)) {
			ret = sinkLink->setEnabled(true);
			if (ret < 0)
				return ret;
		}

		sinkLink = e.sourceLink;
	}

	return 0;
}

int SimpleCameraData::setupFormats(V4L2SubdeviceFormat *format,
				   V4L2Subdevice::Whence whence,
				   Transform transform)
{
	SimplePipelineHandler *pipe = SimpleCameraData::pipe();
	int ret;

	/*
	 * Configure the format on the sensor output and propagate it through
	 * the pipeline.
	 */
	ret = sensor_->setFormat(format, transform);
	if (ret < 0)
		return ret;

	for (const Entity &e : entities_) {
		if (!e.sourceLink)
			break;

		MediaLink *link = e.sourceLink;
		MediaPad *source = link->source();
		MediaPad *sink = link->sink();

		if (source->entity() != sensor_->entity()) {
			V4L2Subdevice *subdev = pipe->subdev(source->entity());
			ret = subdev->getFormat(source->index(), format, whence);
			if (ret < 0)
				return ret;
		}

		if (sink->entity()->function() != MEDIA_ENT_F_IO_V4L) {
			V4L2SubdeviceFormat sourceFormat = *format;

			V4L2Subdevice *subdev = pipe->subdev(sink->entity());
			ret = subdev->setFormat(sink->index(), format, whence);
			if (ret < 0)
				return ret;

			if (format->code != sourceFormat.code ||
			    format->size != sourceFormat.size) {
				LOG(SimplePipeline, Debug)
					<< "Source '" << source->entity()->name()
					<< "':" << source->index()
					<< " produces " << sourceFormat
					<< ", sink '" << sink->entity()->name()
					<< "':" << sink->index()
					<< " requires " << *format;
				return -EINVAL;
			}
		}

		LOG(SimplePipeline, Debug)
			<< "Link '" << source->entity()->name()
			<< "':" << source->index()
			<< " -> '" << sink->entity()->name()
			<< "':" << sink->index()
			<< " configured with format " << *format;
	}

	return 0;
}

void SimpleCameraData::bufferReady(FrameBuffer *buffer)
{
	SimplePipelineHandler *pipe = SimpleCameraData::pipe();

	/*
	 * If an error occurred during capture, or if the buffer was cancelled,
	 * complete the request, even if the converter is in use as there's no
	 * point converting an erroneous buffer.
	 */
	if (buffer->metadata().status != FrameMetadata::FrameSuccess) {
		if (!useConversion_) {
			/* No conversion, just complete the request. */
			Request *request = buffer->request();
			pipe->completeBuffer(request, buffer);
			pipe->completeRequest(request);
			return;
		}

		/*
		 * The converter or Software ISP is in use. Requeue the internal
		 * buffer for capture (unless the stream is being stopped), and
		 * complete the request with all the user-facing buffers.
		 */
		if (buffer->metadata().status != FrameMetadata::FrameCancelled)
			video_->queueBuffer(buffer);

		if (conversionQueue_.empty())
			return;

		Request *request = nullptr;
		for (auto &item : conversionQueue_.front()) {
			FrameBuffer *outputBuffer = item.second;
			request = outputBuffer->request();
			pipe->completeBuffer(request, outputBuffer);
		}
		conversionQueue_.pop();

		if (request)
			pipe->completeRequest(request);
		return;
	}

	/*
	 * Record the sensor's timestamp in the request metadata. The request
	 * needs to be obtained from the user-facing buffer, as internal
	 * buffers are free-wheeling and have no request associated with them.
	 *
	 * \todo The sensor timestamp should be better estimated by connecting
	 * to the V4L2Device::frameStart signal if the platform provides it.
	 */
	Request *request = buffer->request();

	if (useConversion_ && !conversionQueue_.empty()) {
		const std::map<const Stream *, FrameBuffer *> &outputs =
			conversionQueue_.front();
		if (!outputs.empty()) {
			FrameBuffer *outputBuffer = outputs.begin()->second;
			if (outputBuffer)
				request = outputBuffer->request();
		}
	}

	if (request)
		request->metadata().set(controls::SensorTimestamp,
					buffer->metadata().timestamp);

	/*
	 * Queue the captured and the request buffer to the converter or Software
	 * ISP if format conversion is needed. If there's no queued request, just
	 * requeue the captured buffer for capture.
	 */
	if (useConversion_) {
		if (conversionQueue_.empty()) {
			video_->queueBuffer(buffer);
			return;
		}

		if (converter_)
			converter_->queueBuffers(buffer, conversionQueue_.front());
		else
			swIsp_->queueBuffers(buffer, conversionQueue_.front());

		conversionQueue_.pop();
		return;
	}

	/* Otherwise simply complete the request. */
	pipe->completeBuffer(request, buffer);
	pipe->completeRequest(request);
}

void SimpleCameraData::conversionInputDone(FrameBuffer *buffer)
{
	/* Queue the input buffer back for capture. */
	video_->queueBuffer(buffer);
}

void SimpleCameraData::conversionOutputDone(FrameBuffer *buffer)
{
	SimplePipelineHandler *pipe = SimpleCameraData::pipe();

	/* Complete the buffer and the request. */
	Request *request = buffer->request();
	if (pipe->completeBuffer(request, buffer))
		pipe->completeRequest(request);
}

void SimpleCameraData::ispStatsReady()
{
	/* \todo Use the DelayedControls class */
	swIsp_->processStats(sensor_->getControls({ V4L2_CID_ANALOGUE_GAIN,
						    V4L2_CID_EXPOSURE }));
}

void SimpleCameraData::setSensorControls(const ControlList &sensorControls)
{
	ControlList ctrls(sensorControls);
	sensor_->setControls(&ctrls);
}

/* Retrieve all source pads connected to a sink pad through active routes. */
std::vector<const MediaPad *> SimpleCameraData::routedSourcePads(MediaPad *sink)
{
	MediaEntity *entity = sink->entity();
	std::unique_ptr<V4L2Subdevice> subdev =
		std::make_unique<V4L2Subdevice>(entity);

	int ret = subdev->open();
	if (ret < 0)
		return {};

	V4L2Subdevice::Routing routing = {};
	ret = subdev->getRouting(&routing, V4L2Subdevice::ActiveFormat);
	if (ret < 0)
		return {};

	std::vector<const MediaPad *> pads;

	for (const V4L2Subdevice::Route &route : routing) {
		if (sink->index() != route.sink.pad ||
		    !(route.flags & V4L2_SUBDEV_ROUTE_FL_ACTIVE))
			continue;

		const MediaPad *pad = entity->getPadByIndex(route.source.pad);
		if (!pad) {
			LOG(SimplePipeline, Warning)
				<< "Entity " << entity->name()
				<< " has invalid route source pad "
				<< route.source.pad;
		}

		pads.push_back(pad);
	}

	return pads;
}

/* -----------------------------------------------------------------------------
 * Camera Configuration
 */

SimpleCameraConfiguration::SimpleCameraConfiguration(Camera *camera,
						     SimpleCameraData *data)
	: CameraConfiguration(), camera_(camera->shared_from_this()),
	  data_(data), pipeConfig_(nullptr)
{
}

namespace {

static Size adjustSize(const Size &requestedSize, const SizeRange &supportedSizes)
{
	ASSERT(supportedSizes.min <= supportedSizes.max);

	if (supportedSizes.min == supportedSizes.max)
		return supportedSizes.max;

	unsigned int hStep = supportedSizes.hStep;
	unsigned int vStep = supportedSizes.vStep;

	if (hStep == 0)
		hStep = supportedSizes.max.width - supportedSizes.min.width;
	if (vStep == 0)
		vStep = supportedSizes.max.height - supportedSizes.min.height;

	Size adjusted = requestedSize.boundedTo(supportedSizes.max)
				.expandedTo(supportedSizes.min);

	return adjusted.shrunkBy(supportedSizes.min)
		.alignedDownTo(hStep, vStep)
		.grownBy(supportedSizes.min);
}

} /* namespace */

CameraConfiguration::Status SimpleCameraConfiguration::validate()
{
	const CameraSensor *sensor = data_->sensor_.get();
	Status status = Valid;

	if (config_.empty())
		return Invalid;

	Orientation requestedOrientation = orientation;
	combinedTransform_ = sensor->computeTransform(&orientation);
	if (orientation != requestedOrientation)
		status = Adjusted;

	/* Cap the number of entries to the available streams. */
	if (config_.size() > data_->streams_.size()) {
		config_.resize(data_->streams_.size());
		status = Adjusted;
	}

	/* Find the largest stream size. */
	Size maxStreamSize;
	for (const StreamConfiguration &cfg : config_)
		maxStreamSize.expandTo(cfg.size);

	LOG(SimplePipeline, Debug)
		<< "Largest stream size is " << maxStreamSize;

	/*
	 * Find the best configuration for the pipeline using a heuristic.
	 * First select the pixel format based on the streams (which are
	 * considered ordered from highest to lowest priority). Default to the
	 * first pipeline configuration if no streams request a supported pixel
	 * format.
	 */
	const std::vector<const SimpleCameraData::Configuration *> *configs =
		&data_->formats_.begin()->second;

	for (const StreamConfiguration &cfg : config_) {
		auto it = data_->formats_.find(cfg.pixelFormat);
		if (it != data_->formats_.end()) {
			configs = &it->second;
			break;
		}
	}

	/*
	 * \todo Pick the best sensor output media bus format when the
	 * requested pixel format can be produced from multiple sensor media
	 * bus formats.
	 */

	/*
	 * Then pick, among the possible configuration for the pixel format,
	 * the smallest sensor resolution that can accommodate all streams
	 * without upscaling.
	 */
	const SimpleCameraData::Configuration *maxPipeConfig = nullptr;
	pipeConfig_ = nullptr;

	for (const SimpleCameraData::Configuration *pipeConfig : *configs) {
		const Size &size = pipeConfig->captureSize;

		if (size.width >= maxStreamSize.width &&
		    size.height >= maxStreamSize.height) {
			if (!pipeConfig_ || size < pipeConfig_->captureSize)
				pipeConfig_ = pipeConfig;
		}

		if (!maxPipeConfig || maxPipeConfig->captureSize < size)
			maxPipeConfig = pipeConfig;
	}

	/* If no configuration was large enough, select the largest one. */
	if (!pipeConfig_)
		pipeConfig_ = maxPipeConfig;

	LOG(SimplePipeline, Debug)
		<< "Picked "
		<< V4L2SubdeviceFormat{ pipeConfig_->code, pipeConfig_->sensorSize, {} }
		<< " -> " << pipeConfig_->captureSize
		<< "-" << pipeConfig_->captureFormat
		<< " for max stream size " << maxStreamSize;

	/*
	 * Adjust the requested streams.
	 *
	 * Enable usage of the converter when producing multiple streams, as
	 * the video capture device can't capture to multiple buffers.
	 *
	 * It is possible to produce up to one stream without conversion
	 * (provided the format and size match), at the expense of more complex
	 * buffer handling (including allocation of internal buffers to be used
	 * when a request doesn't contain a buffer for the stream that doesn't
	 * require any conversion, similar to raw capture use cases). This is
	 * left as a future improvement.
	 */
	needConversion_ = config_.size() > 1;

	for (unsigned int i = 0; i < config_.size(); ++i) {
		StreamConfiguration &cfg = config_[i];

		/* Adjust the pixel format and size. */
		auto it = std::find(pipeConfig_->outputFormats.begin(),
				    pipeConfig_->outputFormats.end(),
				    cfg.pixelFormat);
		if (it == pipeConfig_->outputFormats.end())
			it = pipeConfig_->outputFormats.begin();

		PixelFormat pixelFormat = *it;
		if (cfg.pixelFormat != pixelFormat) {
			LOG(SimplePipeline, Debug) << "Adjusting pixel format";
			cfg.pixelFormat = pixelFormat;
			status = Adjusted;
		}

		if (!pipeConfig_->outputSizes.contains(cfg.size)) {
			Size adjustedSize = pipeConfig_->captureSize;
			/*
			 * The converter (when present) may not be able to output
			 * a size identical to its input size. The capture size is thus
			 * not guaranteed to be a valid output size. In such cases, use
			 * the smaller valid output size closest to the requested.
			 */
			if (!pipeConfig_->outputSizes.contains(adjustedSize))
				adjustedSize = adjustSize(cfg.size, pipeConfig_->outputSizes);
			LOG(SimplePipeline, Debug)
				<< "Adjusting size from " << cfg.size
				<< " to " << adjustedSize;
			cfg.size = adjustedSize;
			status = Adjusted;
		}

		/* \todo Create a libcamera core class to group format and size */
		if (cfg.pixelFormat != pipeConfig_->captureFormat ||
		    cfg.size != pipeConfig_->captureSize)
			needConversion_ = true;

		/* Set the stride, frameSize and bufferCount. */
		if (needConversion_) {
			std::tie(cfg.stride, cfg.frameSize) =
				data_->converter_
					? data_->converter_->strideAndFrameSize(cfg.pixelFormat,
										cfg.size)
					: data_->swIsp_->strideAndFrameSize(cfg.pixelFormat,
									    cfg.size);
			if (cfg.stride == 0)
				return Invalid;
		} else {
			V4L2DeviceFormat format;
			format.fourcc = data_->video_->toV4L2PixelFormat(cfg.pixelFormat);
			format.size = cfg.size;

			int ret = data_->video_->tryFormat(&format);
			if (ret < 0)
				return Invalid;

			cfg.stride = format.planes[0].bpl;
			cfg.frameSize = format.planes[0].size;
		}

		cfg.bufferCount = 3;
	}

	return status;
}

/* -----------------------------------------------------------------------------
 * Pipeline Handler
 */

SimplePipelineHandler::SimplePipelineHandler(CameraManager *manager)
	: PipelineHandler(manager), converter_(nullptr)
{
}

std::unique_ptr<CameraConfiguration>
SimplePipelineHandler::generateConfiguration(Camera *camera, Span<const StreamRole> roles)
{
	SimpleCameraData *data = cameraData(camera);
	std::unique_ptr<CameraConfiguration> config =
		std::make_unique<SimpleCameraConfiguration>(camera, data);

	if (roles.empty())
		return config;

	/* Create the formats map. */
	std::map<PixelFormat, std::vector<SizeRange>> formats;

	for (const SimpleCameraData::Configuration &cfg : data->configs_) {
		for (PixelFormat format : cfg.outputFormats)
			formats[format].push_back(cfg.outputSizes);
	}

	/* Sort the sizes and merge any consecutive overlapping ranges. */
	for (auto &[format, sizes] : formats) {
		std::sort(sizes.begin(), sizes.end(),
			  [](SizeRange &a, SizeRange &b) {
				  return a.min < b.min;
			  });

		auto cur = sizes.begin();
		auto next = cur;

		while (++next != sizes.end()) {
			if (cur->max.width >= next->min.width &&
			    cur->max.height >= next->min.height)
				cur->max = next->max;
			else if (++cur != next)
				*cur = *next;
		}

		sizes.erase(++cur, sizes.end());
	}

	/*
	 * Create the stream configurations. Take the first entry in the formats
	 * map as the default, for lack of a better option.
	 *
	 * \todo Implement a better way to pick the default format
	 */
	for ([[maybe_unused]] StreamRole role : roles) {
		StreamConfiguration cfg{ StreamFormats{ formats } };
		cfg.pixelFormat = formats.begin()->first;
		cfg.size = formats.begin()->second[0].max;

		config->addConfiguration(cfg);
	}

	config->validate();

	return config;
}

int SimplePipelineHandler::configure(Camera *camera, CameraConfiguration *c)
{
	SimpleCameraConfiguration *config =
		static_cast<SimpleCameraConfiguration *>(c);
	SimpleCameraData *data = cameraData(camera);
	V4L2VideoDevice *video = data->video_;
	int ret;

	/*
	 * Configure links on the pipeline and propagate formats from the
	 * sensor to the video node.
	 */
	ret = data->setupLinks();
	if (ret < 0)
		return ret;

	const SimpleCameraData::Configuration *pipeConfig = config->pipeConfig();
	V4L2SubdeviceFormat format{};
	format.code = pipeConfig->code;
	format.size = pipeConfig->sensorSize;

	ret = data->setupFormats(&format, V4L2Subdevice::ActiveFormat,
				 config->combinedTransform());
	if (ret < 0)
		return ret;

	/* Configure the video node. */
	V4L2PixelFormat videoFormat = video->toV4L2PixelFormat(pipeConfig->captureFormat);

	V4L2DeviceFormat captureFormat;
	captureFormat.fourcc = videoFormat;
	captureFormat.size = pipeConfig->captureSize;

	ret = video->setFormat(&captureFormat);
	if (ret)
		return ret;

	if (captureFormat.planesCount != 1) {
		LOG(SimplePipeline, Error)
			<< "Planar formats using non-contiguous memory not supported";
		return -EINVAL;
	}

	if (captureFormat.fourcc != videoFormat ||
	    captureFormat.size != pipeConfig->captureSize) {
		LOG(SimplePipeline, Error)
			<< "Unable to configure capture in "
			<< pipeConfig->captureSize << "-" << videoFormat
			<< " (got " << captureFormat << ")";
		return -EINVAL;
	}

	/* Configure the converter if needed. */
	std::vector<std::reference_wrapper<StreamConfiguration>> outputCfgs;
	data->useConversion_ = config->needConversion();

	for (unsigned int i = 0; i < config->size(); ++i) {
		StreamConfiguration &cfg = config->at(i);

		cfg.setStream(&data->streams_[i]);

		if (data->useConversion_)
			outputCfgs.push_back(cfg);
	}

	if (outputCfgs.empty())
		return 0;

	StreamConfiguration inputCfg;
	inputCfg.pixelFormat = pipeConfig->captureFormat;
	inputCfg.size = pipeConfig->captureSize;
	inputCfg.stride = captureFormat.planes[0].bpl;
	inputCfg.bufferCount = kNumInternalBuffers;

	return data->converter_
		       ? data->converter_->configure(inputCfg, outputCfgs)
		       : data->swIsp_->configure(inputCfg, outputCfgs,
						 data->sensor_->controls());
}

int SimplePipelineHandler::exportFrameBuffers(Camera *camera, Stream *stream,
					      std::vector<std::unique_ptr<FrameBuffer>> *buffers)
{
	SimpleCameraData *data = cameraData(camera);
	unsigned int count = stream->configuration().bufferCount;

	/*
	 * Export buffers on the converter or capture video node, depending on
	 * whether the converter is used or not.
	 */
	if (data->useConversion_)
		return data->converter_
			       ? data->converter_->exportBuffers(stream, count, buffers)
			       : data->swIsp_->exportBuffers(stream, count, buffers);
	else
		return data->video_->exportBuffers(count, buffers);
}

int SimplePipelineHandler::start(Camera *camera, [[maybe_unused]] const ControlList *controls)
{
	SimpleCameraData *data = cameraData(camera);
	V4L2VideoDevice *video = data->video_;
	int ret;

	const MediaPad *pad = acquirePipeline(data);
	if (pad) {
		LOG(SimplePipeline, Info)
			<< "Failed to acquire pipeline, entity "
			<< pad->entity()->name() << " in use";
		return -EBUSY;
	}

	if (data->useConversion_) {
		/*
		 * When using the converter allocate a fixed number of internal
		 * buffers.
		 */
		ret = video->allocateBuffers(kNumInternalBuffers,
					     &data->conversionBuffers_);
	} else {
		/* Otherwise, prepare for using buffers from the only stream. */
		Stream *stream = &data->streams_[0];
		ret = video->importBuffers(stream->configuration().bufferCount);
	}
	if (ret < 0) {
		releasePipeline(data);
		return ret;
	}

	video->bufferReady.connect(data, &SimpleCameraData::bufferReady);

	ret = video->streamOn();
	if (ret < 0) {
		stop(camera);
		return ret;
	}

	if (data->useConversion_) {
		if (data->converter_)
			ret = data->converter_->start();
		else if (data->swIsp_)
			ret = data->swIsp_->start();
		else
			ret = 0;

		if (ret < 0) {
			stop(camera);
			return ret;
		}

		/* Queue all internal buffers for capture. */
		for (std::unique_ptr<FrameBuffer> &buffer : data->conversionBuffers_)
			video->queueBuffer(buffer.get());
	}

	return 0;
}

void SimplePipelineHandler::stopDevice(Camera *camera)
{
	SimpleCameraData *data = cameraData(camera);
	V4L2VideoDevice *video = data->video_;

	if (data->useConversion_) {
		if (data->converter_)
			data->converter_->stop();
		else if (data->swIsp_)
			data->swIsp_->stop();
	}

	video->streamOff();
	video->releaseBuffers();

	video->bufferReady.disconnect(data, &SimpleCameraData::bufferReady);

	data->conversionBuffers_.clear();

	releasePipeline(data);
}

int SimplePipelineHandler::queueRequestDevice(Camera *camera, Request *request)
{
	SimpleCameraData *data = cameraData(camera);
	int ret;

	std::map<const Stream *, FrameBuffer *> buffers;

	for (auto &[stream, buffer] : request->buffers()) {
		/*
		 * If conversion is needed, push the buffer to the converter
		 * queue, it will be handed to the converter in the capture
		 * completion handler.
		 */
		if (data->useConversion_) {
			buffers.emplace(stream, buffer);
		} else {
			ret = data->video_->queueBuffer(buffer);
			if (ret < 0)
				return ret;
		}
	}

	if (data->useConversion_)
		data->conversionQueue_.push(std::move(buffers));

	return 0;
}

/* -----------------------------------------------------------------------------
 * Match and Setup
 */

std::vector<MediaEntity *> SimplePipelineHandler::locateSensors()
{
	std::vector<MediaEntity *> entities;

	/*
	 * Gather all the camera sensor entities based on the function they
	 * expose.
	 */
	for (MediaEntity *entity : media_->entities()) {
		if (entity->function() == MEDIA_ENT_F_CAM_SENSOR)
			entities.push_back(entity);
	}

	if (entities.empty())
		return {};

	/*
	 * Sensors can be made of multiple entities. For instance, a raw sensor
	 * can be connected to an ISP, and the combination of both should be
	 * treated as one sensor. To support this, as a crude heuristic, check
	 * the downstream entity from the camera sensor, and if it is an ISP,
	 * use it instead of the sensor.
	 */
	std::vector<MediaEntity *> sensors;

	for (MediaEntity *entity : entities) {
		/*
		 * Locate the downstream entity by following the first link
		 * from a source pad.
		 */
		const MediaLink *link = nullptr;

		for (const MediaPad *pad : entity->pads()) {
			if ((pad->flags() & MEDIA_PAD_FL_SOURCE) &&
			    !pad->links().empty()) {
				link = pad->links()[0];
				break;
			}
		}

		if (!link)
			continue;

		MediaEntity *remote = link->sink()->entity();
		if (remote->function() == MEDIA_ENT_F_PROC_VIDEO_ISP)
			sensors.push_back(remote);
		else
			sensors.push_back(entity);
	}

	/*
	 * Remove duplicates, in case multiple sensors are connected to the
	 * same ISP.
	 */
	std::sort(sensors.begin(), sensors.end());
	auto last = std::unique(sensors.begin(), sensors.end());
	sensors.erase(last, sensors.end());

	return sensors;
}

int SimplePipelineHandler::resetRoutingTable(V4L2Subdevice *subdev)
{
	/* Reset the media entity routing table to its default state. */
	V4L2Subdevice::Routing routing = {};

	int ret = subdev->getRouting(&routing, V4L2Subdevice::TryFormat);
	if (ret)
		return ret;

	ret = subdev->setRouting(&routing, V4L2Subdevice::ActiveFormat);
	if (ret)
		return ret;

	/*
	 * If the routing table is empty we won't be able to meaningfully use
	 * the subdev.
	 */
	if (routing.empty()) {
		LOG(SimplePipeline, Error)
			<< "Default routing table of " << subdev->deviceNode()
			<< " is empty";
		return -EINVAL;
	}

	LOG(SimplePipeline, Debug)
		<< "Routing table of " << subdev->deviceNode()
		<< " reset to " << routing;

	return 0;
}

bool SimplePipelineHandler::match(DeviceEnumerator *enumerator)
{
	const SimplePipelineInfo *info = nullptr;
	unsigned int numStreams = 1;

	for (const SimplePipelineInfo &inf : supportedDevices) {
		DeviceMatch dm(inf.driver);
		media_ = acquireMediaDevice(enumerator, dm);
		if (media_) {
			info = &inf;
			break;
		}
	}

	if (!media_)
		return false;

	for (const auto &[name, streams] : info->converters) {
		DeviceMatch converterMatch(name);
		converter_ = acquireMediaDevice(enumerator, converterMatch);
		if (converter_) {
			numStreams = streams;
			break;
		}
	}

	swIspEnabled_ = info->swIspEnabled;

	/* Locate the sensors. */
	std::vector<MediaEntity *> sensors = locateSensors();
	if (sensors.empty()) {
		LOG(SimplePipeline, Error) << "No sensor found";
		return false;
	}

	/*
	 * Create one camera data instance for each sensor and gather all
	 * entities in all pipelines.
	 */
	std::vector<std::unique_ptr<SimpleCameraData>> pipelines;
	std::set<MediaEntity *> entities;

	pipelines.reserve(sensors.size());

	for (MediaEntity *sensor : sensors) {
		std::unique_ptr<SimpleCameraData> data =
			std::make_unique<SimpleCameraData>(this, numStreams, sensor);
		if (!data->isValid()) {
			LOG(SimplePipeline, Error)
				<< "No valid pipeline for sensor '"
				<< sensor->name() << "', skipping";
			continue;
		}

		for (SimpleCameraData::Entity &entity : data->entities_)
			entities.insert(entity.entity);

		pipelines.push_back(std::move(data));
	}

	if (entities.empty())
		return false;

	/*
	 * Insert all entities in the global entities list. Create and open
	 * V4L2VideoDevice and V4L2Subdevice instances for the corresponding
	 * entities.
	 */
	for (MediaEntity *entity : entities) {
		std::unique_ptr<V4L2VideoDevice> video;
		std::unique_ptr<V4L2Subdevice> subdev;
		int ret;

		switch (entity->type()) {
		case MediaEntity::Type::V4L2VideoDevice:
			video = std::make_unique<V4L2VideoDevice>(entity);