1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
|
# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2019, Raspberry Pi Ltd
#
# ctt_awb.py - camera tuning tool for AWB
from ctt_image_load import *
import matplotlib.pyplot as plt
from bisect import bisect_left
from scipy.optimize import fmin
"""
obtain piecewise linear approximation for colour curve
"""
def awb(Cam, cal_cr_list, cal_cb_list, plot):
imgs = Cam.imgs
"""
condense alsc calibration tables into one dictionary
"""
if cal_cr_list is None:
colour_cals = None
else:
colour_cals = {}
for cr, cb in zip(cal_cr_list, cal_cb_list):
cr_tab = cr['table']
cb_tab = cb['table']
"""
normalise tables so min value is 1
"""
cr_tab = cr_tab/np.min(cr_tab)
cb_tab = cb_tab/np.min(cb_tab)
colour_cals[cr['ct']] = [cr_tab, cb_tab]
"""
obtain data from greyscale macbeth patches
"""
rb_raw = []
rbs_hat = []
for Img in imgs:
Cam.log += '\nProcessing '+Img.name
"""
get greyscale patches with alsc applied if alsc enabled.
Note: if alsc is disabled then colour_cals will be set to None and the
function will just return the greyscale patches
"""
r_patchs, b_patchs, g_patchs = get_alsc_patches(Img, colour_cals)
"""
calculate ratio of r, b to g
"""
r_g = np.mean(r_patchs/g_patchs)
b_g = np.mean(b_patchs/g_patchs)
Cam.log += '\n r : {:.4f} b : {:.4f}'.format(r_g, b_g)
"""
The curve tends to be better behaved in so-called hatspace.
R, B, G represent the individual channels. The colour curve is plotted in
r, b space, where:
r = R/G
b = B/G
This will be referred to as dehatspace... (sorry)
Hatspace is defined as:
r_hat = R/(R+B+G)
b_hat = B/(R+B+G)
To convert from dehatspace to hastpace (hat operation):
r_hat = r/(1+r+b)
b_hat = b/(1+r+b)
To convert from hatspace to dehatspace (dehat operation):
r = r_hat/(1-r_hat-b_hat)
b = b_hat/(1-r_hat-b_hat)
Proof is left as an excercise to the reader...
Throughout the code, r and b are sometimes referred to as r_g and b_g
as a reminder that they are ratios
"""
r_g_hat = r_g/(1+r_g+b_g)
b_g_hat = b_g/(1+r_g+b_g)
Cam.log += '\n r_hat : {:.4f} b_hat : {:.4f}'.format(r_g_hat, b_g_hat)
rbs_hat.append((r_g_hat, b_g_hat, Img.col))
rb_raw.append((r_g, b_g))
Cam.log += '\n'
Cam.log += '\nFinished processing images'
"""
sort all lits simultaneously by r_hat
"""
rbs_zip = list(zip(rbs_hat, rb_raw))
rbs_zip.sort(key=lambda x: x[0][0])
rbs_hat, rb_raw = list(zip(*rbs_zip))
"""
unzip tuples ready for processing
"""
rbs_hat = list(zip(*rbs_hat))
rb_raw = list(zip(*rb_raw))
"""
fit quadratic fit to r_g hat and b_g_hat
"""
a, b, c = np.polyfit(rbs_hat[0], rbs_hat[1], 2)
Cam.log += '\nFit quadratic curve in hatspace'
"""
the algorithm now approximates the shortest distance from each point to the
curve in dehatspace. Since the fit is done in hatspace, it is easier to
find the actual shortest distance in hatspace and use the projection back
into dehatspace as an overestimate.
The distance will be used for two things:
1) In the case that colour temperature does not strictly decrease with
increasing r/g, the closest point to the line will be chosen out of an
increasing pair of colours.
2) To calculate transverse negative an dpositive, the maximum positive
and negative distance from the line are chosen. This benefits from the
overestimate as the transverse pos/neg are upper bound values.
"""
"""
define fit function
"""
def f(x):
return a*x**2 + b*x + c
"""
iterate over points (R, B are x and y coordinates of points) and calculate
distance to line in dehatspace
"""
dists = []
for i, (R, B) in enumerate(zip(rbs_hat[0], rbs_hat[1])):
"""
define function to minimise as square distance between datapoint and
point on curve. Squaring is monotonic so minimising radius squared is
equivalent to minimising radius
"""
def f_min(x):
y = f(x)
return((x-R)**2+(y-B)**2)
"""
perform optimisation with scipy.optmisie.fmin
"""
x_hat = fmin(f_min, R, disp=0)[0]
y_hat = f(x_hat)
"""
dehat
"""
x = x_hat/(1-x_hat-y_hat)
y = y_hat/(1-x_hat-y_hat)
rr = R/(1-R-B)
bb = B/(1-R-B)
"""
calculate euclidean distance in dehatspace
"""
dist = ((x-rr)**2+(y-bb)**2)**0.5
"""
return negative if point is below the fit curve
"""
if (x+y) > (rr+bb):
dist *= -1
dists.append(dist)
Cam.log += '\nFound closest point on fit line to each point in dehatspace'
"""
calculate wiggle factors in awb. 10% added since this is an upper bound
"""
transverse_neg = - np.min(dists) * 1.1
transverse_pos = np.max(dists) * 1.1
Cam.log += '\nTransverse pos : {:.5f}'.format(transverse_pos)
Cam.log += '\nTransverse neg : {:.5f}'.format(transverse_neg)
"""
set minimum transverse wiggles to 0.1 .
Wiggle factors dictate how far off of the curve the algorithm searches. 0.1
is a suitable minimum that gives better results for lighting conditions not
within calibration dataset. Anything less will generalise poorly.
"""
if transverse_pos < 0.01:
transverse_pos = 0.01
Cam.log += '\nForced transverse pos to 0.01'
if transverse_neg < 0.01:
transverse_neg = 0.01
Cam.log += '\nForced transverse neg to 0.01'
"""
generate new b_hat values at each r_hat according to fit
"""
r_hat_fit = np.array(rbs_hat[0])
b_hat_fit = a*r_hat_fit**2 + b*r_hat_fit + c
"""
transform from hatspace to dehatspace
"""
r_fit = r_hat_fit/(1-r_hat_fit-b_hat_fit)
b_fit = b_hat_fit/(1-r_hat_fit-b_hat_fit)
c_fit = np.round(rbs_hat[2], 0)
"""
round to 4dp
"""
r_fit = np.where((1000*r_fit) % 1 <= 0.05, r_fit+0.0001, r_fit)
r_fit = np.where((1000*r_fit) % 1 >= 0.95, r_fit-0.0001, r_fit)
b_fit = np.where((1000*b_fit) % 1 <= 0.05, b_fit+0.0001, b_fit)
b_fit = np.where((1000*b_fit) % 1 >= 0.95, b_fit-0.0001, b_fit)
r_fit = np.round(r_fit, 4)
b_fit = np.round(b_fit, 4)
"""
The following code ensures that colour temperature decreases with
increasing r/g
"""
"""
iterate backwards over list for easier indexing
"""
i = len(c_fit) - 1
while i > 0:
if c_fit[i] > c_fit[i-1]:
Cam.log += '\nColour temperature increase found\n'
Cam.log += '{} K at r = {} to '.format(c_fit[i-1], r_fit[i-1])
Cam.log += '{} K at r = {}'.format(c_fit[i], r_fit[i])
"""
if colour temperature increases then discard point furthest from
the transformed fit (dehatspace)
"""
error_1 = abs(dists[i-1])
error_2 = abs(dists[i])
Cam.log += '\nDistances from fit:\n'
Cam.log += '{} K : {:.5f} , '.format(c_fit[i], error_1)
Cam.log += '{} K : {:.5f}'.format(c_fit[i-1], error_2)
"""
find bad index
note that in python false = 0 and true = 1
"""
bad = i - (error_1 < error_2)
Cam.log += '\nPoint at {} K deleted as '.format(c_fit[bad])
Cam.log += 'it is furthest from fit'
"""
delete bad point
"""
r_fit = np.delete(r_fit, bad)
b_fit = np.delete(b_fit, bad)
c_fit = np.delete(c_fit, bad).astype(np.uint16)
"""
note that if a point has been discarded then the length has decreased
by one, meaning that decreasing the index by one will reassess the kept
point against the next point. It is therefore possible, in theory, for
two adjacent points to be discarded, although probably rare
"""
i -= 1
"""
return formatted ct curve, ordered by increasing colour temperature
"""
ct_curve = list(np.array(list(zip(b_fit, r_fit, c_fit))).flatten())[::-1]
Cam.log += '\nFinal CT curve:'
for i in range(len(ct_curve)//3):
j = 3*i
Cam.log += '\n ct: {} '.format(ct_curve[j])
Cam.log += ' r: {} '.format(ct_curve[j+1])
Cam.log += ' b: {} '.format(ct_curve[j+2])
"""
plotting code for debug
"""
if plot:
x = np.linspace(np.min(rbs_hat[0]), np.max(rbs_hat[0]), 100)
y = a*x**2 + b*x + c
plt.subplot(2, 1, 1)
plt.title('hatspace')
plt.plot(rbs_hat[0], rbs_hat[1], ls='--', color='blue')
plt.plot(x, y, color='green', ls='-')
plt.scatter(rbs_hat[0], rbs_hat[1], color='red')
for i, ct in enumerate(rbs_hat[2]):
plt.annotate(str(ct), (rbs_hat[0][i], rbs_hat[1][i]))
plt.xlabel('$\\hat{r}$')
plt.ylabel('$\\hat{b}$')
"""
optional set axes equal to shortest distance so line really does
looks perpendicular and everybody is happy
"""
# ax = plt.gca()
# ax.set_aspect('equal')
plt.grid()
plt.subplot(2, 1, 2)
plt.title('dehatspace - indoors?')
plt.plot(r_fit, b_fit, color='blue')
plt.scatter(rb_raw[0], rb_raw[1], color='green')
plt.scatter(r_fit, b_fit, color='red')
for i, ct in enumerate(c_fit):
plt.annotate(str(ct), (r_fit[i], b_fit[i]))
plt.xlabel('$r$')
plt.ylabel('$b$')
"""
optional set axes equal to shortest distance so line really does
looks perpendicular and everybody is happy
"""
# ax = plt.gca()
# ax.set_aspect('equal')
plt.subplots_adjust(hspace=0.5)
plt.grid()
plt.show()
"""
end of plotting code
"""
return(ct_curve, np.round(transverse_pos, 5), np.round(transverse_neg, 5))
"""
obtain greyscale patches and perform alsc colour correction
"""
def get_alsc_patches(Img, colour_cals, grey=True):
"""
get patch centre coordinates, image colour and the actual
patches for each channel, remembering to subtract blacklevel
If grey then only greyscale patches considered
"""
if grey:
cen_coords = Img.cen_coords[3::4]
col = Img.col
patches = [np.array(Img.patches[i]) for i in Img.order]
r_patchs = patches[0][3::4] - Img.blacklevel_16
b_patchs = patches[3][3::4] - Img.blacklevel_16
"""
note two green channels are averages
"""
g_patchs = (patches[1][3::4]+patches[2][3::4])/2 - Img.blacklevel_16
else:
cen_coords = Img.cen_coords
col = Img.col
patches = [np.array(Img.patches[i]) for i in Img.order]
r_patchs = patches[0] - Img.blacklevel_16
b_patchs = patches[3] - Img.blacklevel_16
g_patchs = (patches[1]+patches[2])/2 - Img.blacklevel_16
if colour_cals is None:
return r_patchs, b_patchs, g_patchs
"""
find where image colour fits in alsc colour calibration tables
"""
cts = list(colour_cals.keys())
pos = bisect_left(cts, col)
"""
if img colour is below minimum or above maximum alsc calibration colour, simply
pick extreme closest to img colour
"""
if pos % len(cts) == 0:
"""
this works because -0 = 0 = first and -1 = last index
"""
col_tabs = np.array(colour_cals[cts[-pos//len(cts)]])
"""
else, perform linear interpolation between existing alsc colour
calibration tables
"""
else:
bef = cts[pos-1]
aft = cts[pos]
da = col-bef
db = aft-col
bef_tabs = np.array(colour_cals[bef])
aft_tabs = np.array(colour_cals[aft])
col_tabs = (bef_tabs*db + aft_tabs*da)/(da+db)
col_tabs = np.reshape(col_tabs, (2, 12, 16))
"""
calculate dx, dy used to calculate alsc table
"""
w, h = Img.w/2, Img.h/2
dx, dy = int(-(-(w-1)//16)), int(-(-(h-1)//12))
"""
make list of pairs of gains for each patch by selecting the correct value
in alsc colour calibration table
"""
patch_gains = []
for cen in cen_coords:
x, y = cen[0]//dx, cen[1]//dy
# We could probably do with some better spatial interpolation here?
col_gains = (col_tabs[0][y][x], col_tabs[1][y][x])
patch_gains.append(col_gains)
"""
multiply the r and b channels in each patch by the respective gain, finally
performing the alsc colour correction
"""
for i, gains in enumerate(patch_gains):
r_patchs[i] = r_patchs[i] * gains[0]
b_patchs[i] = b_patchs[i] * gains[1]
"""
return greyscale patches, g channel and correct r, b channels
"""
return r_patchs, b_patchs, g_patchs
|