summaryrefslogtreecommitdiff
path: root/utils/raspberrypi/ctt/ctt_lux.py
blob: 4e7785ef35e1ba641a122bcea3515045237024db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
#
# ctt_lux.py - camera tuning tool for lux level

from ctt_tools import *


"""
Find lux values from metadata and calculate Y
"""
def lux(Cam, Img):
    shutter_speed = Img.exposure
    gain = Img.againQ8_norm
    aperture = 1
    Cam.log += '\nShutter speed = {}'.format(shutter_speed)
    Cam.log += '\nGain = {}'.format(gain)
    Cam.log += '\nAperture = {}'.format(aperture)
    patches = [Img.patches[i] for i in Img.order]
    channels = [Img.channels[i] for i in Img.order]
    return lux_calc(Cam, Img, patches, channels), shutter_speed, gain


"""
perform lux calibration on bayer channels
"""
def lux_calc(Cam, Img, patches, channels):
    """
    find means color channels on grey patches
    """
    ap_r = np.mean(patches[0][3::4])
    ap_g = (np.mean(patches[1][3::4])+np.mean(patches[2][3::4]))/2
    ap_b = np.mean(patches[3][3::4])
    Cam.log += '\nAverage channel values on grey patches:'
    Cam.log += '\nRed = {:.0f} Green = {:.0f} Blue = {:.0f}'.format(ap_r, ap_b, ap_g)
    # print(ap_r, ap_g, ap_b)
    """
    calculate channel gains
    """
    gr = ap_g/ap_r
    gb = ap_g/ap_b
    Cam.log += '\nChannel gains: Red = {:.3f} Blue = {:.3f}'.format(gr, gb)

    """
    find means color channels on image and scale by gain
    note greens are averaged together (treated as one channel)
    """
    a_r = np.mean(channels[0])*gr
    a_g = (np.mean(channels[1])+np.mean(channels[2]))/2
    a_b = np.mean(channels[3])*gb
    Cam.log += '\nAverage channel values over entire image scaled by channel gains:'
    Cam.log += '\nRed = {:.0f} Green = {:.0f} Blue = {:.0f}'.format(a_r, a_b, a_g)
    # print(a_r, a_g, a_b)
    """
    Calculate y with top row of yuv matrix
    """
    y = 0.299*a_r + 0.587*a_g + 0.114*a_b
    Cam.log += '\nY value calculated: {}'.format(int(y))
    # print(y)
    return int(y)
s="hl opt">= stats->hist[0].g_hist; const int numBins = sizeof(stats->hist[0].g_hist) / sizeof(stats->hist[0].g_hist[0]); for (int i = 0; i < numBins; i++) sum += bin[i] * (uint64_t)i, num += bin[i]; /* add .5 to reflect the mid-points of bins */ double currentY = sum / (double)num + .5; double gainRatio = referenceGain_ / currentGain; double shutterSpeedRatio = referenceShutterSpeed_ / deviceStatus.shutterSpeed; double apertureRatio = referenceAperture_ / currentAperture; double yRatio = currentY * (65536 / numBins) / referenceY_; double estimatedLux = shutterSpeedRatio * gainRatio * apertureRatio * apertureRatio * yRatio * referenceLux_; LuxStatus status; status.lux = estimatedLux; status.aperture = currentAperture; LOG(RPiLux, Debug) << ": estimated lux " << estimatedLux; { std::unique_lock<std::mutex> lock(mutex_); status_ = status; } /* * Overwrite the metadata here as well, so that downstream * algorithms get the latest value. */ imageMetadata->set("lux.status", status); } else LOG(RPiLux, Warning) << ": no device metadata"; } /* Register algorithm with the system. */ static Algorithm *create(Controller *controller) { return (Algorithm *)new Lux(controller); } static RegisterAlgorithm reg(NAME, &create);