summaryrefslogtreecommitdiff
path: root/utils/tuning/libtuning/modules/lux/lux.py
diff options
context:
space:
mode:
Diffstat (limited to 'utils/tuning/libtuning/modules/lux/lux.py')
-rw-r--r--utils/tuning/libtuning/modules/lux/lux.py70
1 files changed, 70 insertions, 0 deletions
diff --git a/utils/tuning/libtuning/modules/lux/lux.py b/utils/tuning/libtuning/modules/lux/lux.py
new file mode 100644
index 00000000..4bad429a
--- /dev/null
+++ b/utils/tuning/libtuning/modules/lux/lux.py
@@ -0,0 +1,70 @@
+# SPDX-License-Identifier: GPL-2.0-or-later
+#
+# Copyright (C) 2019, Raspberry Pi Ltd
+# Copyright (C) 2025, Ideas on Board
+#
+# Base Lux tuning module
+
+from ..module import Module
+
+import logging
+import numpy as np
+
+logger = logging.getLogger(__name__)
+
+
+class Lux(Module):
+ type = 'lux'
+ hr_name = 'Lux (Base)'
+ out_name = 'GenericLux'
+
+ def __init__(self, debug: list):
+ super().__init__()
+
+ self.debug = debug
+
+ def calculate_lux_reference_values(self, images):
+ # The lux calibration is done on a single image. For best effects, the
+ # image with lux level closest to 1000 is chosen.
+ imgs = [img for img in images if img.macbeth is not None]
+ lux_values = [img.lux for img in imgs]
+ index = lux_values.index(min(lux_values, key=lambda l: abs(1000 - l)))
+ img = imgs[index]
+ logger.info(f'Selected image {img.name} for lux calibration')
+
+ if img.lux < 50:
+ logger.warning(f'A Lux level of {img.lux} is very low for proper lux calibration')
+
+ ref_y = self.calculate_y(img)
+ exposure_time = img.exposure
+ gain = img.againQ8_norm
+ aperture = 1
+ logger.info(f'RefY:{ref_y} Exposure time:{exposure_time}µs Gain:{gain} Aperture:{aperture}')
+ return {'referenceY': ref_y,
+ 'referenceExposureTime': exposure_time,
+ 'referenceAnalogueGain': gain,
+ 'referenceDigitalGain': 1.0,
+ 'referenceLux': img.lux}
+
+ def calculate_y(self, img):
+ max16Bit = 0xffff
+ # Average over all grey patches.
+ ap_r = np.mean(img.patches[0][3::4]) / max16Bit
+ ap_g = (np.mean(img.patches[1][3::4]) + np.mean(img.patches[2][3::4])) / 2 / max16Bit
+ ap_b = np.mean(img.patches[3][3::4]) / max16Bit
+ logger.debug(f'Averaged grey patches: Red: {ap_r}, Green: {ap_g}, Blue: {ap_b}')
+
+ # Calculate white balance gains.
+ gr = ap_g / ap_r
+ gb = ap_g / ap_b
+ logger.debug(f'WB gains: Red: {gr} Blue: {gb}')
+
+ # Calculate the mean Y value of the whole image
+ a_r = np.mean(img.channels[0]) * gr
+ a_g = (np.mean(img.channels[1]) + np.mean(img.channels[2])) / 2
+ a_b = np.mean(img.channels[3]) * gb
+ y = 0.299 * a_r + 0.587 * a_g + 0.114 * a_b
+ y /= max16Bit
+
+ return y
+