1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
|
# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
#
# ctt_ccm.py - camera tuning tool for CCM (colour correction matrix)
from ctt_image_load import *
from ctt_awb import get_alsc_patches
"""
takes 8-bit macbeth chart values, degammas and returns 16 bit
"""
def degamma(x):
x = x / ((2**8)-1)
x = np.where(x < 0.04045, x/12.92, ((x+0.055)/1.055)**2.4)
x = x * ((2**16)-1)
return x
"""
FInds colour correction matrices for list of images
"""
def ccm(Cam,cal_cr_list,cal_cb_list):
imgs = Cam.imgs
"""
standard macbeth chart colour values
"""
m_rgb = np.array([ # these are in sRGB
[116, 81, 67], # dark skin
[199, 147, 129], # light skin
[91, 122, 156], # blue sky
[90, 108, 64], # foliage
[130, 128, 176], # blue flower
[92, 190, 172], # bluish green
[224, 124, 47], # orange
[68, 91,170], # purplish blue
[198, 82, 97], # moderate red
[94, 58, 106], # purple
[159, 189, 63], # yellow green
[230, 162, 39], # orange yellow
[35, 63, 147], # blue
[67, 149, 74], # green
[180, 49, 57], # red
[238, 198, 20], # yellow
[193, 84, 151], # magenta
[0, 136, 170], # cyan (goes out of gamut)
[245, 245, 243], # white 9.5
[200, 202, 202], # neutral 8
[161, 163, 163], # neutral 6.5
[121, 121, 122], # neutral 5
[82, 84, 86], # neutral 3.5
[49, 49, 51] # black 2
])
"""
convert reference colours from srgb to rgb
"""
m_srgb = degamma(m_rgb)
"""
reorder reference values to match how patches are ordered
"""
m_srgb = np.array([m_srgb[i::6] for i in range(6)]).reshape((24,3))
"""
reformat alsc correction tables or set colour_cals to None if alsc is
deactivated
"""
if cal_cr_list == None:
colour_cals = None
else:
colour_cals = {}
for cr,cb in zip(cal_cr_list,cal_cb_list):
cr_tab = cr['table']
cb_tab = cb['table']
"""
normalise tables so min value is 1
"""
cr_tab= cr_tab/np.min(cr_tab)
cb_tab= cb_tab/np.min(cb_tab)
colour_cals[cr['ct']] = [cr_tab,cb_tab]
"""
for each image, perform awb and alsc corrections.
Then calculate the colour correction matrix for that image, recording the
ccm and the colour tempertaure.
"""
ccm_tab = {}
for Img in imgs:
Cam.log += '\nProcessing image: ' + Img.name
"""
get macbeth patches with alsc applied if alsc enabled.
Note: if alsc is disabled then colour_cals will be set to None and no
the function will simply return the macbeth patches
"""
r,b,g = get_alsc_patches(Img,colour_cals,grey=False)
"""
do awb
Note: awb is done by measuring the macbeth chart in the image, rather
than from the awb calibration. This is done so the awb will be perfect
and the ccm matrices will be more accurate.
"""
r_greys,b_greys,g_greys = r[3::4],b[3::4],g[3::4]
r_g = np.mean(r_greys/g_greys)
b_g = np.mean(b_greys/g_greys)
r = r / r_g
b = b / b_g
"""
normalise brightness wrt reference macbeth colours and then average
each channel for each patch
"""
gain = np.mean(m_srgb)/np.mean((r,g,b))
Cam.log += '\nGain with respect to standard colours: {:.3f}'.format(gain)
r = np.mean(gain*r,axis=1)
b = np.mean(gain*b,axis=1)
g = np.mean(gain*g,axis=1)
"""
calculate ccm matrix
"""
ccm = do_ccm(r,g,b,m_srgb)
"""
if a ccm has already been calculated for that temperature then don't
overwrite but save both. They will then be averaged later on
"""
if Img.col in ccm_tab.keys():
ccm_tab[Img.col].append(ccm)
else:
ccm_tab[Img.col] = [ccm]
Cam.log += '\n'
Cam.log += '\nFinished processing images'
"""
average any ccms that share a colour temperature
"""
for k,v in ccm_tab.items():
tab = np.mean(v,axis=0)
tab = np.where((10000*tab)%1<=0.05,tab+0.00001,tab)
tab = np.where((10000*tab)%1>=0.95,tab-0.00001,tab)
ccm_tab[k] = list(np.round(tab,5))
Cam.log += '\nMatrix calculated for colour temperature of {} K'.format(k)
"""
return all ccms with respective colour temperature in the correct format,
sorted by their colour temperature
"""
sorted_ccms = sorted(ccm_tab.items(),key=lambda kv: kv[0])
ccms = []
for i in sorted_ccms:
ccms.append({
'ct' : i[0],
'ccm' : i[1]
})
return ccms
"""
calculates the ccm for an individual image.
ccms are calculate in rgb space, and are fit by hand. Although it is a 3x3
matrix, each row must add up to 1 in order to conserve greyness, simplifying
calculation.
Should you want to fit them in another space (e.g. LAB) we wish you the best of
luck and send us the code when you are done! :-)
"""
def do_ccm(r,g,b,m_srgb):
rb = r-b
gb = g-b
rb_2s = (rb*rb)
rb_gbs = (rb*gb)
gb_2s = (gb*gb)
r_rbs = ( rb * (m_srgb[...,0] - b) )
r_gbs = ( gb * (m_srgb[...,0] - b) )
g_rbs = ( rb * (m_srgb[...,1] - b) )
g_gbs = ( gb * (m_srgb[...,1] - b) )
b_rbs = ( rb * (m_srgb[...,2] - b) )
b_gbs = ( gb * (m_srgb[...,2] - b) )
"""
Obtain least squares fit
"""
rb_2 = np.sum(rb_2s)
gb_2 = np.sum(gb_2s)
rb_gb = np.sum(rb_gbs)
r_rb = np.sum(r_rbs)
r_gb = np.sum(r_gbs)
g_rb = np.sum(g_rbs)
g_gb = np.sum(g_gbs)
b_rb = np.sum(b_rbs)
b_gb = np.sum(b_gbs)
det = rb_2*gb_2 - rb_gb*rb_gb
"""
Raise error if matrix is singular...
This shouldn't really happen with real data but if it does just take new
pictures and try again, not much else to be done unfortunately...
"""
if det < 0.001:
raise ArithmeticError
r_a = (gb_2*r_rb - rb_gb*r_gb)/det
r_b = (rb_2*r_gb - rb_gb*r_rb)/det
"""
Last row can be calculated by knowing the sum must be 1
"""
r_c = 1 - r_a - r_b
g_a = (gb_2*g_rb - rb_gb*g_gb)/det
g_b = (rb_2*g_gb - rb_gb*g_rb)/det
g_c = 1 - g_a - g_b
b_a = (gb_2*b_rb - rb_gb*b_gb)/det
b_b = (rb_2*b_gb - rb_gb*b_rb)/det
b_c = 1 - b_a - b_b
"""
format ccm
"""
ccm = [r_a,r_b,r_c,g_a,g_b,g_c,b_a,b_b,b_c]
return ccm
|