summaryrefslogtreecommitdiff
path: root/utils/hooks
ModeNameSize
-rwxr-xr-xpost-commit424logplain
-rwxr-xr-xpre-commit527logplain
-rwxr-xr-xpre-push2796logplain
45' href='#n45'>45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2021-2022, Ideas On Board
 *
 * AGC/AEC mean-based control algorithm
 */

#include "agc.h"

#include <algorithm>
#include <chrono>
#include <cmath>
#include <tuple>
#include <vector>

#include <libcamera/base/log.h>
#include <libcamera/base/utils.h>

#include <libcamera/control_ids.h>
#include <libcamera/ipa/core_ipa_interface.h>

#include "libcamera/internal/yaml_parser.h"

#include "libipa/histogram.h"

/**
 * \file agc.h
 */

namespace libcamera {

using namespace std::literals::chrono_literals;

namespace ipa::rkisp1::algorithms {

/**
 * \class Agc
 * \brief A mean-based auto-exposure algorithm
 */

LOG_DEFINE_CATEGORY(RkISP1Agc)

int Agc::parseMeteringModes(IPAContext &context, const YamlObject &tuningData)
{
	if (!tuningData.isDictionary())
		LOG(RkISP1Agc, Warning)
			<< "'AeMeteringMode' parameter not found in tuning file";

	for (const auto &[key, value] : tuningData.asDict()) {
		if (controls::AeMeteringModeNameValueMap.find(key) ==
		    controls::AeMeteringModeNameValueMap.end()) {
			LOG(RkISP1Agc, Warning)
				<< "Skipping unknown metering mode '" << key << "'";
			continue;
		}

		std::vector<uint8_t> weights =
			value.getList<uint8_t>().value_or(std::vector<uint8_t>{});
		if (weights.size() != context.hw->numHistogramWeights) {
			LOG(RkISP1Agc, Warning)
				<< "Failed to read metering mode'" << key << "'";
			continue;
		}

		meteringModes_[controls::AeMeteringModeNameValueMap.at(key)] = weights;
	}

	if (meteringModes_.empty()) {
		LOG(RkISP1Agc, Warning)
			<< "No metering modes read from tuning file; defaulting to matrix";
		int32_t meteringModeId = controls::AeMeteringModeNameValueMap.at("MeteringMatrix");
		std::vector<uint8_t> weights(context.hw->numHistogramWeights, 1);

		meteringModes_[meteringModeId] = weights;
	}

	std::vector<ControlValue> meteringModes;
	std::vector<int> meteringModeKeys = utils::map_keys(meteringModes_);
	std::transform(meteringModeKeys.begin(), meteringModeKeys.end(),
		       std::back_inserter(meteringModes),
		       [](int x) { return ControlValue(x); });
	context.ctrlMap[&controls::AeMeteringMode] = ControlInfo(meteringModes);

	return 0;
}

uint8_t Agc::computeHistogramPredivider(const Size &size,
					enum rkisp1_cif_isp_histogram_mode mode)
{
	/*
	 * The maximum number of pixels that could potentially be in one bin is
	 * if all the pixels of the image are in it, multiplied by 3 for the
	 * three color channels. The counter for each bin is 16 bits wide, so
	 * `factor` thus contains the number of times we'd wrap around. This is
	 * obviously the number of pixels that we need to skip to make sure
	 * that we don't wrap around, but we compute the square root of it
	 * instead, as the skip that we need to program is for both the x and y
	 * directions.
	 *
	 * Even though it looks like dividing into a counter of 65536 would
	 * overflow by 1, this is apparently fine according to the hardware
	 * documentation, and this successfully gets the expected documented
	 * predivider size for cases where:
	 * (width / predivider) * (height / predivider) * 3 == 65536.
	 *
	 * There's a bit of extra rounding math to make sure the rounding goes
	 * the correct direction so that the square of the step is big enough
	 * to encompass the `factor` number of pixels that we need to skip.
	 *
	 * \todo Take into account weights. That is, if the weights are low
	 * enough we can potentially reduce the predivider to increase
	 * precision. This needs some investigation however, as this hardware
	 * behavior is undocumented and is only an educated guess.
	 */
	int count = mode == RKISP1_CIF_ISP_HISTOGRAM_MODE_RGB_COMBINED ? 3 : 1;
	double factor = size.width * size.height * count / 65536.0;
	double root = std::sqrt(factor);
	uint8_t predivider = static_cast<uint8_t>(std::ceil(root));

	return std::clamp<uint8_t>(predivider, 3, 127);
}

Agc::Agc()
{
	supportsRaw_ = true;
}

/**
 * \brief Initialise the AGC algorithm from tuning files
 * \param[in] context The shared IPA context
 * \param[in] tuningData The YamlObject containing Agc tuning data
 *
 * This function calls the base class' tuningData parsers to discover which
 * control values are supported.
 *
 * \return 0 on success or errors from the base class
 */
int Agc::init(IPAContext &context, const YamlObject &tuningData)
{
	int ret;

	ret = parseTuningData(tuningData);
	if (ret)
		return ret;

	const YamlObject &yamlMeteringModes = tuningData["AeMeteringMode"];
	ret = parseMeteringModes(context, yamlMeteringModes);
	if (ret)
		return ret;

	context.ctrlMap[&controls::ExposureTimeMode] =
		ControlInfo({ { ControlValue(controls::ExposureTimeModeAuto),
				ControlValue(controls::ExposureTimeModeManual) } },
			    ControlValue(controls::ExposureTimeModeAuto));
	context.ctrlMap[&controls::AnalogueGainMode] =
		ControlInfo({ { ControlValue(controls::AnalogueGainModeAuto),
				ControlValue(controls::AnalogueGainModeManual) } },
			    ControlValue(controls::AnalogueGainModeAuto));
	/* \todo Move this to the Camera class */
	context.ctrlMap[&controls::AeEnable] = ControlInfo(false, true, true);
	context.ctrlMap.merge(controls());

	return 0;
}

/**
 * \brief Configure the AGC given a configInfo
 * \param[in] context The shared IPA context
 * \param[in] configInfo The IPA configuration data
 *
 * \return 0
 */
int Agc::configure(IPAContext &context, const IPACameraSensorInfo &configInfo)
{
	/* Configure the default exposure and gain. */
	context.activeState.agc.automatic.gain = context.configuration.sensor.minAnalogueGain;
	context.activeState.agc.automatic.exposure =
		10ms / context.configuration.sensor.lineDuration;
	context.activeState.agc.manual.gain = context.activeState.agc.automatic.gain;
	context.activeState.agc.manual.exposure = context.activeState.agc.automatic.exposure;
	context.activeState.agc.autoExposureEnabled = !context.configuration.raw;
	context.activeState.agc.autoGainEnabled = !context.configuration.raw;

	context.activeState.agc.constraintMode =
		static_cast<controls::AeConstraintModeEnum>(constraintModes().begin()->first);
	context.activeState.agc.exposureMode =
		static_cast<controls::AeExposureModeEnum>(exposureModeHelpers().begin()->first);
	context.activeState.agc.meteringMode =
		static_cast<controls::AeMeteringModeEnum>(meteringModes_.begin()->first);

	/* Limit the frame duration to match current initialisation */
	ControlInfo &frameDurationLimits = context.ctrlMap[&controls::FrameDurationLimits];
	context.activeState.agc.minFrameDuration = std::chrono::microseconds(frameDurationLimits.min().get<int64_t>());
	context.activeState.agc.maxFrameDuration = std::chrono::microseconds(frameDurationLimits.max().get<int64_t>());

	/*
	 * Define the measurement window for AGC as a centered rectangle
	 * covering 3/4 of the image width and height.
	 */
	context.configuration.agc.measureWindow.h_offs = configInfo.outputSize.width / 8;
	context.configuration.agc.measureWindow.v_offs = configInfo.outputSize.height / 8;
	context.configuration.agc.measureWindow.h_size = 3 * configInfo.outputSize.width / 4;
	context.configuration.agc.measureWindow.v_size = 3 * configInfo.outputSize.height / 4;

	setLimits(context.configuration.sensor.minExposureTime,
		  context.configuration.sensor.maxExposureTime,
		  context.configuration.sensor.minAnalogueGain,
		  context.configuration.sensor.maxAnalogueGain);

	resetFrameCount();

	return 0;
}

/**
 * \copydoc libcamera::ipa::Algorithm::queueRequest
 */
void Agc::queueRequest(IPAContext &context,
		       [[maybe_unused]] const uint32_t frame,
		       IPAFrameContext &frameContext,
		       const ControlList &controls)
{
	auto &agc = context.activeState.agc;

	if (!context.configuration.raw) {
		const auto &aeEnable = controls.get(controls::ExposureTimeMode);
		if (aeEnable &&
		    (*aeEnable == controls::ExposureTimeModeAuto) != agc.autoExposureEnabled) {
			agc.autoExposureEnabled = (*aeEnable == controls::ExposureTimeModeAuto);

			LOG(RkISP1Agc, Debug)
				<< (agc.autoExposureEnabled ? "Enabling" : "Disabling")
				<< " AGC (exposure)";

			/*
			 * If we go from auto -> manual with no manual control
			 * set, use the last computed value, which we don't
			 * know until prepare() so save this information.
			 *
			 * \todo Check the previous frame at prepare() time
			 * instead of saving a flag here
			 */
			if (!agc.autoExposureEnabled && !controls.get(controls::ExposureTime))
				frameContext.agc.autoExposureModeChange = true;
		}

		const auto &agEnable = controls.get(controls::AnalogueGainMode);
		if (agEnable &&
		    (*agEnable == controls::AnalogueGainModeAuto) != agc.autoGainEnabled) {
			agc.autoGainEnabled = (*agEnable == controls::AnalogueGainModeAuto);

			LOG(RkISP1Agc, Debug)
				<< (agc.autoGainEnabled ? "Enabling" : "Disabling")
				<< " AGC (gain)";
			/*
			 * If we go from auto -> manual with no manual control
			 * set, use the last computed value, which we don't
			 * know until prepare() so save this information.
			 */
			if (!agc.autoGainEnabled && !controls.get(controls::AnalogueGain))
				frameContext.agc.autoGainModeChange = true;
		}
	}

	const auto &exposure = controls.get(controls::ExposureTime);
	if (exposure && !agc.autoExposureEnabled) {
		agc.manual.exposure = *exposure * 1.0us
				    / context.configuration.sensor.lineDuration;

		LOG(RkISP1Agc, Debug)
			<< "Set exposure to " << agc.manual.exposure;
	}

	const auto &gain = controls.get(controls::AnalogueGain);
	if (gain && !agc.autoGainEnabled) {
		agc.manual.gain = *gain;

		LOG(RkISP1Agc, Debug) << "Set gain to " << agc.manual.gain;
	}

	frameContext.agc.autoExposureEnabled = agc.autoExposureEnabled;
	frameContext.agc.autoGainEnabled = agc.autoGainEnabled;

	if (!frameContext.agc.autoExposureEnabled)
		frameContext.agc.exposure = agc.manual.exposure;
	if (!frameContext.agc.autoGainEnabled)
		frameContext.agc.gain = agc.manual.gain;

	const auto &meteringMode = controls.get(controls::AeMeteringMode);
	if (meteringMode) {
		frameContext.agc.updateMetering = agc.meteringMode != *meteringMode;
		agc.meteringMode =
			static_cast<controls::AeMeteringModeEnum>(*meteringMode);
	}
	frameContext.agc.meteringMode = agc.meteringMode;

	const auto &exposureMode = controls.get(controls::AeExposureMode);
	if (exposureMode)
		agc.exposureMode =
			static_cast<controls::AeExposureModeEnum>(*exposureMode);
	frameContext.agc.exposureMode = agc.exposureMode;

	const auto &constraintMode = controls.get(controls::AeConstraintMode);
	if (constraintMode)
		agc.constraintMode =
			static_cast<controls::AeConstraintModeEnum>(*constraintMode);
	frameContext.agc.constraintMode = agc.constraintMode;

	const auto &frameDurationLimits = controls.get(controls::FrameDurationLimits);
	if (frameDurationLimits) {
		/* Limit the control value to the limits in ControlInfo */
		ControlInfo &limits = context.ctrlMap[&controls::FrameDurationLimits];
		int64_t minFrameDuration =
			std::clamp((*frameDurationLimits).front(),
				   limits.min().get<int64_t>(),
				   limits.max().get<int64_t>());
		int64_t maxFrameDuration =
			std::clamp((*frameDurationLimits).back(),
				   limits.min().get<int64_t>(),
				   limits.max().get<int64_t>());

		agc.minFrameDuration = std::chrono::microseconds(minFrameDuration);
		agc.maxFrameDuration = std::chrono::microseconds(maxFrameDuration);
	}
	frameContext.agc.minFrameDuration = agc.minFrameDuration;
	frameContext.agc.maxFrameDuration = agc.maxFrameDuration;
}

/**
 * \copydoc libcamera::ipa::Algorithm::prepare
 */
void Agc::prepare(IPAContext &context, const uint32_t frame,
		  IPAFrameContext &frameContext, RkISP1Params *params)
{
	uint32_t activeAutoExposure = context.activeState.agc.automatic.exposure;
	double activeAutoGain = context.activeState.agc.automatic.gain;

	/* Populate exposure and gain in auto mode */
	if (frameContext.agc.autoExposureEnabled)
		frameContext.agc.exposure = activeAutoExposure;
	if (frameContext.agc.autoGainEnabled)
		frameContext.agc.gain = activeAutoGain;

	/*
	 * Populate manual exposure and gain from the active auto values when
	 * transitioning from auto to manual
	 */
	if (!frameContext.agc.autoExposureEnabled && frameContext.agc.autoExposureModeChange) {
		context.activeState.agc.manual.exposure = activeAutoExposure;
		frameContext.agc.exposure = activeAutoExposure;
	}
	if (!frameContext.agc.autoGainEnabled && frameContext.agc.autoGainModeChange) {
		context.activeState.agc.manual.gain = activeAutoGain;
		frameContext.agc.gain = activeAutoGain;
	}

	if (frame > 0 && !frameContext.agc.updateMetering)
		return;

	/*
	 * Configure the AEC measurements. Set the window, measure
	 * continuously, and estimate Y as (R + G + B) x (85/256).
	 */
	auto aecConfig = params->block<BlockType::Aec>();
	aecConfig.setEnabled(true);

	aecConfig->meas_window = context.configuration.agc.measureWindow;
	aecConfig->autostop = RKISP1_CIF_ISP_EXP_CTRL_AUTOSTOP_0;
	aecConfig->mode = RKISP1_CIF_ISP_EXP_MEASURING_MODE_1;

	/*
	 * Configure the histogram measurement. Set the window, produce a
	 * luminance histogram, and set the weights and predivider.
	 */
	auto hstConfig = params->block<BlockType::Hst>();
	hstConfig.setEnabled(true);

	hstConfig->meas_window = context.configuration.agc.measureWindow;
	hstConfig->mode = RKISP1_CIF_ISP_HISTOGRAM_MODE_Y_HISTOGRAM;

	Span<uint8_t> weights{
		hstConfig->hist_weight,
		context.hw->numHistogramWeights
	};
	std::vector<uint8_t> &modeWeights = meteringModes_.at(frameContext.agc.meteringMode);
	std::copy(modeWeights.begin(), modeWeights.end(), weights.begin());

	struct rkisp1_cif_isp_window window = hstConfig->meas_window;
	Size windowSize = { window.h_size, window.v_size };
	hstConfig->histogram_predivider =
		computeHistogramPredivider(windowSize,
					   static_cast<rkisp1_cif_isp_histogram_mode>(hstConfig->mode));
}

void Agc::fillMetadata(IPAContext &context, IPAFrameContext &frameContext,
		       ControlList &metadata)
{
	utils::Duration exposureTime = context.configuration.sensor.lineDuration
				     * frameContext.sensor.exposure;
	metadata.set(controls::AnalogueGain, frameContext.sensor.gain);
	metadata.set(controls::ExposureTime, exposureTime.get<std::micro>());
	metadata.set(controls::FrameDuration, frameContext.agc.frameDuration.get<std::micro>());
	metadata.set(controls::ExposureTimeMode,
		     frameContext.agc.autoExposureEnabled
		     ? controls::ExposureTimeModeAuto
		     : controls::ExposureTimeModeManual);
	metadata.set(controls::AnalogueGainMode,
		     frameContext.agc.autoGainEnabled
		     ? controls::AnalogueGainModeAuto
		     : controls::AnalogueGainModeManual);

	metadata.set(controls::AeMeteringMode, frameContext.agc.meteringMode);
	metadata.set(controls::AeExposureMode, frameContext.agc.exposureMode);
	metadata.set(controls::AeConstraintMode, frameContext.agc.constraintMode);
}

/**
 * \brief Estimate the relative luminance of the frame with a given gain
 * \param[in] gain The gain to apply to the frame
 *
 * This function estimates the average relative luminance of the frame that
 * would be output by the sensor if an additional \a gain was applied.
 *
 * The estimation is based on the AE statistics for the current frame. Y
 * averages for all cells are first multiplied by the gain, and then saturated
 * to approximate the sensor behaviour at high brightness values. The
 * approximation is quite rough, as it doesn't take into account non-linearities
 * when approaching saturation. In this case, saturating after the conversion to
 * YUV doesn't take into account the fact that the R, G and B components
 * contribute differently to the relative luminance.
 *
 * The values are normalized to the [0.0, 1.0] range, where 1.0 corresponds to a
 * theoretical perfect reflector of 100% reference white.
 *
 * More detailed information can be found in:
 * https://en.wikipedia.org/wiki/Relative_luminance
 *
 * \return The relative luminance
 */
double Agc::estimateLuminance(double gain) const
{
	double ySum = 0.0;

	/* Sum the averages, saturated to 255. */
	for (uint8_t expMean : expMeans_)
		ySum += std::min(expMean * gain, 255.0);

	/* \todo Weight with the AWB gains */

	return ySum / expMeans_.size() / 255;
}

/**
 * \brief Process frame duration and compute vblank
 * \param[in] context The shared IPA context
 * \param[in] frameContext The current frame context
 * \param[in] frameDuration The target frame duration
 *
 * Compute and populate vblank from the target frame duration.
 */
void Agc::processFrameDuration(IPAContext &context,
			       IPAFrameContext &frameContext,
			       utils::Duration frameDuration)
{
	IPACameraSensorInfo &sensorInfo = context.sensorInfo;
	utils::Duration lineDuration = context.configuration.sensor.lineDuration;

	frameContext.agc.vblank = (frameDuration / lineDuration) - sensorInfo.outputSize.height;

	/* Update frame duration accounting for line length quantization. */
	frameContext.agc.frameDuration = (sensorInfo.outputSize.height + frameContext.agc.vblank) * lineDuration;
}

/**
 * \brief Process RkISP1 statistics, and run AGC operations
 * \param[in] context The shared IPA context
 * \param[in] frame The frame context sequence number
 * \param[in] frameContext The current frame context
 * \param[in] stats The RKISP1 statistics and ISP results
 * \param[out] metadata Metadata for the frame, to be filled by the algorithm
 *
 * Identify the current image brightness, and use that to estimate the optimal
 * new exposure and gain for the scene.
 */
void Agc::process(IPAContext &context, [[maybe_unused]] const uint32_t frame,
		  IPAFrameContext &frameContext, const rkisp1_stat_buffer *stats,
		  ControlList &metadata)
{
	if (!stats) {
		processFrameDuration(context, frameContext,
				     frameContext.agc.minFrameDuration);
		fillMetadata(context, frameContext, metadata);
		return;
	}

	if (!(stats->meas_type & RKISP1_CIF_ISP_STAT_AUTOEXP)) {
		fillMetadata(context, frameContext, metadata);
		LOG(RkISP1Agc, Error) << "AUTOEXP data is missing in statistics";
		return;
	}

	const utils::Duration &lineDuration = context.configuration.sensor.lineDuration;

	/*
	 * \todo Verify that the exposure and gain applied by the sensor for
	 * this frame match what has been requested. This isn't a hard
	 * requirement for stability of the AGC (the guarantee we need in
	 * automatic mode is a perfect match between the frame and the values
	 * we receive), but is important in manual mode.
	 */

	const rkisp1_cif_isp_stat *params = &stats->params;

	/* The lower 4 bits are fractional and meant to be discarded. */
	Histogram hist({ params->hist.hist_bins, context.hw->numHistogramBins },
		       [](uint32_t x) { return x >> 4; });
	expMeans_ = { params->ae.exp_mean, context.hw->numAeCells };

	/*
	 * Set the AGC limits using the fixed exposure time and/or gain in
	 * manual mode, or the sensor limits in auto mode.
	 */
	utils::Duration minExposureTime;
	utils::Duration maxExposureTime;
	double minAnalogueGain;
	double maxAnalogueGain;

	if (frameContext.agc.autoExposureEnabled) {
		minExposureTime = std::clamp(frameContext.agc.minFrameDuration,
					     context.configuration.sensor.minExposureTime,
					     context.configuration.sensor.maxExposureTime);
		maxExposureTime = std::clamp(frameContext.agc.maxFrameDuration,
					     context.configuration.sensor.minExposureTime,
					     context.configuration.sensor.maxExposureTime);
	} else {
		minExposureTime = context.configuration.sensor.lineDuration
				* frameContext.agc.exposure;
		maxExposureTime = minExposureTime;
	}

	if (frameContext.agc.autoGainEnabled) {
		minAnalogueGain = context.configuration.sensor.minAnalogueGain;