summaryrefslogtreecommitdiff
path: root/LICENSES/CC-BY-SA-4.0.txt
AgeCommit message (Collapse)Author
2020-04-15licenses: Rename license files according to REUSELaurent Pinchart
The REUSE specification [1] defines a standardized method for declaring copyright and licensing information. Rename the licenses directory and the files it contains to comply with the specification. No license text is modified. [1] https://reuse.software/spec/ Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Acked-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
='n51' href='#n51'>51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2019, Google Inc.
 *
 * geometry.cpp - Geometry-related structures
 */

#include <libcamera/geometry.h>

#include <sstream>
#include <stdint.h>

#include "libcamera/internal/log.h"

/**
 * \file geometry.h
 * \brief Data structures related to geometric objects
 */

namespace libcamera {

/**
 * \class Point
 * \brief Describe a point in two-dimensional space
 *
 * The Point structure defines a point in two-dimensional space with integer
 * precision. The coordinates of a Point may be negative as well as positive.
 */

/**
 * \fn Point::Point()
 * \brief Construct a Point with x and y set to 0
 */

/**
 * \fn Point::Point(int xpos, int ypos)
 * \brief Construct a Point at given \a xpos and \a ypos values
 * \param[in] xpos The x-coordinate
 * \param[in] ypos The y-coordinate
 */

/**
 * \var Point::x
 * \brief The x-coordinate of the Point
 */

/**
 * \var Point::y
 * \brief The y-coordinate of the Point
 */

/**
 * \brief Assemble and return a string describing the point
 * \return A string describing the point
 */
const std::string Point::toString() const
{
	std::stringstream ss;

	ss << "(" << x << "," << y << ")";

	return ss.str();
}

/**
 * \fn Point Point::operator-() const
 * \brief Negate a Point by negating both its x and y coordinates
 * \return The negated point
 */

/**
 * \brief Compare points for equality
 * \return True if the two points are equal, false otherwise
 */
bool operator==(const Point &lhs, const Point &rhs)
{
	return lhs.x == rhs.x && lhs.y == rhs.y;
}

/**
 * \fn bool operator!=(const Point &lhs, const Point &rhs)
 * \brief Compare points for inequality
 * \return True if the two points are not equal, false otherwise
 */

/**
 * \struct Size
 * \brief Describe a two-dimensional size
 *
 * The Size structure defines a two-dimensional size with integer precision.
 */

/**
 * \fn Size::Size()
 * \brief Construct a Size with width and height set to 0
 */

/**
 * \fn Size::Size(unsigned int width, unsigned int height)
 * \brief Construct a Size with given \a width and \a height
 * \param[in] width The Size width
 * \param[in] height The Size height
 */

/**
 * \var Size::width
 * \brief The Size width
 */

/**
 * \var Size::height
 * \brief The Size height
 */

/**
 * \fn bool Size::isNull() const
 * \brief Check if the size is null
 * \return True if both the width and height are 0, or false otherwise
 */

/**
 * \brief Assemble and return a string describing the size
 * \return A string describing the size
 */
const std::string Size::toString() const
{
	return std::to_string(width) + "x" + std::to_string(height);
}

/**
 * \fn Size::alignDownTo(unsigned int hAlignment, unsigned int vAlignment)
 * \brief Align the size down horizontally and vertically in place
 * \param[in] hAlignment Horizontal alignment
 * \param[in] vAlignment Vertical alignment
 *
 * This functions rounds the width and height down to the nearest multiple of
 * \a hAlignment and \a vAlignment respectively.
 *
 * \return A reference to this object
 */

/**
 * \fn Size::alignUpTo(unsigned int hAlignment, unsigned int vAlignment)
 * \brief Align the size up horizontally and vertically in place
 * \param[in] hAlignment Horizontal alignment
 * \param[in] vAlignment Vertical alignment
 *
 * This functions rounds the width and height up to the nearest multiple of
 * \a hAlignment and \a vAlignment respectively.
 *
 * \return A reference to this object
 */

/**
 * \fn Size::boundTo(const Size &bound)
 * \brief Bound the size to \a bound in place
 * \param[in] bound The maximum size
 *
 * This function sets the width and height to the minimum of this size and the
 * \a bound size.
 *
 * \return A reference to this object
 */

/**
 * \fn Size::expandTo(const Size &expand)
 * \brief Expand the size to \a expand
 * \param[in] expand The minimum size
 *
 * This function sets the width and height to the maximum of this size and the
 * \a expand size.
 *
 * \return A reference to this object
 */

/**
 * \fn Size::alignedDownTo(unsigned int hAlignment, unsigned int vAlignment)
 * \brief Align the size down horizontally and vertically
 * \param[in] hAlignment Horizontal alignment
 * \param[in] vAlignment Vertical alignment
 * \return A Size whose width and height are equal to the width and height of
 * this size rounded down to the nearest multiple of \a hAlignment and
 * \a vAlignment respectively
 */

/**
 * \fn Size::alignedUpTo(unsigned int hAlignment, unsigned int vAlignment)
 * \brief Align the size up horizontally and vertically
 * \param[in] hAlignment Horizontal alignment
 * \param[in] vAlignment Vertical alignment
 * \return A Size whose width and height are equal to the width and height of
 * this size rounded up to the nearest multiple of \a hAlignment and
 * \a vAlignment respectively
 */

/**
 * \fn Size::boundedTo(const Size &bound)
 * \brief Bound the size to \a bound
 * \param[in] bound The maximum size
 * \return A Size whose width and height are the minimum of the width and
 * height of this size and the \a bound size
 */

/**
 * \fn Size::expandedTo(const Size &expand)
 * \brief Expand the size to \a expand
 * \param[in] expand The minimum size
 * \return A Size whose width and height are the maximum of the width and
 * height of this size and the \a expand size
 */

/**
 * \brief Bound the size down to match the aspect ratio given by \a ratio
 * \param[in] ratio The size whose aspect ratio must be matched
 *
 * The behaviour of this function is undefined if either the width or the
 * height of the \a ratio is zero.
 *
 * \return A Size whose width and height are equal to the width and height
 * of this Size aligned down to the aspect ratio of \a ratio
 */
Size Size::boundedToAspectRatio(const Size &ratio) const
{
	ASSERT(ratio.width && ratio.height);

	uint64_t ratio1 = static_cast<uint64_t>(width) *
			  static_cast<uint64_t>(ratio.height);
	uint64_t ratio2 = static_cast<uint64_t>(ratio.width) *
			  static_cast<uint64_t>(height);

	if (ratio1 > ratio2)
		return { static_cast<unsigned int>(ratio2 / ratio.height), height };
	else
		return { width, static_cast<unsigned int>(ratio1 / ratio.width) };
}

/**
 * \brief Expand the size to match the aspect ratio given by \a ratio
 * \param[in] ratio The size whose aspect ratio must be matched
 *
 * The behaviour of this function is undefined if either the width or the
 * height of the \a ratio is zero.
 *
 * \return A Size whose width and height are equal to the width and height
 * of this Size expanded up to the aspect ratio of \a ratio
 */
Size Size::expandedToAspectRatio(const Size &ratio) const
{
	ASSERT(ratio.width && ratio.height);

	uint64_t ratio1 = static_cast<uint64_t>(width) *
			  static_cast<uint64_t>(ratio.height);
	uint64_t ratio2 = static_cast<uint64_t>(ratio.width) *
			  static_cast<uint64_t>(height);

	if (ratio1 < ratio2)
		return { static_cast<unsigned int>(ratio2 / ratio.height), height };
	else
		return { width, static_cast<unsigned int>(ratio1 / ratio.width) };
}

/**
 * \brief Center a rectangle of this size at a given Point
 * \param[in] center The center point the Rectangle is to have
 *
 * A Rectangle of this object's size is positioned so that its center
 * is at the given Point.
 *
 * \return A Rectangle of this size, centered at the given Point.
 */
Rectangle Size::centeredTo(const Point &center) const
{
	int x = center.x - width / 2;
	int y = center.y - height / 2;

	return { x, y, width, height };
}

/**
 * \brief Scale size up by the given factor
 * \param[in] factor The factor
 * \return The scaled Size
 */
Size Size::operator*(float factor) const
{
	return Size(width * factor, height * factor);
}

/**
 * \brief Scale size down by the given factor
 * \param[in] factor The factor
 * \return The scaled Size
 */
Size Size::operator/(float factor) const
{
	return Size(width / factor, height / factor);
}

/**
 * \brief Scale this size up by the given factor in place
 * \param[in] factor The factor
 * \return A reference to this object
 */
Size &Size::operator*=(float factor)
{
	width *= factor;
	height *= factor;
	return *this;
}

/**
 * \brief Scale this size down by the given factor in place
 * \param[in] factor The factor
 * \return A reference to this object
 */
Size &Size::operator/=(float factor)
{
	width /= factor;
	height /= factor;
	return *this;
}

/**
 * \brief Compare sizes for equality
 * \return True if the two sizes are equal, false otherwise
 */
bool operator==(const Size &lhs, const Size &rhs)
{
	return lhs.width == rhs.width && lhs.height == rhs.height;
}

/**
 * \brief Compare sizes for smaller than order
 *
 * Sizes are compared on three criteria, in the following order.
 *
 * - A size with smaller width and smaller height is smaller.
 * - A size with smaller area is smaller.
 * - A size with smaller width is smaller.
 *
 * \return True if \a lhs is smaller than \a rhs, false otherwise
 */
bool operator<(const Size &lhs, const Size &rhs)
{
	if (lhs.width < rhs.width && lhs.height < rhs.height)
		return true;
	else if (lhs.width >= rhs.width && lhs.height >= rhs.height)
		return false;

	uint64_t larea = static_cast<uint64_t>(lhs.width) *
			 static_cast<uint64_t>(lhs.height);
	uint64_t rarea = static_cast<uint64_t>(rhs.width) *
			 static_cast<uint64_t>(rhs.height);
	if (larea < rarea)
		return true;
	else if (larea > rarea)
		return false;

	return lhs.width < rhs.width;
}

/**
 * \fn bool operator!=(const Size &lhs, const Size &rhs)
 * \brief Compare sizes for inequality
 * \return True if the two sizes are not equal, false otherwise
 */

/**
 * \fn bool operator<=(const Size &lhs, const Size &rhs)
 * \brief Compare sizes for smaller than or equal to order
 * \return True if \a lhs is smaller than or equal to \a rhs, false otherwise
 * \sa bool operator<(const Size &lhs, const Size &rhs)
 */

/**
 * \fn bool operator>(const Size &lhs, const Size &rhs)
 * \brief Compare sizes for greater than order
 * \return True if \a lhs is greater than \a rhs, false otherwise
 * \sa bool operator<(const Size &lhs, const Size &rhs)
 */

/**
 * \fn bool operator>=(const Size &lhs, const Size &rhs)
 * \brief Compare sizes for greater than or equal to order
 * \return True if \a lhs is greater than or equal to \a rhs, false otherwise
 * \sa bool operator<(const Size &lhs, const Size &rhs)
 */

/**
 * \struct SizeRange
 * \brief Describe a range of sizes
 *
 * A SizeRange describes a range of sizes included in the [min, max] interval
 * for both the width and the height. If the minimum and maximum sizes are
 * identical it represents a single size.
 *
 * Size ranges may further limit the valid sizes through steps in the horizontal
 * and vertical direction. The step values represent the increase in pixels
 * between two valid width or height values, starting from the minimum. Valid
 * sizes within the range are thus expressed as
 *
 *	width = min.width + hStep * x
 *	height = min.height + vStep * y
 *
 *	Where
 *
 *	width <= max.width
 *	height < max.height
 *
 * Note that the step values are not equivalent to alignments, as the minimum
 * width or height may not be a multiple of the corresponding step.
 *
 * The step values may be zero when the range describes only minimum and
 * maximum sizes without implying that all, or any, intermediate size is valid.
 * SizeRange instances the describe a single size have both set values set to 1.
 */

/**
 * \fn SizeRange::SizeRange()
 * \brief Construct a size range initialized to 0
 */

/**
 * \fn SizeRange::SizeRange(const Size &size)
 * \brief Construct a size range representing a single size
 * \param[in] size The size
 */

/**
 * \fn SizeRange::SizeRange(const Size &minSize, const Size &maxSize)
 * \brief Construct a size range with specified min and max, and steps of 1
 * \param[in] minSize The minimum size
 * \param[in] maxSize The maximum size
 */

/**
 * \fn SizeRange::SizeRange(const Size &minSize, const Size &maxSize,
 *			    unsigned int hstep, unsigned int vstep)
 * \brief Construct a size range with specified min, max and step
 * \param[in] minSize The minimum size
 * \param[in] maxSize The maximum size
 * \param[in] hstep The horizontal step
 * \param[in] vstep The vertical step
 */

/**
 * \var SizeRange::min
 * \brief The minimum size
 */

/**
 * \var SizeRange::max
 * \brief The maximum size
 */

/**
 * \var SizeRange::hStep
 * \brief The horizontal step
 */

/**
 * \var SizeRange::vStep
 * \brief The vertical step
 */

/**
 * \brief Test if a size is contained in the range
 * \param[in] size Size to check
 * \return True if \a size is contained in the range
 */
bool SizeRange::contains(const Size &size) const
{
	if (size.width < min.width || size.width > max.width ||
	    size.height < min.height || size.height > max.height ||
	    (hStep && (size.width - min.width) % hStep) ||
	    (vStep && (size.height - min.height) % vStep))
		return false;

	return true;
}

/**
 * \brief Assemble and return a string describing the size range
 * \return A string describing the SizeRange
 */
std::string SizeRange::toString() const
{
	std::stringstream ss;

	ss << "(" << min.toString() << ")-(" << max.toString() << ")/(+"
	   << hStep << ",+" << vStep << ")";

	return ss.str();
}

/**
 * \brief Compare size ranges for equality
 * \return True if the two size ranges are equal, false otherwise
 */
bool operator==(const SizeRange &lhs, const SizeRange &rhs)
{
	return lhs.min == rhs.min && lhs.max == rhs.max;
}

/**
 * \fn bool operator!=(const SizeRange &lhs, const SizeRange &rhs)
 * \brief Compare size ranges for inequality
 * \return True if the two size ranges are not equal, false otherwise
 */

/**
 * \struct Rectangle
 * \brief Describe a rectangle's position and dimensions
 *
 * Rectangles are used to identify an area of an image. They are specified by
 * the coordinates of top-left corner and their horizontal and vertical size.
 *
 * The measure unit of the rectangle coordinates and size, as well as the
 * reference point from which the Rectangle::x and Rectangle::y displacements
 * refers to, are defined by the context were rectangle is used.
 */

/**
 * \fn Rectangle::Rectangle()
 * \brief Construct a Rectangle with all coordinates set to 0
 */

/**
 * \fn Rectangle::Rectangle(int x, int y, const Size &size)
 * \brief Construct a Rectangle with the given position and size
 * \param[in] x The horizontal coordinate of the top-left corner
 * \param[in] y The vertical coordinate of the top-left corner
 * \param[in] size The size
 */

/**
 * \fn Rectangle::Rectangle(int x, int y, unsigned int width, unsigned int height)
 * \brief Construct a Rectangle with the given position and size
 * \param[in] x The horizontal coordinate of the top-left corner
 * \param[in] y The vertical coordinate of the top-left corner
 * \param[in] width The width
 * \param[in] height The height
 */

/**
 * \fn Rectangle::Rectangle(const Size &size)
 * \brief Construct a Rectangle of \a size with its top left corner located
 * at (0,0)
 * \param[in] size The desired Rectangle size
 */

/**
 * \var Rectangle::x
 * \brief The horizontal coordinate of the rectangle's top-left corner
 */

/**
 * \var Rectangle::y
 * \brief The vertical coordinate of the rectangle's top-left corner
 */

/**
 * \var Rectangle::width
 * \brief The distance between the left and right sides
 */

/**
 * \var Rectangle::height
 * \brief The distance between the top and bottom sides
 */

/**
 * \fn bool Rectangle::isNull() const
 * \brief Check if the rectangle is null
 * \return True if both the width and height are 0, or false otherwise
 */

/**
 * \brief Assemble and return a string describing the rectangle
 * \return A string describing the Rectangle
 */
const std::string Rectangle::toString() const
{
	std::stringstream ss;

	ss << "(" << x << "x" << y << ")/" << width << "x" << height;

	return ss.str();
}

/**
 * \brief Retrieve the center point of this rectangle
 * \return The center Point
 */
Point Rectangle::center() const
{
	return { x + static_cast<int>(width / 2), y + static_cast<int>(height / 2) };
}

/**
 * \fn Size Rectangle::size() const
 * \brief Retrieve the size of this rectangle
 * \return The Rectangle size
 */

/**
 * \fn Point Rectangle::topLeft() const
 * \brief Retrieve the coordinates of the top left corner of this Rectangle
 * \return The Rectangle's top left corner
 */

/**
 * \brief Apply a non-uniform rational scaling in place to this Rectangle
 * \param[in] numerator The numerators of the x and y scaling factors
 * \param[in] denominator The denominators of the x and y scaling factors
 *
 * A non-uniform scaling is applied in place such the resulting x
 * coordinates are multiplied by numerator.width / denominator.width,
 * and similarly for the y coordinates (using height in place of width).
 *
 * \return A reference to this object
 */
Rectangle &Rectangle::scaleBy(const Size &numerator, const Size &denominator)
{
	x = static_cast<int64_t>(x) * numerator.width / denominator.width;
	y = static_cast<int64_t>(y) * numerator.height / denominator.height;
	width = static_cast<uint64_t>(width) * numerator.width / denominator.width;
	height = static_cast<uint64_t>(height) * numerator.height / denominator.height;

	return *this;
}

/**
 * \brief Translate this Rectangle in place by the given Point
 * \param[in] point The amount to translate the Rectangle by
 *
 * The Rectangle is translated in the x-direction by the point's x coordinate
 * and in the y-direction by the point's y coordinate.
 *
 * \return A reference to this object
 */
Rectangle &Rectangle::translateBy(const Point &point)
{
	x += point.x;
	y += point.y;

	return *this;
}

/**
 * \brief Calculate the intersection of this Rectangle with another
 * \param[in] bound The Rectangle that is intersected with this Rectangle
 *
 * This method calculates the standard intersection of two rectangles. If the
 * rectangles do not overlap in either the x or y direction, then the size
 * of that dimension in the result (its width or height) is set to zero. Even
 * when one dimension is set to zero, note that the other dimension may still
 * have a positive value if there was some overlap.
 *
 * \return A Rectangle that is the intersection of the input rectangles
 */
Rectangle Rectangle::boundedTo(const Rectangle &bound) const
{
	int topLeftX = std::max(x, bound.x);
	int topLeftY = std::max(y, bound.y);
	int bottomRightX = std::min<int>(x + width, bound.x + bound.width);
	int bottomRightY = std::min<int>(y + height, bound.y + bound.height);

	unsigned int newWidth = std::max(bottomRightX - topLeftX, 0);
	unsigned int newHeight = std::max(bottomRightY - topLeftY, 0);

	return { topLeftX, topLeftY, newWidth, newHeight };
}

/**
 * \brief Enclose a Rectangle so as not to exceed another Rectangle
 * \param[in] boundary The limit that the returned Rectangle will not exceed
 *
 * The Rectangle is modified so that it does not exceed the given \a boundary.
 * This process involves translating the Rectangle if any of its edges
 * lie beyond \a boundary, so that those edges then lie along the boundary
 * instead.
 *
 * If either width or height are larger than \a boundary, then the returned
 * Rectangle is clipped to be no larger. But other than this, the
 * Rectangle is not clipped or reduced in size, merely translated.
 *
 * Note that this is not a conventional Rectangle intersection function
 * which is provided by boundedTo().
 *
 * \return A Rectangle that does not extend beyond a boundary Rectangle
 */
Rectangle Rectangle::enclosedIn(const Rectangle &boundary) const
{
	/* We can't be bigger than the boundary rectangle. */
	Rectangle result = boundedTo(Rectangle{ x, y, boundary.size() });

	result.x = std::clamp<int>(result.x, boundary.x,
				   boundary.x + boundary.width - result.width);
	result.y = std::clamp<int>(result.y, boundary.y,
				   boundary.y + boundary.height - result.height);

	return result;
}

/**
 * \brief Apply a non-uniform rational scaling to this Rectangle
 * \param[in] numerator The numerators of the x and y scaling factors
 * \param[in] denominator The denominators of the x and y scaling factors
 *
 * A non-uniform scaling is applied such the resulting x
 * coordinates are multiplied by numerator.width / denominator.width,
 * and similarly for the y coordinates (using height in place of width).
 *
 * \return The non-uniformly scaled Rectangle
 */
Rectangle Rectangle::scaledBy(const Size &numerator, const Size &denominator) const
{
	int scaledX = static_cast<int64_t>(x) * numerator.width / denominator.width;
	int scaledY = static_cast<int64_t>(y) * numerator.height / denominator.height;
	unsigned int scaledWidth = static_cast<uint64_t>(width) * numerator.width / denominator.width;
	unsigned int scaledHeight = static_cast<uint64_t>(height) * numerator.height / denominator.height;

	return { scaledX, scaledY, scaledWidth, scaledHeight };
}

/**
 * \brief Translate a Rectangle by the given amounts
 * \param[in] point The amount to translate the Rectangle by
 *
 * The Rectangle is translated in the x-direction by the point's x coordinate
 * and in the y-direction by the point's y coordinate.
 *
 * \return The translated Rectangle
 */
Rectangle Rectangle::translatedBy(const Point &point) const
{
	return { x + point.x, y + point.y, width, height };
}

/**
 * \brief Compare rectangles for equality
 * \return True if the two rectangles are equal, false otherwise
 */
bool operator==(const Rectangle &lhs, const Rectangle &rhs)
{
	return lhs.x == rhs.x && lhs.y == rhs.y &&
	       lhs.width == rhs.width && lhs.height == rhs.height;
}

/**
 * \fn bool operator!=(const Rectangle &lhs, const Rectangle &rhs)
 * \brief Compare rectangles for inequality
 * \return True if the two rectangles are not equal, false otherwise
 */

} /* namespace libcamera */