diff options
Diffstat (limited to 'utils/tuning/libtuning/modules/lux/lux.py')
-rw-r--r-- | utils/tuning/libtuning/modules/lux/lux.py | 70 |
1 files changed, 70 insertions, 0 deletions
diff --git a/utils/tuning/libtuning/modules/lux/lux.py b/utils/tuning/libtuning/modules/lux/lux.py new file mode 100644 index 00000000..4bad429a --- /dev/null +++ b/utils/tuning/libtuning/modules/lux/lux.py @@ -0,0 +1,70 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2019, Raspberry Pi Ltd +# Copyright (C) 2025, Ideas on Board +# +# Base Lux tuning module + +from ..module import Module + +import logging +import numpy as np + +logger = logging.getLogger(__name__) + + +class Lux(Module): + type = 'lux' + hr_name = 'Lux (Base)' + out_name = 'GenericLux' + + def __init__(self, debug: list): + super().__init__() + + self.debug = debug + + def calculate_lux_reference_values(self, images): + # The lux calibration is done on a single image. For best effects, the + # image with lux level closest to 1000 is chosen. + imgs = [img for img in images if img.macbeth is not None] + lux_values = [img.lux for img in imgs] + index = lux_values.index(min(lux_values, key=lambda l: abs(1000 - l))) + img = imgs[index] + logger.info(f'Selected image {img.name} for lux calibration') + + if img.lux < 50: + logger.warning(f'A Lux level of {img.lux} is very low for proper lux calibration') + + ref_y = self.calculate_y(img) + exposure_time = img.exposure + gain = img.againQ8_norm + aperture = 1 + logger.info(f'RefY:{ref_y} Exposure time:{exposure_time}µs Gain:{gain} Aperture:{aperture}') + return {'referenceY': ref_y, + 'referenceExposureTime': exposure_time, + 'referenceAnalogueGain': gain, + 'referenceDigitalGain': 1.0, + 'referenceLux': img.lux} + + def calculate_y(self, img): + max16Bit = 0xffff + # Average over all grey patches. + ap_r = np.mean(img.patches[0][3::4]) / max16Bit + ap_g = (np.mean(img.patches[1][3::4]) + np.mean(img.patches[2][3::4])) / 2 / max16Bit + ap_b = np.mean(img.patches[3][3::4]) / max16Bit + logger.debug(f'Averaged grey patches: Red: {ap_r}, Green: {ap_g}, Blue: {ap_b}') + + # Calculate white balance gains. + gr = ap_g / ap_r + gb = ap_g / ap_b + logger.debug(f'WB gains: Red: {gr} Blue: {gb}') + + # Calculate the mean Y value of the whole image + a_r = np.mean(img.channels[0]) * gr + a_g = (np.mean(img.channels[1]) + np.mean(img.channels[2])) / 2 + a_b = np.mean(img.channels[3]) * gb + y = 0.299 * a_r + 0.587 * a_g + 0.114 * a_b + y /= max16Bit + + return y + |