# SPDX-License-Identifier: BSD-2-Clause # # Copyright (C) 2019, Raspberry Pi Ltd # # camera tuning tool for CCM (colour correction matrix) from ctt_image_load import * from ctt_awb import get_alsc_patches import colors from scipy.optimize import minimize from ctt_visualise import visualise_macbeth_chart import numpy as np """ takes 8-bit macbeth chart values, degammas and returns 16 bit """ ''' This program has many options from which to derive the color matrix from. The first is average. This minimises the average delta E across all patches of the macbeth chart. Testing across all cameras yeilded this as the most color accurate and vivid. Other options are avalible however. Maximum minimises the maximum Delta E of the patches. It iterates through till a minimum maximum is found (so that there is not one patch that deviates wildly.) This yields generally good results but overall the colors are less accurate Have a fiddle with maximum and see what you think. The final option allows you to select the patches for which to average across. This means that you can bias certain patches, for instance if you want the reds to be more accurate. ''' matrix_selection_types = ["average", "maximum", "patches"] typenum = 0 # select from array above, 0 = average, 1 = maximum, 2 = patches test_patches = [1, 2, 5, 8, 9, 12, 14] ''' Enter patches to test for. Can also be entered twice if you would like twice as much bias on one patch. ''' def degamma(x): x = x / ((2 ** 8) - 1) # takes 255 and scales it down to one x = np.where(x < 0.04045, x / 12.92, ((x + 0.055) / 1.055) ** 2.4) x = x * ((2 ** 16) - 1) # takes one and scales up to 65535, 16 bit color return x def gamma(x): # Take 3 long array of color values and gamma them return [((colour / 255) ** (1 / 2.4) * 1.055 - 0.055) * 255 for colour in x] """ FInds colour correction matrices for list of images """ def ccm(Cam, cal_cr_list, cal_cb_list, grid_size): global matrix_selection_types, typenum imgs = Cam.imgs """ standard macbeth chart colour values """ m_rgb = np.array([ # these are in RGB [116, 81, 67], # dark skin [199, 147, 129], # light skin [91, 122, 156], # blue sky [90, 108, 64], # foliage [130, 128, 176], # blue flower [92, 190, 172], # bluish green [224, 124, 47], # orange [68, 91, 170], # purplish blue [198, 82, 97], # moderate red [94, 58, 106], # purple [159, 189, 63], # yellow green [230, 162, 39], # orange yellow [35, 63, 147], # blue [67, 149, 74], # green [180, 49, 57], # red [238, 198, 20], # yellow [193, 84, 151], # magenta [0, 136, 170], # cyan (goes out of gamut) [245, 245, 243], # white 9.5 [200, 202, 202], # neutral 8 [161, 163, 163], # neutral 6.5 [121, 121, 122], # neutral 5 [82, 84, 86], # neutral 3.5 [49, 49, 51] # black 2 ]) """ convert reference colours from srgb to rgb """ m_srgb = degamma(m_rgb) # now in 16 bit color. # Produce array of LAB values for ideal color chart m_lab = [colors.RGB_to_LAB(color / 256) for color in m_srgb] """ reorder reference values to match how patches are ordered """ m_srgb = np.array([m_srgb[i::6] for i in range(6)]).reshape((24, 3)) m_lab = np.array([m_lab[i::6] for i in range(6)]).reshape((24, 3)) m_rgb = np.array([m_rgb[i::6] for i in range(6)]).reshape((24, 3)) """ reformat alsc correction tables or set colour_cals to None if alsc is deactivated """ if cal_cr_list is None: colour_cals = None else: colour_cals = {} for cr, cb in zip(cal_cr_list, cal_cb_list): cr_tab = cr['table'] cb_tab = cb['table'] """ normalise tables so min value is 1 """ cr_tab = cr_tab / np.min(cr_tab) cb_tab = cb_tab / np.min(cb_tab) colour_cals[cr['ct']] = [cr_tab, cb_tab] """ for each image, perform awb and alsc corrections. Then calculate the colour correction matrix for that image, recording the ccm and the colour tempertaure. """ ccm_tab = {} for Img in imgs: Cam.log += '\nProcessing image: ' + Img.name """ get macbeth patches with alsc applied if alsc enabled. Note: if alsc is disabled then colour_cals will be set to None and no the function will simply return the macbeth patches """ r, b, g = get_alsc_patches(Img, colour_cals, grey=False, grid_size=grid_size) """ do awb Note: awb is done by measuring the macbeth chart in the image, rather than from the awb calibration. This is done so the awb will be perfect and the ccm matrices will be more accurate. """ r_greys, b_greys, g_greys = r[3::4], b[3::4], g[3::4] r_g = np.mean(r_greys / g_greys) b_g = np.mean(b_greys / g_greys) r = r / r_g b = b / b_g """ normalise brightness wrt reference macbeth colours and then average each channel for each patch """ gain = np.mean(m_srgb) / np.mean((r, g, b)) Cam.log += '\nGain with respect to standard colours: {:.3f}'.format(gain) r = np.mean(gain * r, axis=1) b = np.mean(gain * b, axis=1) g = np.mean(gain * g, axis=1) """ calculate ccm matrix """ # ==== All of below should in sRGB ===## sumde = 0 ccm = do_ccm(r, g, b, m_srgb) # This is the initial guess that our optimisation code works with. original_ccm = ccm r1 = ccm[0] r2 = ccm[1] g1 = ccm[3] g2 = ccm[4] b1 = ccm[6] b2 = ccm[7] ''' COLOR MATRIX LOOKS AS BELOW R1 R2 R3 Rval Outr G1 G2 G3 * Gval = G B1 B2 B3 Bval B Will be optimising 6 elements and working out the third element using 1-r1-r2 = r3 ''' x0 = [r1, r2, g1, g2, b1, b2] ''' We use our old CCM as the initial guess for the program to find the optimised matrix ''' result = minimize(guess, x0, args=(r, g, b, m_lab), tol=0.01) ''' This produces a color matrix which has the lowest delta E possible, based off the input data. Note it is impossible for this to reach zero since the input data is imperfect ''' Cam.log += ("\n \n Optimised Matrix Below: \n \n") [r1, r2, g1, g2, b1, b2] = result.x # The new, optimised color correction matrix values optimised_ccm = [r1, r2, (1 - r1 - r2), g1, g2, (1 - g1 - g2), b1, b2, (1 - b1 - b2)] # This is the optimised Color Matrix (preserving greys by summing rows up to 1) Cam.log += str(optimised_ccm) Cam.log += "\n Old Color Correction Matrix Below \n" Cam.log += str(ccm) formatted_ccm = np.array(original_ccm).reshape((3, 3)) ''' below is a whole load of code that then applies the latest color matrix, and returns LAB values for color. This can then be used to calculate the final delta E ''' optimised_ccm_rgb = [] # Original Color Corrected Matrix RGB / LAB optimised_ccm_lab = [] formatted_optimised_ccm = np.array(optimised_ccm).reshape((3, 3)) after_gamma_rgb = [] after_gamma_lab = [] for RGB in zip(r, g, b): ccm_applied_rgb = np.dot(formatted_ccm, (np.array(RGB) / 256)) optimised_ccm_rgb.append(gamma(ccm_applied_rgb)) optimised_ccm_lab.append(colors.RGB_to_LAB(ccm_applied_rgb)) optimised_ccm_applied_rgb = np.dot(formatted_optimised_ccm, np.array(RGB) / 256) after_gamma_rgb.append(gamma(optimised_ccm_applied_rgb)) after_gamma_lab.append(colors.RGB_to_LAB(optimised_ccm_applied_rgb)) ''' Gamma After RGB / LAB - not used in calculations, only used for visualisation We now want to spit out some data that shows how the optimisation has improved the color matrices ''' Cam.log += "Here are the Improvements" # CALCULATE WORST CASE delta e old_worst_delta_e = 0 before_average = transform_and_evaluate(formatted_ccm, r, g, b, m_lab) new_worst_delta_e = 0 after_average = transform_and_evaluate(formatted_optimised_ccm, r, g, b, m_lab) for i in range(24): old_delta_e = deltae(optimised_ccm_lab[i], m_lab[i]) # Current Old Delta E new_delta_e = deltae(after_gamma_lab[i], m_lab[i]) # Current New Delta E if old_delta_e > old_worst_delta_e: old_worst_delta_e = old_delta_e if new_delta_e > new_worst_delta_e: new_worst_delta_e = new_delta_e Cam.log += "Before color correction matrix was optimised, we got an average delta E of " + str(before_average) + " and a maximum delta E of " + str(old_worst_delta_e) Cam.log += "After color correction matrix was optimised, we got an average delta E of " + str(after_average) + " and a maximum delta E of " + str(new_worst_delta_e) visualise_macbeth_chart(m_rgb, optimised_ccm_rgb, after_gamma_rgb, str(Img.col) + str(matrix_selection_types[typenum])) ''' The program will also save some visualisations of improvements. Very pretty to look at. Top rectangle is ideal, Left square is before optimisation, right square is after. ''' """ if a ccm has already been calculated for that temperature then don't overwrite but save both. They will then be averaged later on """ # Now going to use optimised color matrix, optimised_ccm if Img.col in ccm_tab.keys(): ccm_tab[Img.col].append(optimised_ccm) else: ccm_tab[Img.col] = [optimised_ccm] Cam.log += '\n' Cam.log += '\nFinished processing images' """ average any ccms t# SPDX-License-Identifier: GPL-2.0-or-later # # Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> # # libtuning.py - An infrastructure for camera tuning tools import argparse import libtuning as lt import libtuning.utils as utils from libtuning.utils import eprint from enum import Enum, IntEnum class Color(IntEnum): R = 0 GR = 1 GB = 2 B = 3 class Debug(Enum): Plot = 1 # @brief What to do with the leftover pixels after dividing them into ALSC # sectors, when the division gradient is uniform # @var Float Force floating point division so all sectors divide equally # @var DistributeFront Divide the remainder equally (until running out, # obviously) into the existing sectors, starting from the front # @var DistributeBack Same as DistributeFront but starting from the back class Remainder(Enum): Float = 0 DistributeFront = 1 DistributeBack = 2 # @brief A helper class to contain a default value for a module configuration # parameter class Param(object): # @var Required The value contained in this instance is irrelevant, and the # value must be provided by the tuning configuration file. # @var Optional If the value is not provided by the tuning configuration # file, then the value contained in this instance will be used instead. # @var Hardcode The value contained in this instance will be used class Mode(Enum): Required = 0 Optional = 1 Hardcode = 2 # @param name Name of the parameter. Shall match the name used in the # configuration file for the parameter # @param required Whether or not a value is required in the config # parameter of get_value() # @param val Default value (only relevant if mode is Optional) def __init__(self, name: str, required: Mode, val=None): self.name = name self.__required = required self.val = val def get_value(self, config: dict): if self.__required is self.Mode.Hardcode: return self.val if self.__required is self.Mode.Required and self.name not in config: raise ValueError(f'Parameter {self.name} is required but not provided in the configuration') return config[self.name] if self.required else self.val @property def required(self): return self.__required is self.Mode.Required # @brief Used by libtuning to auto-generate help information for the tuning # script on the available parameters for the configuration file # \todo Implement this @property def info(self): raise NotImplementedError class Tuner(object): # External functions def __init__(self, platform_name): self.name = platform_name self.modules = [] self.parser = None self.generator = None self.output_order = [] self.config = {} self.output = {} def add(self, module): self.modules.append(module) def set_input_parser(self, parser): self.parser = parser def set_output_formatter(self, output): self.generator = output def set_output_order(self, modules): self.output_order = modules # @brief Convert classes in self.output_order to the instances in self.modules def _prepare_output_order(self): output_order = self.output_order self.output_order = [] for module_type in output_order: modules = [module for module in self.modules if module.type == module_type.type] if len(modules) > 1: eprint(f'Multiple modules found for module type "{module_type.type}"') return False if len(modules) < 1: eprint(f'No module found for module type "{module_type.type}"') return False self.output_order.append(modules[0]) return True # \todo Validate parser and generator at Tuner construction time? def _validate_settings(self): if self.parser is None: eprint('Missing parser') return False if self.generator is None: eprint('Missing generator') return False if len(self.modules) == 0: eprint('No modules added') return False if len(self.output_order) != len(self.modules): eprint('Number of outputs does not match number of modules') return False return True def _process_args(self, argv, platform_name): parser = argparse.ArgumentParser(description=f'Camera Tuning for {platform_name}') parser.add_argument('-i', '--input', type=str, required=True, help='''Directory containing calibration images (required). Images for ALSC must be named "alsc_{Color Temperature}k_1[u].dng", and all other images must be named "{Color Temperature}k_{Lux Level}l.dng"''') parser.add_argument('-o', '--output', type=str, required=True, help='Output file (required)') # It is not our duty to scan all modules to figure out their default # options, so simply return an empty configuration if none is provided. parser.add_argument('-c', '--config', type=str, default='', help='Config file (optional)') # \todo Check if we really need this or if stderr is good enough, or if # we want a better logging infrastructure with log levels parser.add_argument('-l', '--log', type=str, default=None, help='Output log file (optional)') return parser.parse_args(argv[1:]) def run(self, argv): args = self._process_args(argv, self.name) if args is None: return -1 if not self._validate_settings(): return -1 if not self._prepare_output_order(): return -1 if len(args.config) > 0: self.config, disable = self.parser.parse(args.config, self.modules) else: self.config = {'general': {}} disable = [] # Remove disabled modules for module in disable: if module in self.modules: self.modules.remove(module) for module in self.modules: if not module.validate_config(self.config): eprint(f'Config is invalid for module {module.type}') return -1 has_lsc = any(isinstance(m, lt.modules.lsc.LSC) for m in self.modules) # Only one LSC module allowed has_only_lsc = has_lsc and len(self.modules) == 1 images = utils.load_images(args.input, self.config, not has_only_lsc, has_lsc) if images is None or len(images) == 0: eprint(f'No images were found, or able to load') return -1 # Do the tuning for module in self.modules: out = module.process(self.config, images, self.output) if out is None: eprint(f'Module {module.name} failed to process, aborting') break self.output[module] = out self.generator.write(args.output, self.output, self.output_order) return 0