/* SPDX-License-Identifier: LGPL-2.1-or-later */ /* * Copyright (C) 2021, Ideas On Board * * AGC/AEC mean-based control algorithm */ #include "agc.h" #include #include #include #include #include #include #include "libipa/colours.h" #include "libipa/histogram.h" /** * \file agc.h */ namespace libcamera { using namespace std::literals::chrono_literals; namespace ipa::ipu3::algorithms { /** * \class Agc * \brief A mean-based auto-exposure algorithm * * This algorithm calculates an exposure time and an analogue gain so that the * average value of the green channel of the brightest 2% of pixels approaches * 0.5. The AWB gains are not used here, and all cells in the grid have the same * weight, like an average-metering case. In this metering mode, the camera uses * light information from the entire scene and creates an average for the final * exposure setting, giving no weighting to any particular portion of the * metered area. * * Reference: Battiato, Messina & Castorina. (2008). Exposure * Correction for Imaging Devices: An Overview. 10.1201/9781420054538.ch12. */ LOG_DEFINE_CATEGORY(IPU3Agc) /* Minimum limit for analogue gain value */ static constexpr double kMinAnalogueGain = 1.0; /* \todo Honour the FrameDurationLimits control instead of hardcoding a limit */ static constexpr utils::Duration kMaxExposureTime = 60ms; /* Histogram constants */ static constexpr uint32_t knumHistogramBins = 256; Agc::Agc() : minExposureTime_(0s), maxExposureTime_(0s) { } /** * \brief Initialise the AGC algorithm from tuning files * \param[in] context The shared IPA context * \param[in] tuningData The YamlObject containing Agc tuning data * * This function calls the base class' tuningData parsers to discover which * control values are supported. * * \return 0 on success or errors from the base class */ int Agc::init(IPAContext &context, const YamlObject &tuningData) { int ret; ret = parseTuningData(tuningData); if (ret) return ret; context.ctrlMap.merge(controls()); return 0; } /** * \brief Configure the AGC given a configInfo * \param[in] context The shared IPA context * \param[in] configInfo The IPA configuration data * * \return 0 */ int Agc::configure(IPAContext &context, [[maybe_unused]] const IPAConfigInfo &configInfo) { const IPASessionConfiguration &configuration = context.configuration; IPAActiveState &activeState = context.activeState; stride_ = configuration.grid.stride; bdsGrid_ = configuration.grid.bdsGrid; minExposureTime_ = configuration.agc.minExposureTime; maxExposureTime_ = std::min(configuration.agc.maxExposureTime, kMaxExposureTime); minAnalogueGain_ = std::max(configuration.agc.minAnalogueGain, kMinAnalogueGain); maxAnalogueGain_ = configuration.agc.maxAnalogueGain; /* Configure the default exposure and gain. */ activeState.agc.gain = minAnalogueGain_; activeState.agc.exposure = 10ms / configuration.sensor.lineDuration; context.activeState.agc.constraintMode = constraintModes().begin()->first; context.activeState.agc.exposureMode = exposureModeHelpers().begin()->first; /* \todo Run this again when FrameDurationLimits is passed in */ setLimits(minExposureTime_, maxExposureTime_, minAnalogueGain_, maxAnalogueGain_); resetFrameCount(); return 0; } Histogram Agc::parseStatistics(const ipu3_uapi_stats_3a *stats, const ipu3_uapi_grid_config &grid) { uint32_t hist[knumHistogramBins] = { 0 }; rgbTriples_.clear(); for (unsigned int cellY = 0; cellY < grid.height; cellY++) { for (unsigned int cellX = 0; cellX < grid.width; cellX++) { uint32_t cellPosition = cellY * stride_ + cellX; const ipu3_uapi_awb_set_item *cell = reinterpret_cast( &stats->awb_raw_buffer.meta_data[cellPosition]); rgbTriples_.push_back({ cell->R_avg, (cell->Gr_avg + cell->Gb_avg) / 2, cell->B_avg }); /* * Store the average green value to estimate the * brightness. Even the overexposed pixels are * taken into account. */ hist[(cell->Gr_avg + cell->Gb_avg) / 2]++; } } return Histogram(Span(hist)); } /** * \brief Estimate the relative luminance of the frame with a given gain * \param[in] gain The gain to apply in estimating luminance * * The estimation is based on the AWB statistics for the current frame. Red, * green and blue averages for all cells are first multiplied by the gain, and * then saturated to approximate the sensor behaviour at high brightness * values. The approximation is quite rough, as it doesn't take into account * non-linearities when approaching saturation. * * The relative luminance (Y) is computed from the linear RGB components using * the Rec. 601 formula. The values are normalized to the [0.0, 1.0] range, * where 1.0 corresponds to a theoretical perfect reflector of 100% reference * white. * * More detailed information can be found in: * https://en.wikipedia.org/wiki/Relative_luminance * * \return The relative luminance of the frame */ double Agc::estimateLuminance(double gain) const { double redSum = 0, greenSum = 0, blueSum = 0; for (unsigned int i = 0; i < rgbTriples_.size(); i++) { redSum += std::min(std::get<0>(rgbTriples_[i]) * gain, 255.0); greenSum += std::min(std::get<1>(rgbTriples_[i]) * gain, 255.0); blueSum += std::min(std::get<2>(rgbTriples_[i]) * gain, 255.0); } double ySum = rec601LuminanceFromRGB(redSum * rGain_, greenSum * gGain_, blueSum * bGain_); return ySum / (bdsGrid_.height * bdsGrid_.width) / 255; } /** * \brief Process IPU3 statistics, and run AGC operations * \param[in] context The shared IPA context * \param[in] frame The current frame sequence number * \param[in] frameContext The current frame context * \param[in] stats The IPU3 statistics and ISP results * \param[out] metadata Metadata for the frame, to be filled by the algorithm * * Identify the current image brightness, and use that to estimate the optimal * new exposure and gain for the scene. */ void Agc::process(IPAContext &context, [[maybe_unused]] const uint32_t frame, IPAFrameContext &frameContext, const ipu3_uapi_stats_3a *stats, ControlList &metadata) { Histogram hist = parseStatistics(stats, context.configuration.grid.bdsGrid); rGain_ = context.activeState.awb.gains.red; gGain_ = context.activeState.awb.gains.blue; bGain_ = context.activeState.awb.gains.green; /* * The Agc algorithm needs to know the effective exposure value that was * applied to the sensor when the statistics were collected. */ utils::Duration exposureTime = context.configuration.sensor.lineDuration * frameContext.sensor.exposure; double analogueGain = frameContext.sensor.gain; utils::Duration effectiveExposureValue = exposureTime * analogueGain; utils::Duration newExposureTime; double aGain, dGain; std::tie(newExposureTime, aGain, dGain) = calculateNewEv(context.activeState.agc.constraintMode, context.activeState.agc.exposureMode, hist, effectiveExposureValue); LOG(IPU3Agc, Debug) << "Divided up exposure time, analogue gain and digital gain are " << newExposureTime << ", " << aGain << " and " << dGain; IPAActiveState &activeState = context.activeState; /* Update the estimated exposure time and gain. */ activeState.agc.exposure = newExposureTime / context.configuration.sensor.lineDuration; activeState.agc.gain = aGain; metadata.set(controls::AnalogueGain, frameContext.sensor.gain); metadata.set(controls::ExposureTime, exposureTime.get()); /* \todo Use VBlank value calculated from each frame exposure. */ uint32_t vTotal = context.configuration.sensor.size.height + context.configuration.sensor.defVBlank; utils::Duration frameDuration = context.configuration.sensor.lineDuration * vTotal; metadata.set(controls::FrameDuration, frameDuration.get()); } REGISTER_IPA_ALGORITHM(Agc, "Agc") } /* namespace ipa::ipu3::algorithms */ } /* namespace libcamera */