1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
|
/* SPDX-License-Identifier: BSD-2-Clause */
/*
From http://jgt.akpeters.com/papers/McGuire08/
Efficient, High-Quality Bayer Demosaic Filtering on GPUs
Morgan McGuire
This paper appears in issue Volume 13, Number 4.
---------------------------------------------------------
Copyright (c) 2008, Morgan McGuire. All rights reserved.
*/
//Pixel Shader
/** Monochrome RGBA or GL_LUMINANCE Bayer encoded texture.*/
uniform sampler2D source;
varying vec4 center;
varying vec4 yCoord;
varying vec4 xCoord;
void main(void) {
#define fetch(x, y) texture2D(source, vec2(x, y)).r
float C = texture2D(source, center.xy).r; // ( 0, 0)
const vec4 kC = vec4( 4.0, 6.0, 5.0, 5.0) / 8.0;
// Determine which of four types of pixels we are on.
vec2 alternate = mod(floor(center.zw), 2.0);
vec4 Dvec = vec4(
fetch(xCoord[1], yCoord[1]), // (-1,-1)
fetch(xCoord[1], yCoord[2]), // (-1, 1)
fetch(xCoord[2], yCoord[1]), // ( 1,-1)
fetch(xCoord[2], yCoord[2])); // ( 1, 1)
vec4 PATTERN = (kC.xyz * C).xyzz;
// Can also be a dot product with (1,1,1,1) on hardware where that is
// specially optimized.
// Equivalent to: D = Dvec[0] + Dvec[1] + Dvec[2] + Dvec[3];
Dvec.xy += Dvec.zw;
Dvec.x += Dvec.y;
vec4 value = vec4(
fetch(center.x, yCoord[0]), // ( 0,-2)
fetch(center.x, yCoord[1]), // ( 0,-1)
fetch(xCoord[0], center.y), // (-2, 0)
fetch(xCoord[1], center.y)); // (-1, 0)
vec4 temp = vec4(
fetch(center.x, yCoord[3]), // ( 0, 2)
fetch(center.x, yCoord[2]), // ( 0, 1)
fetch(xCoord[3], center.y), // ( 2, 0)
fetch(xCoord[2], center.y)); // ( 1, 0)
// Even the simplest compilers should be able to constant-fold these to
// avoid the division.
// Note that on scalar processors these constants force computation of some
// identical products twice.
const vec4 kA = vec4(-1.0, -1.5, 0.5, -1.0) / 8.0;
const vec4 kB = vec4( 2.0, 0.0, 0.0, 4.0) / 8.0;
const vec4 kD = vec4( 0.0, 2.0, -1.0, -1.0) / 8.0;
// Conserve constant registers and take advantage of free swizzle on load
#define kE (kA.xywz)
#define kF (kB.xywz)
value += temp;
// There are five filter patterns (identity, cross, checker,
// theta, phi). Precompute the terms from all of them and then
// use swizzles to assign to color channels.
//
// Channel Matches
// x cross (e.g., EE G)
// y checker (e.g., EE B)
// z theta (e.g., EO R)
// w phi (e.g., EO R)
#define A (value[0])
#define B (value[1])
#define D (Dvec.x)
#define E (value[2])
#define F (value[3])
// Avoid zero elements. On a scalar processor this saves two MADDs
// and it has no effect on a vector processor.
PATTERN.yzw += (kD.yz * D).xyy;
PATTERN += (kA.xyz * A).xyzx + (kE.xyw * E).xyxz;
PATTERN.xw += kB.xw * B;
PATTERN.xz += kF.xz * F;
gl_FragColor.rgb = (alternate.y == 0.0) ?
((alternate.x == 0.0) ?
vec3(C, PATTERN.xy) :
vec3(PATTERN.z, C, PATTERN.w)) :
((alternate.x == 0.0) ?
vec3(PATTERN.w, C, PATTERN.z) :
vec3(PATTERN.yx, C));
}
|