summaryrefslogtreecommitdiff
path: root/src/qcam/assets/feathericons/alert-circle.svg
blob: 8d02b7d16e3a27b674f4c9d5fb1d3e2cd5d8d216 (plain)
1
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="feather feather-alert-circle"><circle cx="12" cy="12" r="10"></circle><line x1="12" y1="8" x2="12" y2="12"></line><line x1="12" y1="16" x2="12.01" y2="16"></line></svg>
='#n18'>18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
#!/usr/bin/env python3
#
# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
#
# ctt.py - camera tuning tool

import os
import sys
from ctt_image_load import *
from ctt_ccm import *
from ctt_awb import *
from ctt_alsc import *
from ctt_lux import *
from ctt_noise import *
from ctt_geq import *
from ctt_pretty_print_json import *
import random
import json
import re

"""
This file houses the camera object, which is used to perform the calibrations.
The camera object houses all the calibration images as attributes in two lists:
    - imgs (macbeth charts)
    - imgs_alsc (alsc correction images)
Various calibrations are methods of the camera object, and the output is stored
in a dictionary called self.json.
Once all the caibration has been completed, the Camera.json is written into a
json file.
The camera object initialises its json dictionary by reading from a pre-written
blank json file. This has been done to avoid reproducing the entire json file
in the code here, thereby avoiding unecessary clutter.
"""


"""
Get the colour and lux values from the strings of each inidvidual image
"""
def get_col_lux(string):
    """
    Extract colour and lux values from filename
    """
    col = re.search(r'([0-9]+)[kK](\.(jpg|jpeg|brcm|dng)|_.*\.(jpg|jpeg|brcm|dng))$', string)
    lux = re.search(r'([0-9]+)[lL](\.(jpg|jpeg|brcm|dng)|_.*\.(jpg|jpeg|brcm|dng))$', string)
    try:
        col = col.group(1)
    except AttributeError:
        """
        Catch error if images labelled incorrectly and pass reasonable defaults
        """
        return None, None
    try:
        lux = lux.group(1)
    except AttributeError:
        """
        Catch error if images labelled incorrectly and pass reasonable defaults
        Still returns colour if that has been found.
        """
        return col, None
    return int(col), int(lux)


"""
Camera object that is the backbone of the tuning tool.
Input is the desired path of the output json.
"""
class Camera:
    def __init__(self, jfile):
        self.path = os.path.dirname(os.path.expanduser(__file__)) + '/'
        if self.path == '/':
            self.path = ''
        self.imgs = []
        self.imgs_alsc = []
        self.log = 'Log created : ' + time.asctime(time.localtime(time.time()))
        self.log_separator = '\n'+'-'*70+'\n'
        self.jf = jfile
        """
        initial json dict populated by uncalibrated values
        """
        self.json = {
            "rpi.black_level": {
                "black_level": 4096
            },
            "rpi.dpc": {
            },
            "rpi.lux": {
                "reference_shutter_speed": 10000,
                "reference_gain": 1,
                "reference_aperture": 1.0
            },
            "rpi.noise": {
            },
            "rpi.geq": {
            },
            "rpi.sdn": {
            },
            "rpi.awb": {
                "priors": [
                    {"lux": 0, "prior": [2000, 1.0, 3000, 0.0, 13000, 0.0]},
                    {"lux": 800, "prior": [2000, 0.0, 6000, 2.0, 13000, 2.0]},
                    {"lux": 1500, "prior": [2000, 0.0, 4000, 1.0, 6000, 6.0, 6500, 7.0, 7000, 1.0, 13000, 1.0]}
                ],
                "modes": {
                    "auto": {"lo": 2500, "hi": 8000},
                    "incandescent": {"lo": 2500, "hi": 3000},
                    "tungsten": {"lo": 3000, "hi": 3500},
                    "fluorescent": {"lo": 4000, "hi": 4700},
                    "indoor": {"lo": 3000, "hi": 5000},
                    "daylight": {"lo": 5500, "hi": 6500},
                    "cloudy": {"lo": 7000, "hi": 8600}
                },
                "bayes": 1
            },
            "rpi.agc": {
                "metering_modes": {
                    "centre-weighted": {
                        "weights": [3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0]
                    },
                    "spot": {
                        "weights": [2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
                    },
                    "matrix": {
                        "weights": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
                    }
                },
                "exposure_modes": {
                    "normal": {
                        "shutter": [100, 10000, 30000, 60000, 120000],
                        "gain": [1.0, 2.0, 4.0, 6.0, 6.0]
                    },
                    "short": {
                        "shutter": [100, 5000, 10000, 20000, 120000],
                        "gain": [1.0, 2.0, 4.0, 6.0, 6.0]
                    }
                },
                "constraint_modes": {
                    "normal": [
                        {"bound": "LOWER", "q_lo": 0.98, "q_hi": 1.0, "y_target": [0, 0.5, 1000, 0.5]}
                    ],
                    "highlight": [
                        {"bound": "LOWER", "q_lo": 0.98, "q_hi": 1.0, "y_target": [0, 0.5, 1000, 0.5]},
                        {"bound": "UPPER", "q_lo": 0.98, "q_hi": 1.0, "y_target": [0, 0.8, 1000, 0.8]}
                    ]
                },
                "y_target": [0, 0.16, 1000, 0.165, 10000, 0.17]
            },
            "rpi.alsc": {
                'omega': 1.3,
                'n_iter': 100,
                'luminance_strength': 0.7,
            },
            "rpi.contrast": {
                "ce_enable": 1,
                "gamma_curve": [
                    0,     0,
                    1024,  5040,
                    2048,  9338,
                    3072,  12356,
                    4096,  15312,
                    5120,  18051,
                    6144,  20790,
                    7168,  23193,
                    8192,  25744,
                    9216,  27942,
                    10240, 30035,
                    11264, 32005,
                    12288, 33975,
                    13312, 35815,
                    14336, 37600,
                    15360, 39168,
                    16384, 40642,
                    18432, 43379,
                    20480, 45749,
                    22528, 47753,
                    24576, 49621,
                    26624, 51253,
                    28672, 52698,
                    30720, 53796,
                    32768, 54876,
                    36864, 57012,
                    40960, 58656,
                    45056, 59954,
                    49152, 61183,
                    53248, 62355,
                    57344, 63419,
                    61440, 64476,
                    65535, 65535
                ]
            },
            "rpi.ccm": {
            },
            "rpi.sharpen": {
            }
        }

    """
    Perform colour correction calibrations by comparing macbeth patch colours
    to standard macbeth chart colours.
    """
    def ccm_cal(self, do_alsc_colour):
        if 'rpi.ccm' in self.disable:
            return 1
        print('\nStarting CCM calibration')
        self.log_new_sec('CCM')
        """
        if image is greyscale then CCm makes no sense
        """
        if self.grey:
            print('\nERROR: Can\'t do CCM on greyscale image!')
            self.log += '\nERROR: Cannot perform CCM calibration '
            self.log += 'on greyscale image!\nCCM aborted!'
            del self.json['rpi.ccm']
            return 0
        a = time.time()
        """
        Check if alsc tables have been generated, if not then do ccm without
        alsc
        """
        if ("rpi.alsc" not in self.disable) and do_alsc_colour:
            """
            case where ALSC colour has been done, so no errors should be
            expected...
            """
            try:
                cal_cr_list = self.json['rpi.alsc']['calibrations_Cr']
                cal_cb_list = self.json['rpi.alsc']['calibrations_Cb']
                self.log += '\nALSC tables found successfully'
            except KeyError:
                cal_cr_list, cal_cb_list = None, None
                print('WARNING! No ALSC tables found for CCM!')
                print('Performing CCM calibrations without ALSC correction...')
                self.log += '\nWARNING: No ALSC tables found.\nCCM calibration '
                self.log += 'performed without ALSC correction...'
        else:
            """
            case where config options result in CCM done without ALSC colour tables
            """
            cal_cr_list, cal_cb_list = None, None
            self.log += '\nWARNING: No ALSC tables found.\nCCM calibration '
            self.log += 'performed without ALSC correction...'

        """
        Do CCM calibration
        """
        try:
            ccms = ccm(self, cal_cr_list, cal_cb_list)
        except ArithmeticError:
            print('ERROR: Matrix is singular!\nTake new pictures and try again...')
            self.log += '\nERROR: Singular matrix encountered during fit!'
            self.log += '\nCCM aborted!'
            return 1
        """
        Write output to json
        """
        self.json['rpi.ccm']['ccms'] = ccms
        self.log += '\nCCM calibration written to json file'
        print('Finished CCM calibration')

    """
    Auto white balance calibration produces a colour curve for
    various colour temperatures, as well as providing a maximum 'wiggle room'
    distance from this curve (transverse_neg/pos).
    """
    def awb_cal(self, greyworld, do_alsc_colour):
        if 'rpi.awb' in self.disable:
            return 1
        print('\nStarting AWB calibration')
        self.log_new_sec('AWB')
        """
        if image is greyscale then AWB makes no sense
        """
        if self.grey:
            print('\nERROR: Can\'t do AWB on greyscale image!')
            self.log += '\nERROR: Cannot perform AWB calibration '
            self.log += 'on greyscale image!\nAWB aborted!'
            del self.json['rpi.awb']
            return 0
        """
        optional set greyworld (e.g. for noir cameras)
        """
        if greyworld:
            self.json['rpi.awb']['bayes'] = 0
            self.log += '\nGreyworld set'
        """
        Check if alsc tables have been generated, if not then do awb without
        alsc correction
        """
        if ("rpi.alsc" not in self.disable) and do_alsc_colour:
            try:
                cal_cr_list = self.json['rpi.alsc']['calibrations_Cr']
                cal_cb_list = self.json['rpi.alsc']['calibrations_Cb']
                self.log += '\nALSC tables found successfully'
            except KeyError:
                cal_cr_list, cal_cb_list = None, None
                print('ERROR, no ALSC calibrations found for AWB')
                print('Performing AWB without ALSC tables')
                self.log += '\nWARNING: No ALSC tables found.\nAWB calibration '
                self.log += 'performed without ALSC correction...'
        else:
            cal_cr_list, cal_cb_list = None, None
            self.log += '\nWARNING: No ALSC tables found.\nAWB calibration '
            self.log += 'performed without ALSC correction...'
        """
        call calibration function
        """
        plot = "rpi.awb" in self.plot
        awb_out = awb(self, cal_cr_list, cal_cb_list, plot)
        ct_curve, transverse_neg, transverse_pos = awb_out
        """
        write output to json
        """
        self.json['rpi.awb']['ct_curve'] = ct_curve
        self.json['rpi.awb']['sensitivity_r'] = 1.0
        self.json['rpi.awb']['sensitivity_b'] = 1.0
        self.json['rpi.awb']['transverse_pos'] = transverse_pos
        self.json['rpi.awb']['transverse_neg'] = transverse_neg
        self.log += '\nAWB calibration written to json file'
        print('Finished AWB calibration')

    """
    Auto lens shading correction completely mitigates the effects of lens shading for ech
    colour channel seperately, and then partially corrects for vignetting.
    The extent of the correction depends on the 'luminance_strength' parameter.
    """
    def alsc_cal(self, luminance_strength, do_alsc_colour):
        if 'rpi.alsc' in self.disable:
            return 1
        print('\nStarting ALSC calibration')
        self.log_new_sec('ALSC')
        """
        check if alsc images have been taken
        """
        if len(self.imgs_alsc) == 0:
            print('\nError:\nNo alsc calibration images found')
            self.log += '\nERROR: No ALSC calibration images found!'
            self.log += '\nALSC calibration aborted!'
            return 1
        self.json['rpi.alsc']['luminance_strength'] = luminance_strength
        if self.grey and do_alsc_colour:
            print('Greyscale camera so only luminance_lut calculated')
            do_alsc_colour = False
            self.log += '\nWARNING: ALSC colour correction cannot be done on '
            self.log += 'greyscale image!\nALSC colour corrections forced off!'
        """
        call calibration function
        """
        plot = "rpi.alsc" in self.plot
        alsc_out = alsc_all(self, do_alsc_colour, plot)
        cal_cr_list, cal_cb_list, luminance_lut, av_corn = alsc_out
        """
        write ouput to json and finish if not do_alsc_colour
        """
        if not do_alsc_colour:
            self.json['rpi.alsc']['luminance_lut'] = luminance_lut
            self.json['rpi.alsc']['n_iter'] = 0
            self.log += '\nALSC calibrations written to json file'
            self.log += '\nNo colour calibrations performed'
            print('Finished ALSC calibrations')
            return 1

        self.json['rpi.alsc']['calibrations_Cr'] = cal_cr_list
        self.json['rpi.alsc']['calibrations_Cb'] = cal_cb_list
        self.json['rpi.alsc']['luminance_lut'] = luminance_lut
        self.log += '\nALSC colour and luminance tables written to json file'

        """
        The sigmas determine the strength of the adaptive algorithm, that
        cleans up any lens shading that has slipped through the alsc. These are
        determined by measuring a 'worst-case' difference between two alsc tables
        that are adjacent in colour space. If, however, only one colour
        temperature has been provided, then this difference can not be computed
        as only one table is available.
        To determine the sigmas you would have to estimate the error of an alsc
        table with only the image it was taken on as a check. To avoid circularity,
        dfault exaggerated sigmas are used, which can result in too much alsc and
        is therefore not advised.
        In general, just take another alsc picture at another colour temperature!
        """

        if len(self.imgs_alsc) == 1:
            self.json['rpi.alsc']['sigma'] = 0.005
            self.json['rpi.alsc']['sigma_Cb'] = 0.005
            print('\nWarning:\nOnly one alsc calibration found'
                  '\nStandard sigmas used for adaptive algorithm.')
            print('Finished ALSC calibrations')
            self.log += '\nWARNING: Only one colour temperature found in '
            self.log += 'calibration images.\nStandard sigmas used for adaptive '
            self.log += 'algorithm!'
            return 1

        """
        obtain worst-case scenario residual sigmas
        """
        sigma_r, sigma_b = get_sigma(self, cal_cr_list, cal_cb_list)
        """
        write output to json
        """
        self.json['rpi.alsc']['sigma'] = np.round(sigma_r, 5)
        self.json['rpi.alsc']['sigma_Cb'] = np.round(sigma_b, 5)
        self.log += '\nCalibrated sigmas written to json file'
        print('Finished ALSC calibrations')

    """
    Green equalisation fixes problems caused by discrepancies in green
    channels. This is done by measuring the effect on macbeth chart patches,
    which ideally would have the same green values throughout.
    An upper bound linear model is fit, fixing a threshold for the green
    differences that are corrected.
    """
    def geq_cal(self):
        if 'rpi.geq' in self.disable:
            return 1
        print('\nStarting GEQ calibrations')
        self.log_new_sec('GEQ')
        """
        perform calibration
        """
        plot = 'rpi.geq' in self.plot
        slope, offset = geq_fit(self, plot)
        """
        write output to json
        """
        self.json['rpi.geq']['offset'] = offset
        self.json['rpi.geq']['slope'] = slope
        self.log += '\nGEQ calibrations written to json file'
        print('Finished GEQ calibrations')

    """
    Lux calibrations allow the lux level of a scene to be estimated by a ratio
    calculation. Lux values are used in the pipeline for algorithms such as AGC
    and AWB
    """
    def lux_cal(self):
        if 'rpi.lux' in self.disable:
            return 1
        print('\nStarting LUX calibrations')
        self.log_new_sec('LUX')
        """
        The lux calibration is done on a single image. For best effects, the
        image with lux level closest to 1000 is chosen.
        """
        luxes = [Img.lux for Img in self.imgs]
        argmax = luxes.index(min(luxes, key=lambda l: abs(1000-l)))
        Img = self.imgs[argmax]
        self.log += '\nLux found closest to 1000: {} lx'.format(Img.lux)
        self.log += '\nImage used: ' + Img.name
        if Img.lux < 50:
            self.log += '\nWARNING: Low lux could cause inaccurate calibrations!'
        """
        do calibration
        """
        lux_out, shutter_speed, gain = lux(self, Img)
        """
        write output to json
        """
        self.json['rpi.lux']['reference_shutter_speed'] = shutter_speed
        self.json['rpi.lux']['reference_gain'] = gain
        self.json['rpi.lux']['reference_lux'] = Img.lux
        self.json['rpi.lux']['reference_Y'] = lux_out
        self.log += '\nLUX calibrations written to json file'
        print('Finished LUX calibrations')

    """
    Noise alibration attempts to describe the noise profile of the sensor. The
    calibration is run on macbeth images and the final output is taken as the average
    """
    def noise_cal(self):
        if 'rpi.noise' in self.disable:
            return 1
        print('\nStarting NOISE calibrations')
        self.log_new_sec('NOISE')
        """
        run calibration on all images and sort by slope.
        """
        plot = "rpi.noise" in self.plot
        noise_out = sorted([noise(self, Img, plot) for Img in self.imgs], key=lambda x: x[0])
        self.log += '\nFinished processing images'
        """
        take the average of the interquartile
        """
        length = len(noise_out)
        noise_out = np.mean(noise_out[length//4:1+3*length//4], axis=0)
        self.log += '\nAverage noise profile: constant = {} '.format(int(noise_out[1]))
        self.log += 'slope = {:.3f}'.format(noise_out[0])
        """
        write to json
        """
        self.json['rpi.noise']['reference_constant'] = int(noise_out[1])
        self.json['rpi.noise']['reference_slope'] = round(noise_out[0], 3)
        self.log += '\nNOISE calibrations written to json'
        print('Finished NOISE calibrations')

    """
    Removes json entries that are turned off
    """
    def json_remove(self, disable):
        self.log_new_sec('Disabling Options', cal=False)
        if len(self.disable) == 0:
            self.log += '\nNothing disabled!'
            return 1
        for key in disable:
            try:
                del self.json[key]
                self.log += '\nDisabled: ' + key
            except KeyError:
                self.log += '\nERROR: ' + key + ' not found!'
    """
    writes the json dictionary to the raw json file then make pretty
    """
    def write_json(self):
        """
        Write json dictionary to file
        """
        jstring = json.dumps(self.json, sort_keys=False)
        """
        make it pretty :)
        """
        pretty_print_json(jstring, self.jf)

    """
    add a new section to the log file
    """
    def log_new_sec(self, section, cal=True):
        self.log += '\n'+self.log_separator
        self.log += section
        if cal:
            self.log += ' Calibration'
        self.log += self.log_separator

    """
    write script arguments to log file
    """
    def log_user_input(self, json_output, directory, config, log_output):
        self.log_new_sec('User Arguments', cal=False)
        self.log += '\nJson file output: ' + json_output
        self.log += '\nCalibration images directory: ' + directory
        if config is None:
            self.log += '\nNo configuration file input... using default options'
        elif config is False:
            self.log += '\nWARNING: Invalid configuration file path...'
            self.log += ' using default options'
        elif config is True:
            self.log += '\nWARNING: Invalid syntax in configuration file...'
            self.log += ' using default options'
        else:
            self.log += '\nConfiguration file: ' + config
        if log_output is None:
            self.log += '\nNo log file path input... using default: ctt_log.txt'
        else:
            self.log += '\nLog file output: ' + log_output

        # if log_output

    """
    write log file
    """
    def write_log(self, filename):
        if filename is None:
            filename = 'ctt_log.txt'
        self.log += '\n' + self.log_separator
        with open(filename, 'w') as logfile:
            logfile.write(self.log)

    """
    Add all images from directory, pass into relevant list of images and
    extrace lux and temperature values.
    """
    def add_imgs(self, directory, mac_config, blacklevel=-1):
        self.log_new_sec('Image Loading', cal=False)
        img_suc_msg = 'Image loaded successfully!'
        print('\n\nLoading images from '+directory)
        self.log += '\nDirectory: ' + directory
        """
        get list of files
        """
        filename_list = get_photos(directory)
        print("Files found: {}".format(len(filename_list)))
        self.log += '\nFiles found: {}'.format(len(filename_list))
        """
        iterate over files
        """
        filename_list.sort()
        for filename in filename_list:
            address = directory + filename
            print('\nLoading image: '+filename)
            self.log += '\n\nImage: ' + filename
            """
            obtain colour and lux value
            """
            col, lux = get_col_lux(filename)
            """
            Check if image is an alsc calibration image
            """
            if 'alsc' in filename:
                Img = load_image(self, address, mac=False)
                self.log += '\nIdentified as an ALSC image'
                """
                check if imagae data has been successfully unpacked
                """
                if Img == 0:
                    print('\nDISCARDED')
                    self.log += '\nImage discarded!'
                    continue
                    """
                check that image colour temperature has been successfuly obtained
                """
                elif col is not None:
                    """
                    if successful, append to list and continue to next image
                    """
                    Img.col = col
                    Img.name = filename
                    self.log += '\nColour temperature: {} K'.format(col)
                    self.imgs_alsc.append(Img)
                    if blacklevel != -1:
                        Img.blacklevel_16 = blacklevel
                    print(img_suc_msg)
                    continue
                else:
                    print('Error! No colour temperature found!')
                    self.log += '\nWARNING: Error reading colour temperature'
                    self.log += '\nImage discarded!'
                    print('DISCARDED')
            else:
                self.log += '\nIdentified as macbeth chart image'
                """
                if image isn't an alsc correction then it must have a lux and a
                colour temperature value to be useful
                """
                if lux is None:
                    print('DISCARDED')
                    self.log += '\nWARNING: Error reading lux value'
                    self.log += '\nImage discarded!'
                    continue
                Img = load_image(self, address, mac_config)
                """
                check that image data has been successfuly unpacked
                """
                if Img == 0:
                    print('DISCARDED')
                    self.log += '\nImage discarded!'
                    continue
                else:
                    """
                    if successful, append to list and continue to next image
                    """
                    Img.col, Img.lux = col, lux
                    Img.name = filename
                    self.log += '\nColour temperature: {} K'.format(col)
                    self.log += '\nLux value: {} lx'.format(lux)
                    if blacklevel != -1:
                        Img.blacklevel_16 = blacklevel
                    print(img_suc_msg)
                    self.imgs.append(Img)

        print('\nFinished loading images')

    """
    Check that usable images have been found
    Possible errors include:
        - no macbeth chart
        - incorrect filename/extension
        - images from different cameras
    """
    def check_imgs(self):
        self.log += '\n\nImages found:'
        self.log += '\nMacbeth : {}'.format(len(self.imgs))
        self.log += '\nALSC : {} '.format(len(self.imgs_alsc))
        self.log += '\n\nCamera metadata'
        """
        check usable images found
        """
        if len(self.imgs) == 0:
            print('\nERROR: No usable macbeth chart images found')
            self.log += '\nERROR: No usable macbeth chart images found'
            return 0
        """
        Double check that every image has come from the same camera...
        """
        all_imgs = self.imgs + self.imgs_alsc
        camNames = list(set([Img.camName for Img in all_imgs]))
        patterns = list(set([Img.pattern for Img in all_imgs]))
        sigbitss = list(set([Img.sigbits for Img in all_imgs]))
        blacklevels = list(set([Img.blacklevel_16 for Img in all_imgs]))
        sizes = list(set([(Img.w, Img.h) for Img in all_imgs]))

        if len(camNames) == 1 and len(patterns) == 1 and len(sigbitss) == 1 and \
           len(blacklevels) == 1 and len(sizes) == 1:
            self.grey = (patterns[0] == 128)
            self.blacklevel_16 = blacklevels[0]
            self.log += '\nName: {}'.format(camNames[0])
            self.log += '\nBayer pattern case: {}'.format(patterns[0])
            if self.grey:
                self.log += '\nGreyscale camera identified'
            self.log += '\nSignificant bits: {}'.format(sigbitss[0])